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Abstract

Uranium in situ recovery (ISR) is the most widely used uranium mining technique worldwide. It consists of the dissolution of the

ore by a mining solution, directly within the deposit. By predicting fluid flow and geochemical reactions in reservoirs, reactive

transport (RT) modelling is a powerful tool to better understand and pilot ISR production. However, very few industrial uses have

been reported thus far. This paper fills the gaps by illustrating a large-scale well-field application of RT modelling at one of the

largest ISR mines worldwide, which is operated by Katco. This study highlights the robustness of a complex workflow based on

the coupled reactive transport software HYTEC and its added value for the operator in the context of uranium ISR. The robustness

demonstration is performed on 2394 wells covering 39 different production areas (blocks). The model reproduces the observed

uranium concentrations and pH of pumped solutions over time scales up to 12 years. Only three parameters are manually adjusted

to calibrate the model: global initial grades in clays (beidellite), calcite, and iron hydroxide (goethite). The discrepancy between

simulated and observed uranium production and acid consumption decreases as the observation scale widens, showing that local

errors compensate for each other. These deviations are mainly explained by the uncertainties of the 3D geological models and not by

the RT simulations. Furthermore, the robustness of the model is a key asset for decision-making as it enables accurate predictions.

This accuracy is illustrated through a case study of four of the simulated blocks. In 2019, after 10 years of production, the well field

was redesigned to target the remaining uranium using the RT-based workflow. Several scenarios were simulated and sequentially

optimised using a geometallurgical approach. The final adopted design predicted a 28% increase in uranium production and 35% in

economic gains over the first two years of simulation alone (2019-2021). These theoretical gains were validated in practice as the

comparison between the 2019 predictions and observations over 16 months showed a deviation less than 10% in the total uranium

production, which decreased to 1.9% using the observed operational conditions, which reinforces the predictability of the workflow

and validates the forecasted gains.

Keywords: In situ recovery, Uranium, Reactive transport, History matching, Optimisation, HYTEC

1. Introduction

In situ recovery (ISR), also known as in situ leaching (ISL)

is currently the leading uranium extraction technique. From
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less than 10% of the global production in 1997, it reached 46%

in 2011 and increased to 57% in 2019 (OECD-NEA & IAEA,5

2020). ISR consists of recovering uranium by direct leaching

of the orebody without any mechanical action. This process

is achieved by a structured network of injection and pumping

wells, connecting the mineral deposit and the surface-processing

plant. The network ensures the circulation of acidic or ba-10
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Fig. 1. Schematic view of the Katco Uranium In situ recovery (ISR) mine and the ISR process.

sic either-or oxidising solutions, increasing uranium mobility

within the permeable deposit, which is pumped out towards the

processing plant. Before being reinjected, the leaching solu-

tions are restored by the additions of some chemical, e.g., acid

(IAEA, 2016).15

The absence of mechanical extraction makes ISR by far the

most cost-effective extraction technique (Kidd, 2009), and po-

tentially more environmentally friendly (Taylor et al., 2004).

Consequently, it is perfectly suited for large, deep and low-

grade sedimentary orebodies, where traditional open-pit and20

underground mining techniques are uneconomical (Dahlkamp,

2009; Kyser, 2014). The highly permeable and well confined

roll-front deposits found in the USA, Uzbekistan and Kaza-

khstan are the archetypes of these deposits and currently dom-

inate the global production (OECD-NEA & IAEA, 2020). Al-25

though this technique is characteristic of uranium mining, re-

cent studies highlighted a high potential for its use in extracting

other commodities such as copper or gold (Sinclair and Thomp-

son, 2015; Seredkin et al., 2016; Filippov and Hejny, 2017; Var-

gas et al., 2020). Hence ISR might be a fast-growing technol-30

ogy in the coming decades.

The economic potential and the technical challenges associ-

ated with ISR recently increased research interest. In particular,

extensive literature has exposed the potential of reactive trans-

port (RT) to investigate ISR (Nguyen et al., 1983; Nos, 2011;35

Martens et al., 2012; Johnson and Tutu, 2013; Ben Simon et al.,

2014; Johnson and Tutu, 2015; Laurent et al., 2019). How-

ever, it is usually restrained to 1D laboratory experiments, such

as column tests. In addition, the majority of ISR operations

are conducted in post-Soviet countries (e.g., Kazakhstan), and40

a large number of publications are rarely accessible and pub-

lished in Russian. Hence, only a few recent papers illustrate the
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industrial usage of RT modelling in operations (Regnault et al.,

2014; Noskov et al., 2018; Lagneau et al., 2018, 2019). In 2019,

Lagneau et al. (2019) revealed the first results of the operational45

deployment of RT simulations at the Katco mine in Kazakhstan

using the HYTEC RT simulator (van der Lee et al., 2003). They

showed that an RT simulation based workflow reproduced the

production history of one block (61 wells), a process known as

history matching. They assessed the robustness of the model50

by applying it to another block in the vicinity, yielding equally

good results. This paper documents the robustness of the same

model by presenting the results obtained from 39 production

blocks (2394 wells) in two independent reservoirs. This ar-

ticle represents a significant step-forward, placing RT history55

matching on the scale of what has been achieved in the neigh-

bouring industry of oil and gas: industrial applications of non-

reactive transport simulation coupled with history matching to

drive the operations, allowing to increase the amount of oil

and gas that can be extracted from existing resources (Oliver60

and Chen, 2011; Rwechungura et al., 2011; Udy et al., 2017).

In addition, the literature mentioned the main applications of

a robust RT-based workflow as short-term planning (Lagneau

et al., 2019), long-term planning (Langanay et al., 2021) and

environmental permitting through impact monitoring and post-65

operation remediation (Coral et al., 2018; de Boissezon et al.,

2020). The present paper extends these results by presenting a

real short-term well field optimisation case study that illustrates

the geometallurgical approach and the economic benefits possi-

ble when managing the end of life of production areas with an70

RT-based workflow.

This paper is organised as described below. After providing

a brief description of the Katco uranium mine, the first section

presents the ISR modelling process with HYTEC. It includes

the description of the workflow inputs (3D geological models,75

geochemical model, and operational conditions), and the pre-

sentation of modelled areas. Section 3 describes the history

matching and case study results. Finally, Section 4 discusses

limitations and perspectives on the robustness of the workflow

and the history matching process, the importance of operational80

conditions in forecasts, and finally, the industrial capacity of the

workflow.

2. Materials and methods

2.1. Katco Mine

Created in 1996, Katco JV LLP is a joint venture mining85

company between Kazatomprom (49%) and Orano Mining (51%),

which are the Kazakh and French national nuclear fuel cycle

companies, respectively. With a yearly production ranging from

3200 t to 4000 t since 2009, corresponding to 7% of the global

uranium production in 2019 (OECD-NEA & IAEA, 2020), Katco90

remains the largest in situ recovery (ISR) uranium mine world-

wide (Lagneau et al., 2019). The mine, located in the Shu

Saryssu Bassin - Kazakhstan, exploits the Tortkuduk and Muyunkum

deposits along a southwest-northeast axis over 40 km in length.

It currently operates this large territory in an acidic way thanks95

to processing plants, each of which is connected to the deposit

by a well field.

2.1.1. Well field description

A well field is a large network of wells, that connect the

processing plant to the orebody. Figure 1 schematically illus-100

trates the organisation of one of the well fields sustaining the

ISR process. The wells are arranged in hexagonal patterns with

a radius of 40 m on average at Katco. At the hexagon vertices,

injection wells (injectors) introduce the leaching solution to the

orebody. Production wells (producers) are placed at the centre105

of the hexagons and deliver the pregnant solution to the pro-

cessing plant. This pattern, referred to as ”seven spots”, en-

sures good circulation of the solutions through mineralisation

and hence results in more effective leaching (Ward, 1983; Shao-

Chih, 2008). Each hexagon is called a production cell and is110

considered a unit of extraction covering 4150 m2 of the deposit.

Due to the reservoir thickness, vertical overlapping up to three

levels of wells is frequently required to intersect mineralisation.

(Figure 1). In addition, the wells are frequently redrilled when

the initial well is clogged or to locally accelerate the leaching115

process.
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The hydraulic network connecting the plant to the wells

(Figure 1) is organised in three subsets. First, a primary net-

work of pipelines, named primary lines, links the plant to pump

houses called transit chambers. Then, a second level of pipelines,120

called secondary lines, links these chambers to well houses re-

ferred to as acidification units. Finally, the acidification units

connect the secondary lines to each well individually through a

third network of buried pipes. An acidification unit is usually

linked to a dozen production cells composed of approximately125

45 injectors and 15 producers. This group of cells is called a

production block. The mine currently operates 80 production

blocks at any given time.

2.1.2. Production management

Four key indicators are used to manage the production and130

optimise the reservoir response. On the one hand, flow rates (in-

jected and pumped) and added acid volumes are the two levers

the operators use to adjust the production. On the other hand,

the pH and uranium concentrations of pumped solutions allow

us to calculate uranium production and acid consumption, from135

which the economic performance of the mine is derived. There-

fore, accurate and regular knowledge of these four process data

is critical.

Each well and line are equipped with a flowmeter to moni-

tor the flow rates, whose cumulative values are read every 24 h.140

The pregnant solutions from the producers and production lines

are sampled and analysed on the same daily basis, providing the

uranium concentration and pH. A systematic correction work-

flow is applied to make the measured data consistent with the

basic conservation principles. First, outliers are removed using145

a combination of Hampel (Hampel, 1974; Liu et al., 2004) and

other median-based filters (see Gonzalo, 2004). Then, missing

values and mass conservation are addressed using a dynamic

mass balance reconciliation method performed at the acidifica-

tion unit scale. The process exploits the measure redundancy150

between wells and lines and is based on an unscented recur-

sive nonlinear dynamic data reconciliation scheme (Vachhani

et al., 2006) which is an adaptation of unscented Kalman filters

(Julier and Uhlmann, 2004). This workflow is complemented

by a systematic visual quality assurance before using the data.155

Regarding composition of the pregnant leach solution, the

transit of the pumped solutions through the processing plant

before being reinjected induces a homogenisation of the con-

centrations (Nos, 2011). Consequently, these concentrations

are sampled at the outlet of the plant and considered identical160

for the entire well field connected to the plant. Sampling was

performed twice a day and the following major species were

measured: Al3+, Ca2+, Cl– , H2SO4, Fe2+, Fe3+, K+, Mg2+,

PO 3 –
4 , SO 2 –

4 , UO 2+
2 . The final acidity of injected solutions

is calculated using the baseline concentration from the plant,165

complemented by the added acid in the acidification unit (one

of the operational levers previously discussed).

2.2. Reactive transport workflow for ISR at Katco Mine

The RT simulations (Lichtner et al., 1996; Steefel et al.,

2005; Druhan and Tournassat, 2019) allow us to model and170

understand the coupled hydrodynamic and geochemical pro-

cesses that occur within the aquifer during ISR operations. All

RT simulations presented in this study were performed using

the code HYTEC developed at Mines ParisTech (van der Lee

et al., 2003). The HYTEC program provides a general mul-175

tipurpose flexible framework for solving complex hydrogeo-

chemical problems (Lagneau and van der Lee, 2010; Steefel

et al., 2015). The code was successfully employed in bench-

mark studies (Carrayrou et al., 2010) and various applications,

e.g., cement degradation (De Windt and Devillers, 2010; Seigneur180

et al., 2020), and geological storage of acid gases (Sin and

Corvisier, 2019). The workflow developed using HYTEC for

the ISR simulation has already been extensively described by

Lagneau et al. (2019). Consequently only major elements of the

workflow relevant to this study are presented below i.e., input185

parameters and modelled areas. The designed RT-based work-

flow requires three types of input parameters (Regnault et al.,

2014; Langanay et al., 2021). First, a 3D geological block

model, which contains the hydrodynamic parameters and the

mineralogical description of the reservoir. Second, a geochem-190
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(a) Cross-sections of the ISATIS 3D model used for primary line E,

showing the discrete oxidised-mineralised-reduced redox facies. As in

Figure 1, O=yellow, M=red and R=grey.

(b) View of the PETREL 3D model used for blocks G1 and G2. The surfaces represent

the top and bottom of the Uyuk Reservoir and the coloured voxels represent the uranium

grades obtained by ordinary kriging (Olea, 1999, p.7-30).

Fig. 2. Examples of 3D block models.

ical model gathers the description of undergoing geochemical

processes and the associated mineralogical database. Finally,

the operational parameters, i.e., the well screen positions, the

injected and pumped flow rates, and the chemical composition

of the injected fluids, are input.195

2.2.1. 3D geological block models

All 3D geological models used for the simulations were

built from the same type of input data, and possess the same

structure, to ensure a consistent representation of the Muyunkum

sandstone roll-front (Petrov, 1998; Dahlkamp, 2009, 241-253).200

A 3D geological model consists of the reservoir discretised into

a 3D grid of rectangular parallelepipedal voxels. The grid mesh

size used (x, y, z) was (5 m, 5 m, 1 m) or (10 m, 10 m, 1 m).

This grid held three geological properties. First, a two-class

discrete lithological property discriminates the permeable (i.e.,205

sandstone) from the impermeable facies (i.e., massive clays and

carbonate layers). In HYTEC, these facies were associated with

homogenous permeabilities of 1 × 10−4 m/s and 1 × 10−10 m/s

for permeable and impermeable facies, respectively. For poros-

ity, a unique value was used for each reservoir: 23% and 18%210

for Uyuk and Kanjugan, respectively (Figure 4). Second, the

roll-front is represented by a discrete variable of three redox

classes referred as OMR facies (Petit et al., 2012; Langanay

Fig. 3. Spatial distribution of the drill holes used to build the 3D

model of primary line A. The red dots are the exploration and

development drill holes (ED) while the blue dots are the drill holes

added after the drilling campaign in blocks A1 and A2 (mostly

technological wells). The light-grey polygon shows the total extent of

the primary line A, while the dark grey polygon shows the extent of

blocks A1 and A2.

et al., 2021). Uranium mineralisation (M) is observed at the

interface between the downstream reduced facies (R) and the215
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oxidised upstream facies (O) of the reservoir (Figure 1 and Fig-

ure 2a). A homogenous dedicated mineralogy is defined for

each facies. Third, the uraninite and coffinite accumulations

are represented as a scalar field (Figure 2b). The input data

available to build the models are the core description, core anal-220

ysis (X-ray fluorescence) and drill hole logging (resistivity and

gamma ray).

Although consistent input data were used to build all 3D

geological models, the number of drill holes available to con-

strain the model varied depending on the area. Indeed, for each225

area of the mine, two datasets were available from the different

drilling campaigns. The first available set corresponds to the

exploration and development drill holes, which are required to

characterise the deposit and to build the well field design (pro-

duction cells and screen positioning). The usual drill spacing230

observed is 100 m by 50 m ( 200 − 250 drill holes per km2).

The second is obtained from the drilling of technological wells,

prior to the start of extraction. The 40 m diameter hexagon cell

design provides much denser coverage (> 650 drill holes per

km2). Consequently, the geological model constraints used for235

a model mainly depend on the moment the model was built,

in regard to the available data at that time. Figure 3 illustrates

the spatial distribution of the drill holes used to build the block

model covering the primary line A. The distribution of the ED

wells is not homogenous and the technological well data in-240

cluded cover blocks A1 and A2. Furthermore, in this article,

the models built only with exploration and development drill

hole data are referred to as ED while those built on top of the

technological wells are referred to as EDT.

In addition to the number of available drill holes, the mod-245

elling process differed as two geostatistical methods were em-

ployed. The first is a stochastic based method and relies on

the one hand on plurigaussian simulations for the discrete vari-

ables (Fontaine and Beucher, 2006; Langlais et al., 2008; Re-

nard and Beucher, 2012), and, the other, relies on block simula-250

tion for the uranium grades scalar field. The models were built

using ISATIS software combined with the R-geostats package

(MINES ParisTech / ARMINES, 2021), based on the workflow

described by Petit et al. (2012). The second approach is deter-

ministic and relies on simple kriging of indicators for the facies255

and on punctual ordinary kriging for the uranium grades (Olea,

1999, 7-30). In that case, the models were built within the PE-

TREL software (Schlumberger, 2018; Suslov and Vaynerman,

2020). The main difference between the two approaches is that

the first method preserves the geological variability while the260

second method tends to smooth it.

The effects of drill hole density and geostatistical methods

are investigated later in this study.

2.2.2. Geometry and operational conditions of the well field

The geometry and operational conditions used for the simu-265

lations were provided at the well scale. For each well, geometry

was defined using 2 parameters: coordinates of the well head

and the vertical position of the well screen. The flow rates and

composition of leaching solutions were defined on a daily basis

using the data mentioned in Section 2.1.2.270

2.2.3. Geochemical model

The geochemical model employed is derived from previ-

ous studies that identified the reactive mineralogy of uranium-

bearing sandstone in the Shu-Saryssu basin (Yefteyeva, 1986;

Petrov, 1998; Ben Simon et al., 2014; Robin et al., 2015, 2016).275

The kinetic and mineral databases as well as the underlying

chemical processes used for the simulations were described pre-

viously (Lagneau et al., 2019, and references therein), and are

briefly recapitulated below.

The geochemical model relies on six minerals: cristobalite280

alpha, kaolinite, smectites (beidellite), calcite, iron hydroxides

(goethite), and uraninite.

On the one hand, the acidification of the aquifer is described

in a straightforward manner through H2SO4 injection and reac-

tivity with calcite, beidellite and goethite using equations 1, 2285

and 3, respectively (Robin et al., 2016; Lagneau et al., 2019).

CaCO3(s) + 2H+ −−−⇀↽−−− Ca2+ + CO2(aq) + H2O (1)
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Table 1

Characteristics of the modelled primary lines.

Size 3D model

Nb. blocks Nb. cells Nb. wells Software used Datasets used Meshsize

A 4 53 199 Stochastic partial EDT 10x10x1m

B 6 79 343 Stochastic ED 5x5x1m

C 4 58 277 Stochastic ED 5x5x1m

D 4 71 303 Stochastic ED 5x5x1m

E 4 47 215 Stochastic EDT 5x5x1m

F 4 62 275 Deterministic EDT 5x5x1m

G 5 70 316 Deterministic EDT 5x5x1m

H 6 71 334 Deterministic EDT 5x5x1m

I 1 17 88 Deterministic EDT 5x5x1m

J 1 10 44 Deterministic EDT 5x5x1m

Total 39 538 2394

(Si3.37Al0.47)(Al1.81Fe3+
0.05Mg0.165)O10(OH)2 + 7.32H+

−−−⇀↽−−−

0.165Mg2+ + 2.28 Al3+ + 0.05 Fe3+

+ 3.67SiO2(aq) + 4.66H2O

(2)

FeO(OH) + 3 H+ −−−⇀↽−−− Fe3+ + 2 H2O (3)

On the other hand, the leaching of the U(IV) mineral phase

(uraninite) is controlled by oxidative dissolution (Eq.4) by Fe3+,

which is first derived from the reactions with gangue minerals

described previously, as well as recirculation of Fe3+ from the290

well field. Gangue minerals play a major role since they both

control the pH and provide the oxidiser.

UO2(s) + 2Fe3+ −−−⇀↽−−− UO 2+
2 + 2Fe2+ (4)

2.2.4. Modelled areas

As shown in Table 1, history matching work was performed

on 39 production blocks from ten different primary lines, in-295

cluding 538 production cells composed of 2394 wells (1744

injectors and 650 producers). The primary lines are labelled

0 750 1 500 2 250 3 000375
Meters

Simulated blocks locations

Kanjugan

Uyuk

Not simulated

Simulated

H

A

B

E

C

D

G

I

J

F

Fig. 4. Location of the simulated technological blocks. The primary

line I, located north, is composed of four isolated blocks that are not

displayed on the map.

from A to J, to be consistent with Lagneau et al. (2019). Their

respective blocks are additionally assigned a number ranging

from one to n. As a result, compared to Lagneau et al. (2019),300
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A1 and A2 retain the same name while block B becomes B4.

The location and geometry of the blocks are shown in Fig-

ure 4. The choice of these 39 blocks is based on the availability

of 3D geological models. The 3D geological models used were

composed of (5 m, 5 m, 1 m) meshes covering the block surface305

with a 100 m lateral extension. Due to the variety of miner-

alisation shapes (Figure 4) and reservoir thickness, grids sizes

ranged from 250 k to 800 k voxels with an average of 525 k vox-

els. Only primary line A was simulated at once, employing an

upscaled grid of (10 m, 10 m, 1 m), resulting in a 1.2 M voxel310

grid.

2.3. Reservoir history matching

2.3.1. Concept

Of the four production management indicators listed in Sec-

tion 2.1.2, the operator does not directly control the acid and315

uranium concentrations of the pumped solutions. The main

expectation of the operator with respect to a numerical model

is therefore the correct prediction of these two state variables.

History matching is the process of building one or more sets of

models that account for the observed reservoir behaviour. It is320

a type of inverse problem which consists of an attempt to ad-

just some of the reservoir model parameters to better reproduce

the state variables of interest observed in the past, taking into

account the real operational conditions imposed on the reser-

voir. The greater the agreement among the forecasts, the more325

predictable the model (Oliver and Chen, 2011). In practice,

we choose to adjust parameters for which we have a limited

knowledge, and for which the state variables display sufficient

sensitivity (Yeh, 1986; Carrera et al., 2005).

2.3.2. Adjusted parameters and methodology330

Three geochemical parameters were adjusted to fit the ob-

served data: initial grades of beidellite (a single value for the

three redox facies), grades of iron hydroxides in the oxidised

facies and, finally, grades of calcite in the mineralised facies.

The choice of these three parameters was motivated both by335

internal studies that showed their spatial variability, and by the

limited data available. All other parameters remained constant

among the simulations and were described by Lagneau et al.

(2019) (as detailed in Section 2.2.3).

Parameters adjustment followed an iterative process. For340

the simulation of a new block, the grades used for the closest

calibrated block were established as a starting point and used in

a first run. The results were compared to the observed data at

the block scale, and the pH was adjusted by manually increas-

ing or decreasing the beidellite grade, repeating the process un-345

til a satisfactory fit was obtained. The same principle was then

applied to the calcite grade to fit the initial decrease in pH (∼ 30

first days) and finally to the iron hydroxide grade affecting the

rate of uranium dissolution during the first year.

2.3.3. Fit accuracy metrics350

As explained by Lagneau et al. (2019), the necessity for the

operator to produce reliable mining plans in both short and long

terms prompts interest in block performance projections at dif-

ferent temporal and spatial scales. However, a long-term min-

ing plan requires a good overall estimation of uranium produc-355

tion and acid consumption at the primary line scale i.e., cumu-

latively over long times; short-term planning demands a correct

estimation on a monthly to weekly basis and at the block or cell

scale. A good production model is therefore expected to pro-

vide both. Thus, the qualification of predictive models involves360

the adaptation of metrics allowing the intercomparison of dif-

ferent variables (acid and uranium concentrations), observed at

various temporal (yearly and daily) and spatial (primary line,

block, and well) scales. The two metrics applied in this pa-

per are the log relative deviation (LRD) and the mean absolute365

scaled error (MASE).

The LRD has been used to assess the final deviation of the

cumulated uranium production and acid consumption, as an al-

ternative to the classic relative change (RC). They are defined

in equation 5 below:

RC(γ, γ) =
γ − γ

|γ|
LRD(γ, γ) = ln

(
γ

γ

)
(5)

where γ and γ are the simulated and the observed data, respec-

tively. In both cases a positive relative change indicates that
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γ > γ, i.e., the simulation overestimates γ and vice versa. The

reason for using the LRD rather than another indicator (i.e.370

the RC) is that it is a symmetric, additive and normed rela-

tive change metric (Törnvist et al., 1985). Indeed, the RC is

bounded to the interval [−1,+∞[, where γ being null or posi-

tive, and possibly infinitely superior to γ. With RC, the negative

and positive deviations would not be treated in the same man-375

ner, e.g., a cell with an observed production of 10 t and a 5 t

simulated cell has an RC of −50% while the opposite, a cell

with an observed production of 5 t and a 10 t simulated cell has

an RC of +100%. In the case of the LRD, however, the previous

example produces symmetric values of −30.1% and +30.1% re-380

spectively.

In addition to the LRD, the MASE has been used to capture

the instantaneous deviation and score the fit quality over the

full simulation. Among the many measures proposed in the lit-

erature for evaluating the forecasting performances of different385

methods (Hyndman and Koehler, 2006; Kim and Kim, 2016),

the MASE, introduced in 2006 by Hyndman and Koehler, has

proven to possess good mathematical properties, defined mean,

finite variance and scale independence (Franses, 2016). The

MASE is now a well-established metric (Makridakis et al., 2020)390

as it overcomes most of the bias occurring when comparing

method performances on different datasets. It is defined as the

mean absolute error (MAE) for the predicted values, scaled by

the MAE of a simple one-step ”naive forecast method”, which

consists of shifting the values one step backward (one step equals395

one day in our case):

MASE =

1
n

n∑
i=1
|γi − γi|

1
n−1

n∑
i=2
|γi − γi−1|

(6)

where γi − γi is the simulation error for the sample i, and n is

the number of samples in the time series.

This metric should be understood as follows: a MASE of

0 equals a perfect fit; a MASE of 1 equals a fit as good as the400

one-step ”naive forecast method”; and a MASE of n, n times

worse, e.g MASE of 10 indicates a 10 times higher MAE. The

U and acid concentration evolution being continuous and rather

smooth, as shown in the results section (e.g., Figure 5), a MASE

should be visually appreciated as an almost perfect match in the405

interval [0, 2], as very good in ]2, 3], as good in ]3, 5], accept-

able in ]5, 7] and poor beyond.

2.4. End of block life management

The capacity to predict future reservoir performance is a key

aspect of history matching and constitutes the true usefulness410

of an RT-based workflow. The ability to forecast the reservoir

response to operational conditions with increased confidence

indeed allows operational experiments to be performed to opti-

mise the well field management. The end of block life manage-

ment is one of these optimisation applications.415

2.4.1. Concept

As a production area ages, uranium reserves are gradually

depleted and therefore the uranium concentration of pumped

solutions globally decreases. Below a certain concentration

cut-off, production cells are systematically stopped, until the420

production block itself is closed. The spatial distribution of ura-

nium is very uneven, and while many cells are depleted, some

cells nevertheless still offer high potential and can be exploited.

Managing the end of block life consists, on the one hand, of

determining which areas must remain active and, on the other425

hand, of optimising the design with well re-drillings.

2.4.2. Primary line A end of life

In 2019, Collet et al. introduced an HYTEC-based optimi-

sation methodology for the final stage of uranium recovery in

old production blocks. This paper presents its implementation430

in a real case study based on primary line A. The methodology

follows an iterative process. As a first step, a careful history

matching is performed to adjust the model parameters (see Sec-

tion 2.3). This step reinforces the predictivity of the model and

provides access to the location of the remaining uranium in the435

deposit. The location of uranium at the end of extraction de-

termines the choice of production cells to retain for the next
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step. As a second step, a forecast simulation estimates the met-

allurgical response of each cell, which does not depend solely

on uranium grades. Based on these data, the design is sequen-440

tially optimised by well re-drillings and different acidification

strategies. The final outcome is the implementation of the most

profitable design and acidification strategies in the well field.

3. Results

3.1. History matching445

3.1.1. Uranium production

Figures 5 and 6 show the observed uranium production curves

against the simulation results for the eight primary lines (see

2.2.4) and four blocks of interest respectively. Interestingly, all

primary lines and blocks presented in this paper produce a large450

range of uranium extraction curves. This is due to several fac-

tors. First, the blocks of a primary line are usually exploited

sequentially, e.g., for primary line E in Figure 5, each peak

corresponds to a block start. This plays a major role in the

production profile at the line scale but also at the block one,455

as the blocks that started later benefit from the acidification of

the first blocks to be operated. Second, as studied by Lagneau

et al. (2019) and Langanay et al. (2021), the local distribution

of uraninite and the geometry of the reservoir (Figure 4) vary

from one area to another and it has a great impact on arrival and460

heigh of production peaks, and shapes of descending slopes.

Third, these diverse production profiles are explained by the

modification of the operational conditions with time, i.e., the

acidity of the leaching solutions and the flow rates. Although

some blocks such as E2 exhibit an intense initial acidification465

followed by a constant decrease, other assets, as illustrated by

blocks B1 and F1, undergo multiple acidification campaigns,

sometimes carried out with cell additions and closures. In ad-

dition, some areas, particularly for the Kanjugan deposit, are

prone to clogging, requiring many workovers and cleaning ac-470

tions to maintain a sufficient flow rate. This phenomenon is

characterised by sawtooth wave production profiles, each peak

matching a well cleaning campaign. It is clearly observed at

primary line H in Figure 5, and specifically at block H5 in Fig-

ure 6.475

Despite the very different behaviours of blocks and primary

lines, the model systematically manages to reproduce the trend

and is usually very close to the production data, for both the in-

stantaneous and cumulative extraction. This result indicates the

robustness of the workflow to account for the geological and480

geochemical spatial variability and its capacity to accurately

predict the response of the reservoir with respect to the various

operational conditions imposed by the operator.

According to Lagneau et al. (2019), the misfit between the

model and the observed data is largely due to the uncertainties485

in the geology and, more specifically, in the uranium distribu-

tion. This explanation has been sustained by the study of the

effects of the geological uncertainties on the simulated uranium

recovery performed by Langanay et al. (2021). Additionally,

Lagneau et al. (2019) argue that the block size is well above490

the range of constraints for the geostatistical model, and the

uncertainty is globally averaged at the block scale. The results

of the statistical study of the misfit shown in Figure 7 validate

these assumptions. The univariate statistics of the LRD and

MASE for uranium and acid production examined three spatial495

scales of interest: primary line, block and cell. Since a single

block was modelled for both primary lines J and I (Table 1),

their results were considered at the block scale and not at the

primary scale. The LRD of the total uranium produced follows

a quasi-normal distribution approximately centred at zero for all500

scales, which implies that the underestimations and overestima-

tions globally compensate. Additionally, the smaller the scale

is, the higher the distance of the distribution mean and median

from zero and the higher the standard deviation of the misfit (

2.3±14.0%, 8.6±28.7%, 25.8±69.9% for primary lines, blocks505

and cells, respectively). This finding indicates a larger range

of errors and worse fits overall, due to the larger discrepancy

between the geological model and reality. The confidence of

the results produced by the model at the cell scale is then much

lower. A similar result is obtained for the MASE. The average510

MASE at the primary line scale is 4.0±1.9, which is considered
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c) Primary line C (4 blocks - 277 wells)
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d) Primary line D (4 blocks - 303 wells)
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e) Primary line E (4 blocks - 215 wells)
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f) Primary line F (4 blocks - 275 wells)
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g) Primary line G (5 blocks - 316 wells)
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h) Primary line H (6 blocks - 334 wells)
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Fig. 5. History matching results of uranium production at the primary line scale. For visualisation, the daily values are smoothed by median

filtering with a 3-day window. LRD is the logarithmic relative deviation, and MASE is the mean absolute scaled error.
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b) Block E2 (ISATIS - EDT)
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c) Block F1 (PETREL - EDT)
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d) Block H5 (PETREL - EDT)
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Fig. 6. History matching results of uranium production at the block scale.

good. It increases to 5.8 ± 5.2 at the block scale and more than

doubles (9.7 ± 9.3) at the cell scale with a standard deviation

4.5 times higher than at the primary line scale.

3.1.2. Acid consumption515

Figure 8 shows the history matching results for the pumped

solution pH and the corresponding back calculated acid recov-

ery for the blocks G2, E3, H2 and H5. For uranium, and for the

same reasons (see Section 3.1.1), the profiles vary substantially

from one block to another. However, unlike uranium, the acid-520

ity fit results in alternate intervals when the data are correctly

matched and intervals with important LRDs. This fit is particu-

larly acute during the first year of production (80.1±62.1%) be-

cause the model relies on the acidic dissolution of the smectites

but ignores the ion-exchange reactions that play a major role525

in acid consumption (Robin et al., 2016, 2020). This choice is

mainly motivated by technical reasons, as incorporating sorp-

tion processes would be very CPU-intensive.

The results on the 39 blocks show that the intervals can be

classified into three classes (Figure 8):530

• The first one coheres to the first year of production (±50

days). In addition to clay dissolution, a large quantity of

protons are sorbed in the smectite interlayer space, lower-

ing the acidity of the leaching solutions. The simulation

systematically underestimates the acid consumption dur-535

ing this phase.

• The second class corresponds to intervals observed after

the first year of extraction, when the pH remains below

2.1 (∼ 0.93 g/L of H2SO4 dissolved) for a sufficiently
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Fig. 7. Log relative difference (fact vs. simulated) and mean absolute scaled error (MASE) of the uranium and acid production predictions per

scale of interest. The boxes show the interquartile range (Q3-Q1) of the dataset while the whiskers extend to show the p5-p95 of the distribution.

The red squares represent the mean values. µ is the average, m is the median, σ is the standard deviation and n is the number of samples.

long time (∼ 50 days). These intervals are shown as540

vertical grey bands in Figure 8. In that case, the sorp-

tion sites of the clay are fully saturated with protons, and

clay dissolution controls acid consumption. Hence, the

model very accurately reproduces the pH evolution with

respect to the operational conditions (acidity of the leach-545

ing solution) at times up to 1500 days (e.g., block E3 in

Figure 8.b).

• Finally, a third type of interval alternates with the pre-

vious one interval when the pH exceeds 2.1. They are

characterised by an overestimation of the acid consump-550

tion by the model due to proton desorption from the clay

which increases the acidity of the pumped solution.

The systematic discrepancy between the observed data and

the model for the first year of production increases the diffi-

culty of estimating the acid consumption during this period.555

However, proton desorption is a very slow process occurring

over very long times (de Boissezon et al., 2017; Lagneau et al.,

2019), and the misfit observed after the first year of extraction

is very small, even when the pH exceeds 2.1. This finding is

especially true since a block reaches a pH of 2.1 only when its560

acidification has been stopped. Thus, the pregnant leach solu-

tion from the plant is not complemented with additional acid

and the block shows very low acid consumption. Therefore, the

model provides a good estimate of the acid consumption after

the first year of production and can be used as a predictive tool565

in operation.

Practically, the calibration of the beidellite content to fit the

observed data has been achieved by only examining the inter-

vals when the model correctly reproduced the acid consumption

(class 2). However blocks with a short history do not show any570

intervals of class 2 which makes calibration impossible, which

is the case for blocks J1 and E4, as well as 87 cells (∼ 16%

of the 538 cells considered in the study). This result explains

why these blocks and cells were not included in the statistical

study for acid consumption and why the number of samples n575

displayed between uranium and acid cases differs in Figure 7

and between Figure 9 and Figure 10.

Statistical analyses of acid consumption show the same trend

as the uranium fit. The final deviations follow a quasi-normal

distribution, centred at zero, with a standard deviation increas-580

ing when the scale diminishes. The mean MASE also increases
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1.41 times between the block scale and the well scale. This

result confirms the fact that the misfit observed at the cell scale

compensates at the block scale.

The mean MASE is also 1.21 times larger at the primary585

line scale than at the block scale because the blocks of a pri-

mary line operate sequentially. As acidification is conducted at

the block scale, the primary line scale aggregates intervals with

potentially different behaviours. Consequently, separation be-

tween behaviours cannot be achieved at the primary line scale.590

Interestingly, the deviations are more centred at zero and ex-

hibit a lower standard deviation for acid consumption than for

uranium, both at the block scale (3.8 ± 29.1% vs. 8.6 ± 28.7%)

and at the well scale (−2.7 ± 46.6% vs. 25.8 ± 69.9%). Ad-

ditionally, the average mean MASE is 2.23 times lower at the595

block scale and 2.15 times lower at the well scale with a lower

standard deviation. This result suggests a better performance of

the model for predicting acid consumption than for predicting

uranium output. This better performance is easily explained by

the fact that the beidellite content is manually adjusted by the600

user, while the uraninite distribution is the result of the geosta-

tistical process with high uncertainties. It also confirms that the

local variations in beidellite content are much lower than those

in uraninite content.

3.1.3. Effects of the 3D modelling method and well density con-605

straints

Figures 9a - 10b, show results of the statistical analyses

(LRD and MASE), respectively, of the uranium and acid de-

viations with respect to the 3D block model building method

(stochastic vs. deterministic) and to the density of wells used610

to constrain the model. The effect of the well density (ED

vs. EDT) is only observable for the primary line covered by

stochastically built 3D blocks (∼ 58% of blocks and cells).

Regarding uranium production, ED assets show a more off-

centre average relative log deviation with a higher standard de-615

viation at every scale, and the MASE is systematically higher

for ED with a larger standard deviation (more extreme over and

underestimations). The accuracy of the uranium recovery fore-

cast model is directly linked to the constraint density used to

build the geological model. Therefore, the fact that a lower con-620

straint on the 3D block model results in higher misfits proves

that a major part of the misfit is due to the incorrectness of the

3D block model, and not the RT-based workflow itself.

For the acid recovered through the pumped solutions, LRD

and MASE are only slightly better when the well-density con-625

straint is low (ED) which might seem contradictory. This result

is, however, explained by the direct control of the acid con-

sumption by the beidellite grade, which is not a geostatistical

outcome, but imposed by the user.

Comparing the stochastic and the deterministic methods for630

EDT, the first method produces better results at the primary line

and block scale for uranium recovery and slightly better results

at the cell scale. Therefore, this method is recommended for

systematic use in all studies on operating blocks, i.e., already

drilled (EDT).635

3.1.4. Spatial variability of adjusted geochemical parameters

As indicated in Section 2.3.2, the adjustment necessary to

obtain the results previously presented only included three global

parameters: initial grades of beidellite (a single value for the

three redox facies), grades of iron hydroxides in the oxidised640

facies and, finally, grades of calcite in the mineralised facies.

Figure 11 shows the univariate distribution and spatial variabil-

ity (from one block to another) of these parameters. Two re-

markable observations were made. First, the parameters are

spatially continuous i.e., they slightly vary between two neigh-645

bouring blocks. Second, the range of values used is consistent

with the mineralogical characterisation of the reservoirs (inter-

nal studies) and rather narrow (3.4 ± 1.2% for the beidellite).

In particular, neither calcite nor iron hydroxides have been con-

sidered for Kanjugan, consistent with the mineralogical studies650

available (internal sources). This result reinforces the robust-

ness of the workflow and indicates the geological soundness of

the history matching process.
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Fig. 9. Same as for Figure 7 but for uranium production only, grouped by 3D geological model modelling method and well constraint density.
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Fig. 10. Same as for Figure 9 but for the acid recovered.
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3.2. Optimisation case study - Primary line A end of life

As introduced in Section 2.4, the true usefulness of history655

matching and of a robust model lies in the capacity to predict

the response of a reservoir, with increased confidence, while

considering various operational conditions. The next section

presents the results of the optimised end of life of primary line

A, based on the history matching results previously presented.660

First, the optimisation results from 2019 are described in detail.

Second, the predictions made for the optimised well-field based

on the history-matched model are compared to 16 months of

observed production data.

3.2.1. Optimisation results665

The history matching results showed that 37.1% of the ini-

tial estimated uranium reserves were still present under the out-

line of the technological blocks (day 3248 in Figure 12) before

the optimisation of primary line A. Following the implemen-

tation of the procedure described in Section 2.4, the optimised670

design was successively improved.

Figure 13 shows the overall operational conditions tested

and the production predictions for four different scenarios. Only

the first two years of predictions were considered because the

uncertainties in the operational parameters were considered too675

strong after this period. The first of these scenarios, called the

reference case, relied on a well field design established empir-

ically. In that case, the cells retained for the end of life were

selected based on the previously observed production curves

(high uranium concentration) and low estimated recovery (back680

calculated from the initial reserve of the cell minus the observed

production) recorded as is and simulated in HYTEC. The three

other scenarios were built based on the procedure using the RT-

based workflow, which is described in detail in Section 2.4.2.

The “Int. 1” and “Int. 2” cases represent intermediate test sce-685

narios where additional wells have been proposed. The final

scenario corresponds to the optimum scenario reached in the

limited time available for the study.

The operational conditions used to generate the predictions

vary very little from one scenario to another. For example,690

the cumulative flow and the total acid tonnage varied by 8%

and 6%, respectively. The final case shows the lowest acid us-

age and a water imbalance. This imbalance is due to injector-

producer inversions, temporary injection through the producer

to fully invade its vicinity and lower the pH, which were not695

considered in the previous cases.

In contrast to operational conditions, production predictions

increase substantially as scenarios are optimised (Pbase < Pint1−2 <

P f inal, with P the uranium production). Between the base case

and the final scenario retained, HYTEC predicted a 28% in-700

crease in uranium production over the first two years. Applica-

tion of the cost model, which includes CAPEX (drilling, acidifi-

cation unit,. . . ) and OPEX (electricity, acid, plant reagents,. . . ),

as well as incomes, results in an increase in the net present value

(NPV) of 35%. In addition, the final overall uranium concen-705

tration of the pumped solutions is increased by 23%, indicating

that the trend will continue and that the gap widens beyond the

two considered years.

Figure 12 shows the spatial distribution of uranium and the

pH plume at key time points in a simulation. The simulation710

shown corresponds to the final scenario, of which the new out-

line was estimated in the last image, at 3454 days. Note that

the first five images remain the same regardless of the chosen

optimisation scheme; this period corresponds to the historical

production of zone A.715

This final design was applied to the well field in late 2019,

and is one of the main decision-making processes based on

HYTEC results at Katco. Currently, it provides the best op-

portunity to compare HYTEC predictions with the production

observed.720

3.2.2. Comparison of 2019 predictions with 2021 observed data

As planned, the study area effectively restarted in Novem-

ber 2019 and has been operated continuously since then. We

were able to compare the predictions made in 2019 with the

observed data (March 2021). A simulation was also conducted725

using the observed operational conditions: restarted wells, re-

drilling, flow rates, acid, etc. Figure 14 shows the obtained
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Fig. 12. Simulation results for the optimisation of the primary line A at different time steps: 3D map of the uraninite grades, initial cell design
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results. The optimisation of the area (35 cells, 130 wells) was

planned to be conducted in two stages. In Figure 14, the start of

the second stage corresponds to the large peak visible at t = 128730

days. The start date of the second stage was 15 days later than

expected, and the data predicted in 2019 for the second unit

were shifted by this duration to adjust to reality. This process

introduces a bias that is nevertheless considered minimal.

The results show that the predicted and observed production735

trends match very well. After 484 days, or 16 months, pre-

dictions only underestimate total uranium production by 9.2%.

Using actual operating conditions the trends are even better

than expected, and the underestimation drops to 1.6%, which

is excellent. First, this result once again proves the robustness740

and accuracy of the model to reproduce the reservoir response.

It is indeed capable of reproducing a complex production his-

tory spanning more than 3500 days, including operational con-

straints and well field design that vary substantially over time,

which no analytical approach is capable of reproducing. Sec-745

ond, this exercise proves the predictive capacity of the work-

flow and confirms the production and economic added value

described in Section 3.2.1. Third, these results highlight the
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Fig. 14. Uranium production predictions from 2019 compared with

observed production (March 2021) and predictions updated with

observed operational conditions (March 2021).

criticality of correct operational parameter estimates. In this

case study, these parameters explain most of the deviation ob-750

served between the 2019 predictions and the a posteriori ob-

served data.

4. Discussion

4.1. Model robustness and history matching

The results presented in Section 3 have shown the capacity755

of the workflow to correctly reproduce production histories, and

to predict the response of the reservoir while considering the

operational constraints imposed on it. This robustness is strong

at the scale of the production block and primary lines, which

makes the tool usable for all mine planning operations and con-760

stitutes a major breakthrough in the exploitation of uranium by

ISR.

However, manual calibration performed globally on the ini-

tial grades of calcite, iron hydroxides and clays, is not sufficient

to explain all the variability in production data, particularly at765

the technological cell scale. Our assumption is that a correct

reproduction at this scale would require a much finer descrip-

tion of the 3D geological model, i.e., spatial variability of the

parameters, a finer history matching (up to voxel scale adjust-

ment), and the consideration of more parameters, including the770
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uranium grades. The need for a finer description is supported

by two main reasons.

First, internal studies have shown that initial grades of cal-

cite, iron hydroxides and clays, as well as hydrodynamic pa-

rameters (permeability and porosity), might vary strongly and775

sharply even at the cell scale. This variability is also observed

vertically at drill hole level. Not surprisingly, for instance, the

use of an average value of beidellite at the block scale fails to

adequately reproduce local acid consumption at the cell scale.

Second, the uranium grades, which are one of the main param-780

eters controlling uranium production, have not been adjusted at

all in the model calibration process, which in itself is a strength

of the current workflow. Uranium grades are indeed only the

result of geostatistical processes. However, in addition to the

uncertainties inherent in estimation methods and to the uranium785

local variability below the range of drill hole spacing, at least

one major known source of bias affects the evaluation of the

spatial distribution of uraninite. This bias is because the esti-

mate of the grade at the boreholes, which is used to constrain

the 3D geological model, is calculated mainly from a logging790

gamma signal (radioactivity). However, in roll-front deposits,

two in-situ chemical elements are gamma emitters, namely, ura-

nium (U) and radium (Ra), and are not evenly spatially dis-

tributed (Boulesteix et al., 2019). This results in Ra/U ratios

varying sometimes up to an order of magnitude, with complex795

distributions. The few available measurements increase the dif-

ficulty of mapping these disequilibria, and in practice, a sin-

gle correction ratio value is used across several primary lines.

It logically has the effect of providing a good estimate of the

overall grade but taints the local values with error. This ex-800

planation is completely consistent with the results obtained in

Section 3.1.1, i.e., errors at the cell scale follow a normal distri-

bution centred at zero, and compensate for each other, resulting

in better matches at block and primary line scales.

In the absence of additional data (drill holes) to constrain805

the geostatistical processes (which represent unaffordable costs

for the operator), the remaining alternative to improve 3D ge-

ological models is the automation of the parameter adjustment

by a computer: mineral (e.g., uraninite and beidellite) grade

scalar fields, as well as hydrological parameters such as per-810

meability and porosity. This approach, known as automated

history matching, has been widely studied and applied to reser-

voirs since the 1960s (de Marsily et al., 2000), in hydrogeology

(Carrera et al., 2005; Zhou et al., 2014), and in the petroleum

industry (Oliver and Chen, 2011; Rwechungura et al., 2011).815

Automated history matching allows us to adjust scalar or dis-

crete fields up to the voxel scale, improving the forecast of

models with higher confidences. Therefore, the development

of large-scale reactive-transport inversion frameworks is highly

desirable, and it is probably the area with the highest potential820

for workflow improvements.

4.2. Operational conditions

Although a robust workflow and an efficient history match-

ing process are key aspects that help solve the problem of pre-

dicting future reservoir performance, a good estimate of future825

production also requires a good forecast of the operational con-

ditions imposed to the reservoir. On the one hand, the geom-

etry of the well field and the amounts of injected acid are the

result of human decisions, and can therefore be determined pre-

cisely through sustained planning. The flow rates, on the other830

hand, are much more difficult to predict because they are largely

controlled by coupled chemo-mechanical clogging phenomena

(Vergnaud, 2020) and the operator can only perform curative

actions whose effectiveness is temporary. Consequently, two

blocks with equivalent reserves and geometries may have very835

variable production profiles depending on their level of clog-

ging. Understanding and ultimately predicting these phenom-

ena is essential to improve predictions. The wrong forecast of

flow rates is responsible for most of the error in the production

forecast at the block scale for the case study presented in Sec-840

tion 3.2.2 (9.2% versus 1.6% for forecasted and observed oper-

ational conditions, respectively). This result was even stronger

at the cell scale. Accumulated over blocks, this error might

have an important impact on the reliability of mining plans, and

might affect the result of local optimisations. This area is conse-845
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Fig. 15. Runtime, number of voxels in the 3D blocks, number of days simulated and RAM used in the history matching simulations presented.

quently an important research topic, which should be developed

alongside automated history matching.

4.3. Industrial capacity

One of the fundamental aspects of a numerical model in-

tegrated in a regular workflow of operations is the speed with850

which the operator can obtain results on which to base his or

her decisions. Regarding the presented workflow, due to its

robustness and the low variability of adjusted geochemical pa-

rameters from one block to a neighbouring block, the model

calibration only required two to three runs on average. This855

calibration is not a limitation for a systematic use of the work-

flow for mine planning or optimisation studies (several hundred

runs per year).

However, the calculation time and CPU capacity may be-

come factors limiting several lines of research previously dis-860

cussed. Figure 15 shows the runtime, the number of voxels of

the 3D models, the number of days of production simulated, and

finally the RAM used to generate the simulation results (Sec-

tion 3). Although the number of production days simulated is

generally high - ∼ 2250 days on average, as the study focused865

on areas reaching their end of life, an average of 4 days, and

1000 Go of RAM were required to run a simulation. If these

constraints do not prohibit a single run, history matching might

need hundreds to thousands of calls of the model with increased

memory needs (Oliver and Chen, 2011).870

Moreover, the tendency is to increase the size of the grid and

the period of time covered. First, simulating multiple blocks at

once takes into account their interactions and removes the bias

for border cells. Second, environmental monitoring and foot-

print assessment consider acid migration with the natural flow875

of the aquifer during the rehabilitation, up to a hundred years af-

ter mine closure, and for the far field domain, extending beyond

the contour of the production blocks (de Boissezon et al., 2017;

Lagneau et al., 2019; de Boissezon et al., 2020). Consequently,

code performance optimisation (memory usage, parallelisation,880

etc.) is very important and should not be neglected while adding

complexity to the workflow. An interesting approach to over-

come these speed and memory issues is the usage of surrogate

modelling, i.e., a statistical model of the model, also called

a meta-model or proxy model (Sacks et al., 1989; Wang and885

Shan, 2006). This approach has already been widely used in

the oil and gas industry at industrial scale (Feraille and Marrel,

2012; Feraille, 2013; Costa et al., 2014, among others), with

limitations especially for automated history matching (Zubarev,

2009).890

4.4. Applicability to other deposits and commodities

Started in 2006 (Nos, 2011), the project at the origin of the

presented workflow represents 15 years of effort and develop-

ment. These developments involved firstly the adaptation of

reactive transport codes to the ISR case in porous media, sec-895

ondly, the creation of a geochemical model, and, finally, the

creation of pre- and post-processing interfaces, which actually
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constitutes the main part of the work (Lagneau et al., 2019).

Our experience shows that the use of this workflow for a new

roll-front uranium mine, such as found in Kazakhstan, Mon-900

golia or Uzbekistan, represents relatively little effort insofar

as the geochemical model and the operating scheme do not

change significantly. However, it requires much more effort

when the geology changes, e.g., for high-grade uranium de-

posits of Athabasca Basin in Canada. In the latter case, the min-905

eralogy and uranium proportions greatly differ, which means

a new geochemical model must be established. In addition,

the extraction is performed in fractured media, which means

the flow transport must rely on different modelling approaches

such as double porosity that must be incorporated in reactive-910

transport tools if not existing. Similarly, mining another metal

(e.g., copper) requires creating and testing a new geochemical

model and potentially adapting the tools if the geological con-

text greatly differs, which can take up to several years. There-

fore, the creation of an ISR modelling workflow for a mine site915

greatly depends on the existence or not of reactive transport

model and pre- and post processing infrastructure for a similar

deposit.

4.5. Comments about alternative simulation approaches

As explained in the section 2.1.2, the operator monitors the920

well field behaviour watching three main parameters: flow in

the field, dissolved uranium concentration at the block scale,

and acid consumption. Lagneau et al. (2019) illustrated the

limit of traditional ISR operations forecast, where evolution is

evaluated independently for the three parameters:925

• Flow in the field is ignored.

• Acid consumption is based on empirical coefficients (e.g.,

mass of acid consumed by mass of uranium produced),

based on supposedly similar areas of the exploitation.

• Evolution of uranium concentration in the leach solu-930

tion is based on analytical functions using parameters

adjusted on production data: the extrapolation of these

functions is used as a predictor.

Such approach is acceptable only if operating conditions remain

constant which is not the case in practice as illustrated with935

primary lines and block production curves (Figures 5 and 6).

Another alternative is pure hydrological simulation which

has been reported for well field optimisation (Krause et al.,

2016) and focuses on the flow within the reservoir, taking into

account hydrological parameters only.940

However, the use of this approach is limited in operational

conditions because (i) homogeneous global values in porosity

and permeability are used, data acquisition being too costly (ii)

the validation of the hydrodynamic parameters can only be done

by means of tracer tests which are spotty, or by having the well-945

head pressures, which is not a standard practice in the ISR in-

dustry because of its cost. Moreover, elements such as uranium

or acidity cannot be used as tracers as they are largely impacted

by the chemical dimension.

In the end, only the 3D reactive transport approach gathers950

the three pillars of ISR operations, which are (i) reservoir geom-

etry and composition (ii) well field geometry (iii) operational

conditions. This is the only method that correctly considers the

leaching within the reservoir and provides a real metal balance

and dissolution and recovery rates.955

5. Conclusions

This paper presents one of the first large-scale well field

applications of reactive transport (RT) simulation in the con-

text of uranium in situ recovery (ISR). The RT-based workflow

was successfully used on 39 production blocks containing 2394960

wells of the Katco ISR Mine well field. The model was found

to be very robust at the block and primary line scales, accu-

rately reproducing uranium production and acid consumption

over time scales of up to 12 years, with dramatic time-varying

operational conditions (well field design, flow rates, and leach-965

ing solution acidity). The robustness of the model is based on

the adjustment of only three global parameters of the 3D geo-

logical models: initial grades in clays (beidellite), initial grades

in calcite, and initial grades in iron hydroxides (goethite). In

addition, these calibration parameters are spatially continuous970
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and consistent with mineralogical internal studies. The statisti-

cal study of the model deviations has shown that the errors at the

production well scale compensate for each other, therefore indi-

cating that most of the remaining forecast errors are attributable

to the 3D geological model and not to reactive transport simu-975

lations.

The optimisation case study validated the predictive nature

of the RT-based workflow on a real example of an area end

of life management, showing less than 10% deviation between

predictions and observed data 16 months later. It also revealed980

the significance of gains provided by the workflow in oper-

ations: +28% increase in uranium production and +35% in-

crease in economic gains just over the first two years of end of

block life management.

Overall, this paper proved the capacity of an RT-based work-985

flow to be used industrially and how it became a game changer

on several accounts. First, hydrogeologists and mining engi-

neers are increasingly expected to make difficult decisions for

which qualitative understanding of reservoirs is not sufficient.

Instead, an accurate quantitative evaluation is needed and can-990

not be provided by empirical approaches. Second, large datasets

of concentrations, flow rates, and operational conditions are

available and must be considered when making these decisions.

While qualitative approaches are still possible, numerical mod-

els such as HYTEC are required to fill in the gaps and make995

full use of data. Third, the time is ripe for geometallurgical

approaches, when economic and environmental aspects are the

main drivers in operation (Dominy et al., 2018; Michaux, 2020).

The workflow presented here fulfils the needs by coupling ge-

ology, geostatistics and metallurgical response of the reservoir.1000
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