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Abstract

The provision of renewable-based ancillary services (AS) is paramount for the stable operation
of power systems featuring high renewable penetration. The combined operation of storage with
renewables enables aggregators to increase the reliability of their energy and frequency-control
AS offers. Existing dispatch strategies for the supply of both energy and AS are usually rule-based
or involve tracking a technical reference signal, hence economically suboptimal for aggregators.
This study proposes a comprehensive decision framework in which first a stochastic optimiza-
tion derives bids on energy and AS markets, then stochastic economic Model Predictive Control
(SEMPC) optimizes the dispatch of the storage in order to maximize the profit and minimize the
storage degradation, as a function of the predicted renewable production and the expected AS ac-
tivation.
The framework is applied to a real-world case study where storage combined with wind power
participates in the energy market, the frequency containment market and the frequency restora-
tion reserve market. The SEMPC-based approach increases market revenue by 15% compared
to a standard reference tracking MPC, and reduces storage degradation by 23%. The stochastic
formulation lowers the sensitivity of the economic objectives to renewable energy forecast errors,
compared to deterministic approaches.

Keywords:
stochastic economic model predictive control, ancillary services, frequency control, stochastic
programming, renewable energy, storage degradation

Acronyms

aFRR automatic Frequency Restoration Reserve.

AS Ancillary Services.

BASMP Balancing Ancillary Services Market Penalty.
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BASMR Balancing Ancillary Services Market Remuneration.

BESS Battery Energy Storage System.

BRP Balancing Responsible Party.

BSP Balancing Service Provider.

DA Day Ahead.

DAM Day Ahead Market.

DDA Deterministic Day Ahead.

DEMPC Deterministic Economic Model Predictive Control.

DRTMPC Deterministic Reference Tracking Model Predictive Control.

EMPC Economic Model Predictive Control.

FCR Frequency Containment Reserve.

GCT Gate Closure Time.

MPC Model Predictive Control.

PFR Primary Frequency Regulation.

RTMPC Reference Tracking Model Predictive Control.

SDA Stochastic Day Ahead.

SEMPC Stochastic Economic Model Predictive Control.

SFR Secondary Frequency Regulation.

SMPC Stochastic Model Predictive Control.

SoC State of Charge.

ST Short Term.

TSO Transmission System Operator.

vRES variable Renewable Energy Sources.
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1. Introduction

In order to mitigate climate change and cope with the massive increase of energy demand all
over the world, the energy sector is called to speed up the decarbonization of the energy sys-
tem. Renewable technologies, which currently provide around 30% of electricity generation, are
therefore set for a rapid growth in the near future [1].

The increasing penetration of variable Renewable Energy Sources (vRES) creates a trend to-
wards higher imbalances between energy generation and consumption in power systems, due to
vRES energy forecast errors. Additionally, conventional generators tend to be replaced by vRES
in the generation portfolio. To ensure safe grid operation under high vRES penetration, new tech-
nologies should offer reserve capacities in the existing markets for balancing ancillary services
(AS) [2]. An example of such newcomers in the provision of balancing AS is Battery Energy
Storage Systems (BESSs). Their fast response and ability to provide symmetrical reserve (up-
ward and downward regulation of active power) have led to the successful entry of BESSs in
markets for primary frequency regulation (PFR) in the USA [3] and Europe, where this service is
called Frequency Containment Reserve (FCR) [4]. Energy-intensive services such as secondary
frequency regulation (SFR), also called automatic Frequency Restoration Reserve (aFRR) in the
European terminology, are challenging for BESSs, because they require more energy throughput
from storage than PFR and therefore accelerate storage degradation. It is easier for BESSs to pro-
vide multiple balancing AS, e.g., PFR and SFR, if they are integrated into larger pools, such as
the portfolio of an aggregator integrating vRES plants [5]. This enables the variability of vRES
production to be mitigated within the perimeter of the aggregator [6], and part of this portfolio to
be dedicated to the supply of balancing AS jointly optimized with the production of energy. Ex-
amples of the coordinated operation of vRES and storage can be found in hybrid systems. These
systems combine vRES and BESS under the same grid connection point, so that the BESS can
directly compensate vRES energy forecast errors [7] and derive market offers that coordinate the
expected vRES production with the BESS capacity [8].

In this context, the provision of energy and multiple frequency-control AS through a combina-
tion of renewables and storage is an interesting research topic with respect to two main challenges.
The first challenge involves optimizing the two-step decision chain composed of (1) trading (in all
considered markets) and (2) control of the vRES+storage combination, in order to maximize value
(trading profit and storage lifetime) and compensate imbalances. This requires a comprehensive
modeling of the multiple AS and of the storage degradation in both the trading and control phases.
In the existing literature, this modeling is generally lacking or else incomplete in one of the two
phases of the decision chain. The second challenge concerns the uncertainty of vRES produc-
tion, which must be integrated into the optimization approach because the BESS size is limited
due to high investment costs, therefore imbalances are expected to occur between the contracted
and delivered volumes. An appropriate stochastic formulation for the entire decision chain ap-
pears necessary to mitigate the impact of vRES energy forecast errors on the profitability of the
vRES+BESS system.

1.1. Literature review
The optimization of vRES participation in the electricity markets is an established research

field. In order to maximize the expected profit and minimize the risk of exposure to high financial
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loss, researchers have identified the importance of correctly modeling uncertainties concerning
renewable production or market conditions. Approaches to date have focused mainly on the energy
market, and cover a large spectrum of solutions ranging from stochastic optimization [9] and
robust optimization [10], to hybrid stochastic/robust optimization models [11] and other alternative
approaches. In particular, [12] replaces the traditional predict and optimize chain with a single step
based on prescriptive trees. The chance-constrained optimization proposed by [13] addresses joint
trading in energy and balancing AS markets, but focuses on renewable-based aggregations without
storage capacities. In [14], an integrated approach is proposed to optimize the offering strategy of
a wind+storage system and derive real-time operation policies based on Linear Decision Rules,
but participation in AS markets is neglected. Overall, methods exist to mitigate the impact of
uncertainties on trading decisions for the energy market, but no adaptation has been proposed for
the complex use case where balancing AS are integrated into the trading and control of vRES
coupled with storage.

The provision of AS through the utilization of vRES and storage has garnered considerable
attention in recent literature.In [15], a physics-based model is proposed the provision of PFR and
voltage control by electric vehicles. In [16], a two-level optimization-based strategy is proposed
for the provision of aFRR using a variable speed pump storage. In [17], a state-machine-based co-
ordinated control strategy is presented for hybrid wind-BESS provision of frequency-control AS
at different timescales, namely PFR and SFR activated through Automatic Generation Control. In
[18], rule-based strategies are employed for the participation of PV with storage in secondary re-
serve markets. These works provide realistic modeling of the mechanisms for reserve procurement
and activation, but do not consider the value of updated forecasts at intraday horizons to optimize
the control of the vRES+BESS system.

The activation of balancing AS is performed almost instantaneously in real-time [19]. Thus,
fast online control strategies are required to meet the system need of AS in real-time. Model
Predictive Control (MPC) is an online optimization-based control method that adjusts the con-
trol strategies at every time-step based on the current information and a prediction of the future
information [20]. The traditional reference-tracking MPC (RTMPC) is the most common MPC
strategy employed in power system applications. This strategy follows a hierarchical approach
where an upper-level problem derives one or several reference set-points, while at the lower level,
the RTMPC controls the system to minimize the deviation between the controlled variables and
the reference set-points. This two-level control approach is utilized in [21] for the participation
of vRES-BESS hybrid systems in energy and ancillary services markets. First, a bidding strat-
egy is formulated as a mixed-integer linear program. Second, RTMPC is employed to minimize
deviations from the original schedule. RTMPC is used in [22] for the SFR of microgrids oper-
ated in islanded mode under cyberattacks. However, despite the effectiveness of this approach in
tracking real-time activation of AS, control strategies involving RTMPC may not provide optimal
solutions when coming to energy and AS trading problems. In fact, there is no guarantee that such
hierarchical control approaches would optimize the economic objectives of the aggregator.

To overcome this issue, a new trend has emerged in the design of predictive controllers for
economic-oriented problems, known as economic MPC (EMPC) [23], which directly optimizes
the economic value of the system. In [24], EMPC is used for hydrogen-based microgrid energy
trading in multiple electricity markets, including the balancing AS market. In [25], an EMPC ap-
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proach is presented for microgrid participation in the spinning reserve AS market. A combination
of Lasso MPC for PFR and EMPC for SFR is proposed in [26], for the case of virtual power plant
energy and AS trading. In [27] EMPC is applied alongside a seasonal-autoregressive-integral-
moving-average prediction model, enabling the participation of electric vehicles in the AS market
for frequency regulation. In [28], a myopic controller is extended by introducing an improved
EMPC for the participation of vRES-BESS in energy and ancillary services markets. Despite
the appealing properties that EMPC demonstrates when dealing with market-based problems, it
insufficiently models the uncertainties associated to vRES production and market quantities.

To hedge against the impact of uncertainties in the control strategy, stochastic MPC (SMPC)
[29] is often used, which results from the application of stochastic programming to MPC. This
control approach typically considers either chance constraints or scenarios. Chance-constraint-
based SMPC methods set a specific level of probability that a constraint will be satisfied, while
in scenario-based SMPC approaches the uncertainties are modeled with scenarios of possible re-
alizations. Scenario-based SMPC approaches provide an effective solution to handle bounded un-
certainties, while chance-constraint-based SMPC methods are typically recommended in case of
unbounded uncertainties. Several applications of SMPC to microgrid energy management prob-
lems can be found in the literature. In [30], a two-level stochastic framework is introduced for
optimizing microgrid participation in the day-ahead market (DAM) and the provision of regula-
tion capacity. The proposed SMPC strategy is designed to reschedule the initial planning based on
the system requirements of AS. In [31] a scenario-based SMPC strategy is proposed to minimize
microgrid operational costs and emissions. An interesting application of SMPC can be found in
[32] for the energy management problem of a hybrid PV-EV system considering PV generation,
EV consumption and market prices as sources of uncertainty. To reduce the computational effort,
an offline solution to the SMPC problem is computed via multiparametric programming and then
used to operate the system in real-time.

However, despite the noticeable interest for the ideas of SMPC and EMPC, very few attempts
have been made to account for both system uncertainties and economic-oriented objectives in the
design of predictive controllers for energy and AS trading problems. Such a MPC strategy arises
from the combination of EMPC and SMPC, and is known in the literature as stochastic economic
MPC (SEMPC). An example is given in [33], which features a scenario-based SEMPC strategy
for the energy trading of a hybrid PV-BESS system. In [34], SEMPC is applied to the energy
management problem of residential microgrids. Based on load, weather and price forecasts, a
fully stochastic two-level architecture is proposed to trade energy on the DAM and minimize
imbalances in real-time by means of SEMPC. In [35], real-time deviations of a market participant
from its original schedule are minimized using a sample-based SEMPC strategy to handle wind
power generation uncertainty. Similarly, in [36], small-size controllable loads participating in
a demand response program are used to trade energy on the DAM, and a SEMPC strategy is
proposed to compensate the aggregator imbalances on the intraday market. However, none of
these studies involve participating in the AS markets.

1.2. Research gaps and contributions
From the literature analysis, several gaps can be identified in the current state of the art. Various

ideas have been applied to problems involving energy trading and AS provision, such as rule-based
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strategies [18], physics-based models [15], state-machine-based control [17] and optimization-
based strategies [16, 37]. Compared to these approaches, predictive control can significantly en-
hance control performances through the integration of updated predictions on future information.
However, in most of the proposed applications of predictive control, traditional RTMPC strategies
are proposed to tackle control problems, like in [22, 30]. In these studies, market participation is
often overlooked, or the controller does not explicitly consider economic key performance indica-
tors in the objective function. When MPC is used to tackle trading problems, the proposed strate-
gies employ deterministic models, like in [24, 25, 26, 27], and are thus unable to hedge against
the impact of various sources of uncertainty. In the few cases in which predictive controllers are
designed to consider both stochastic models and economic objectives, either the problem does
not involve trading, like in [32], or only energy trading is considered and participation in the AS
market is neglected, like in [33, 34, 35, 36].

To the best of the authors’ knowledge, a multi-timescale fully stochastic architecture employ-
ing SEMPC for renewable energy and AS trading with storage is missing. Therefore, the main
contributions of this paper compared to the related literature could be summarized as follows:

• A two-level architecture is proposed for trading energy and providing frequency-control
AS through predictive control, whereas existing works focus only on the energy market
[33, 34, 35, 36] or employ simple strategies (e.g., rule-based [18], state-machine-based [17])
to participate in AS markets.

• The model chain is fully stochastic, composed of scenario-based stochastic programming
for the trading phase and scenario-based SEMPC for real-time control. Thus, the proposed
architecture hedges against the impact of significant vRES energy forecast errors throughout
the decision chain from trading to control, whereas existing works involving MPC employ
deterministic models [24, 25, 26].

• The proposed SEMPC strategy optimizes both storage dispatch and market participation
near to real-time, resulting in higher market revenue and lower storage degradation com-
pared to traditional RTMPC, as, in, e.g., [30].

Moreover, real-world data from the European H2020 project Smart4RES [38] have been used
to validate the effectiveness of the proposed method. Table 1 provides a comparison between this
work and the relevant related literature.

The remainder of the article is organized as follows. Section 2 describes the data, the models,
the proposed trading and control strategy, and the benchmarks used to evaluate our novel approach.
Section 3 presents the case study and the simulation results. Finally, Section 5 concludes this study.

2. Methodology

In this section, the discussion revolves around the modeling and methods proposed to address
various time steps inherent in the current problem. First, the modeling of the energy and balancing
AS market mechanism, the activation of balancing energy, and storage degradation is presented.
Subsequently, a novel two-level stochastic architecture for day-ahead (DA) trading and short-term

6



Ref. Energy
market

AS
market

AS
provision

Trading
strategy

Control
strategy

[9] ✓ × ×
Stochastic

programming ×

[10] ✓ × ×
Robust

optimization ×

[11] ✓ × ×

Hybrid
stochastic/robust

optimization
×

[12] ✓ × ×
Prescriptive

trees ×

[15] × ×
Frequency and

voltage regulation × Physic-based

[17] × ✓
Frequency
regulation × State-machine-based

[18] ✓ ✓
Frequency
regulation

Linear
programming Rule-based

[21] ✓ ✓
Frequency
regulation

Mixed-integer
linear programming RTMPC

[22] × ×
Frequency
regulation × RTMPC

[25] × ✓
Spinning
reserve × EMPC

[27] × ✓
Frequency
regulation × EMPC

[30] ✓ ✓
Flexibility
services

Stochastic
programming SMPC

[33] ✓ × × × SEMPC

[34] ✓ × ×
Stochastic

programming SEMPC

[35] ✓ × × × SEMPC
[36] ✓ × × × SEMPC

This study ✓ ✓
Frequency
regulation

Stochastic
programming SEMPC

Table 1: Summary of the relevant related research.

(ST) control of the hybrid system is introduced. Lastly, for the sake of comparison, two benchmark
approaches, alternative to our architecture, are briefly outlined.

2.1. Notation
In the following, discrete time problems are presented over a finite set of sampling times t ∈ T

with a sampling period of ∆t. The subscript t is used to indicate that a variable or a parameter
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is associated to the sampling time t, e.g., xt. Functions of the decision variables and vectors are
denoted in bold. The cardinality of a set, e.g., T , is denoted with the symbol | · |, e.g., |T |.

Nomenclature

Superscripts and subscripts:

DA Superscript to denote variables and parameters associated with the DA step.

S T Superscript to denote variables and parameters associated with the ST step.

τ|t Subscript to denote the value of a variable computed at time t and referring to time τ.

Sets and indexes:

zDA,II Set of second stage decision variables in the DA optimization problem.

zDA,I Set of first stage decision variables in the DA optimization problem.

zST Set of decision variables in the ST control problem.

Ω Set of scenarios, index ω.

K Prediction horizon, index k.

T Set of time periods, index t.

Decision variables:

∆E↑/↓ Negative/Positive energy imbalance [MWh].

∆RFCR,∆RaFRR,↑/↓ FCR deficit and upward/downward aFRR deficit [MW], respectively.

bc, bd Binary variables associated with BESS charging and discharging power [-], respectively.

E Energy offer in the DAM [MWh].

pc, pd BESS charging and discharging power [MW], respectively.

RFCR,RaFRR,↑/↓ FCR offer and upward/downward aFRR offer in the balancing AS market [MW],
respectively.

x Energy stored in the BESS [MWh].

Symbols:

αFCR, αaFRR,↑/↓ FCR activation signal and upward/downward aFRR activation signal [-], respec-
tively.

δE2 Quadratic term in RTMPC objective function, used to penalize energy imbalances [-].
8



δR2 Quadratic term in RTMPC objective function, used to penalize reserve deficits [-].

cl(·), cy(·, ·) BESS calendar and cycling aging factors [MWh], respectively.

D(·, ·) BESS degradation function [RON].

eb2 Quadratic term in RTMPC objective function, used to penalize deviations from DA BESS
schedule [-].

J DA, JST Objective functions of the DA and ST optimization problems [RON], respectively.

RaFRR,α Net reserve volume activated for secondary frequency-control (aFRR) [MW].

RFCR,α Reserve volume activated for primary frequency-control (FCR) [MW].

∆t,∆k Duration of time period and control period [s], respectively.

ηc, ηd BESS charging and discharging efficiencies [-], respectively.

πB Cost of a complete BESS charge/discharge cycle [RON/MWh].

πE DAM energy price [RON/MWh].

π∆R,aFRR,comp,↑/↓ Composite penalty price of upward/downward aFRR (formed by combining
penalty prices of availability remuneration and activation remuneration) [RON/MW].

π∆R,FCR, π∆R,aFRR,↑/↓ Penalty prices of FCR deficit and upward/downward aFRR deficit
[RON/MW], respectively.

πaFRR,comp,↑/↓ Composite price of upward/downward aFRR (formed by combining prices of avail-
ability remuneration and activation remuneration) [RON/MW].

πaFRR,bal,↑/↓ Price of activated upward/downward aFRR balancing energy [RON/MWh].

πE,↑/↓ Penalty price of negative/positive energy imbalance [RON/MWh].

πFCR, πaFRR,↑/↓ Prices of FCR and upward/downward aFRR [RON/MW], respectively.

pc,min/max, pd,min/max Min/Max BESS charging and discharging power [MW], respectively.

wcy,wcl Weights of BESS cycling and calendar aging [-], respectively.

xi Energy stored in the BESS at the beginning of the simulation period [MWh].

xcl,thr Calendar aging threshold (above this energy level, the BESS is also affected by calendar
aging) [MWh].

xmin/max Min/Max BESS energy storage levels [MWh].

y Energy produced from vRES [MWh].
9



ymax vRES installed capacity [MW].

Vectors:

α Vector of AS activation signals, encompassing both FCR and aFRR activation signals.

∆EDA,∆EST Vectors of DA and ST energy imbalances, respectively.

∆RDA,∆RST Vectors of DA and ST reserve deficits, respectively. These vectors encompass both
FCR and aFRR deficits.

η Vector of BESS charging and discharging efficiencies.

πR Vector of reserve prices, encompassing both FCR and aFRR unitary prices.

π∆E Vector of energy imbalances penalty prices.

π∆R Vector of reserve deficits penalty prices, encompassing both FCR and aFRR deficits prices.

PDA, PST Vectors of DA and ST BESS power commands, respectively.

RDA Vector of reserve offers, encompassing both FCR and aFRR offers.

uST Sequence of ST control outputs.

2.2. Modeling
The following discusses the modeling of the energy market, the balancing AS market, and the

BESS degradation. This study takes the perspective of an aggregator operating a hybrid vRES-
BESS system on the wholesale electricity market to trade energy and frequency-control AS. The
proposed models are based on the mechanisms currently implemented in Europe. However, a
detailed description of the European electricity markets is beyond the scope of this study. For an
extensive analysis of the recent evolution in the European electricity markets the reader can refer
to [39], while detailed overviews are provided in [40] for the European AS markets and in [19] for
the European balancing mechanism.

At present, the energy exchange in Europe takes place in several markets at different timescales
[41]. All market participants, like the aggregator considered in this study, must keep their indi-
vidual positions (sum of energy injected or withdrawn from the electrical grid) in balance, to help
ensure the secure operation of the electrical grid; they are thus called Balancing Responsible Par-
ties (BRPs) [19]. BRPs are subject to market penalties when they fail to keep their individual
position in balance. Due to the uncertain nature of renewable power generation, an aggregator that
includes vRES in its portfolio is likely to deviate from the schedule submitted to the market and
thus face penalties as a consequence of its imbalances (deviations from the schedule submitted to
the market). To minimize these penalties, the aggregator can exploit sources of flexibility (e.g., a
BESS) to compensate in real-time the deviations from the original schedule. From a global per-
spective, some BRPs will have positive imbalances (energy surplus, i.e., more energy produced
than originally scheduled), while others will have negative imbalances (energy shortage, i.e., less
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energy produced than originally scheduled). Thus, the imbalances of all BRPs will partially can-
cel each other out. The remaining imbalance is cancelled through the frequency-control process,
which employs balancing energy to restore the nominal frequency (50 Hz in Europe). Balancing
energy is provided by Balancing Service Providers (BSPs) on specific markets, called balancing
AS markets [19]. On these markets, BSPs offer upward and downward balancing capacities, which
are called reserves, to the Transmission System Operator (TSO). In real-time, the TSO will eventu-
ally activate the reserves to restore the nominal frequency. The frequency-control process involves
various steps, namely primary, secondary and tertiary control, employing different balancing prod-
ucts [19]. The nomenclature currently employed in the European balancing AS markets [19, 40] is
adopted here. In particular, the focus is directed specifically towards two balancing products: Fre-
quency Containment Reserve (FCR) for primary frequency-control and automatic Frequency
Restoration Reserve (aFRR) for secondary frequency-control.

2.2.1. Energy market
Market participants submit energy bids on the market before the gate closure time (GCT),

when the market session closes. In the DAM, sessions take place every day to trade energy for
the following day. Thus, the GCT for the DAM is 24h before the actual energy injection time.
In this context, the aggregator is assumed to offer energy volumes E in the DAM. The symbol
πE is used to denote the price associated with the energy exchange. As a BRP, the aggregator is
financially responsible for its imbalances. In addressing penalties related to energy imbalances, a
dual-price settlement scheme is assumed [42]. This scheme calculates separate prices for positive
imbalances (actual energy injection exceeding the original energy offer) and negative imbalances
(actual energy injection falling below the original energy offer). Thus, a penalty price πE,↑ is
associated with negative imbalances ∆E↑ while positive imbalances ∆E↓ are rewarded with a price
πE,↓ lower than πE.

2.2.2. Balancing ancillary services market
The aggregator is also assumed to participate in the trading of balancing products, thus as-

suming the role of a BSP. On the balancing AS market, the aggregator offers upward reserve,
which consists in offering energy capacity to increase the injection of energy into the grid, and a
downward reserve, which consists in offering energy capacity to absorb energy from the grid. For
primary frequency control, the aggregator offers FCR, denoted by RFCR, while for secondary fre-
quency control, the aggregator offers upward and downward aFRR, denoted by RaFRR,↑ and RaFRR,↓,
respectively. FCR is modeled with a single variable since this product is assumed to be symmetric
(the offer of upward reserve equals the offer of downward reserve), which is the case in many
European balancing AS markets (e.g., Germany) [40].

Balancing energy is remunerated in two ways [42]: capacity remuneration, also known as
availability remuneration; and energy remuneration, also known as activation remuneration. In
the former case, the aggregator is remunerated to keep balancing capacity available for frequency-
control. In the latter case, the aggregator is compensated for the actual activation of the balancing
product. While both FCR and aFRR products receive a capacity remuneration, energy remunera-
tion is only payed for the aFRR product.
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The price of FCR is denoted by πFCR, while the price of upward aFRR and downward aFRR
are denoted by πaFRR,↑ and πaFRR,↓, respectively. Moreover, in addition to capacity prices, aFRR is
also characterized by a price πaFRR,bal,↑ for activating upward aFRR balancing energy and a price
πaFRR,bal,↓ for activating downward aFRR balancing energy.

The balancing capacity procured on the market can be activated in real-time during the
frequency-control process. The activation of FCR is driven by the FCR activation signal αFCR ∈

[−1, 1]. When αFCR > 0, the BSP activates upward FCR (full activation when αFCR = 1). Con-
versely, if αFCR < 0, the BSP activates downward FCR (full activation when αFCR = −1).

Similarly, the activation of aFRR is driven by the aFRR activation signals. In this case, two
activation signals are required to distinguish between the activation of upward and downward
aFRR, which are denoted by αaFRR,↑ ∈ [0, 1] and αaFRR,↓ ∈ [0, 1], respectively. When αaFRR,↑ > 0,
the BSP activates upward aFRR (full activation when αaFRR,↑ = 1). If αaFRR,↓ > 0, the BSP
activates downward aFRR (full activation when αaFRR,↓ = 1).

It is assumed that activation signals are received by the aggregator from the TSO.
In light of the previous discussion on the balancing AS market and the activation mechanisms

for balancing energy, the total compensation obtained by the aggregator in the balancing AS mar-
ket, referred to as Balancing Ancillary Services Market Remuneration (BASMR), is expressed in
Eq. (1).

BASMR = πFCR · RFCR + πaFRR,↑ · RaFRR,↑ + πaFRR,↓ · RaFRR,↓︸                                                         ︷︷                                                         ︸
availability remuneration

+

+ αaFRR,↑ · πaFRR,bal,↑ · RaFRR,↑ · ∆t + α
aFRR,↓ · πaFRR,bal,↓ · RaFRR,↓ · ∆t︸                                                                                ︷︷                                                                                ︸

activation remuneration

.
(1)

A compact representation of Eq. (1) is given in Eq. (2a), employing upward and downward aFRR
composite unitary prices, denoted as πaFRR,comp,↑ and πaFRR,comp,↓, respectively. These composite
prices, defined in Eq. (2b) for upward aFRR and in Eq. (2c) for downward aFRR, represent the
price at which each unit of aFRR capacity is remunerated, considering both availability remuner-
ation and activation remuneration mechanisms.

BASMR = πFCR · RFCR + πaFRR,comp,↑ · RaFRR,↑ + πaFRR,comp,↓ · RaFRR,↓, (2a)

πaFRR,comp,↑ = πaFRR,↑ + αaFRR,↑ · πaFRR,bal,↑ · ∆t, (2b)

πaFRR,comp,↓ = πaFRR,↓ + αaFRR,↓ · πaFRR,bal,↓ · ∆t. (2c)

The aggregator may deviate from the reserve offers. These deficits include the FCR deficit
∆RFCR, upward aFRR deficit ∆RaFRR,↑ (deviation from the original offer of upward aFRR), and
downward aFRR deficit ∆RaFRR,↓ (deviation from the original offer of downward aFRR). Simi-
larly to energy imbalances, reserve deficits are penalized by the market operator through market
penalties. The FCR deficit penalty price, upward aFRR deficit penalty price and downward aFRR
deficit penalty price are denoted by π∆R,FCR, π∆R,aFRR,↑ and π∆R,aFRR,↓, respectively.

Applying the same rationale used to derive Eqs. (2), it is straightforward to derive the cumula-
tive penalty faced by the aggregator in the event of deficits, referred to as the Balancing Ancillary
Services Market Penalty (BASMP). This penalty is expressed in Eq. (3a), taking into account
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the composite unitary penalty price for upward aFRR deficit, denoted by π∆R,aFRR,comp,↑ and de-
fined in Eq. (3b), and the composite unitary penalty price for downward aFRR deficit, denoted by
π∆R,aFRR,comp,↓ and defined in Eq. (3c).

BASMP = π∆R,FCR · ∆RFCR + π∆R,aFRR,comp,↑ · ∆RaFRR,↑ + π∆R,aFRR,comp,↓ · ∆RaFRR,↓, (3a)

π∆R,aFRR,comp,↑ = π∆R,aFRR,↑ + αaFRR,↑ · πaFRR,bal,↑ · ∆t, (3b)

π∆R,aFRR,comp,↓ = π∆R,aFRR,↓ + αaFRR,↓ · πaFRR,bal,↓ · ∆t. (3c)

2.2.3. BESS
In the following, a standard state-space model is used to represent the BESS dynamics. The

energy stored in the BESS at time t is denoted by xt, with xmin and xmax representing the minimum
and maximum BESS energy storage levels, respectively. The BESS charging and discharging
power are denoted by pc and pd, while pc/d,min and pc/d,max represent the minimum and maximum
BESS charging/discharging power. The charging and discharging efficiencies are denoted by ηc

and ηd respectively.
When operating a BESS, it is necessary to evaluate its degradation as it significantly impacts

the cost and performance of the aggregator. In the following, a BESS degradation model based
on [43] is proposed. Two types of BESS degradation effects are considered: calendar aging and
cycling aging. The former occurs when the BESS is at rest, i.e., there are no current flows through
the battery. The latter occurs when the BESS is charged or discharged. Denote by πB the cost
associated to one complete BESS charge/discharge cycle, and by wcy and wcl the weights associated
to cycling and calendar aging, respectively. Moreover, denote by xcl,thr the calendar aging threshold
(above this level, the BESS is assumed to also be affected by calendar aging). The calendar aging
factor cl(xt) and the cycling aging factor cy(xt, xt−1) are defined in Eq. (4) and Eq. (5), respectively.

cl (xt) := wcl · xt. (4)
cy (xt, xt−1) := wcy · |xt − xt−1| . (5)

The BESS degradation function D(xt, xt−1) is employed to represent BESS aging, as defined in Eq.
(6).

D (xt, xt−1) :=

πB · (cl (xt) + cy (xt, xt−1)) , if xt ≥ xcl,thr

πB · cy (xt, xt−1) , else
. (6)

2.3. Novel two-level stochastic architecture for trading and control
In this section, a novel two-level scenario-based stochastic architecture is presented for the

participation of hybrid vRES-BESS systems in the joint energy and balancing AS market. The
problem at hand involves the following time stages:

1. DA step (24h before energy injection/withdrawal), which corresponds to the trading prob-
lem, when the aggregator submits energy, FCR and aFRR bids.

2. ST step (minutes before energy injection/withdrawal), which corresponds to the control
problem, when the aggregator updates its schedule in response to the activation of AS.
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In the following, the problem is referred to as the trading and control problem, and the decision
variables and parameters associated with the DA and ST steps are denoted with superscripts DA
and S T , respectively.

It is assumed that the energy generated by the vRES power plant, denoted by y, is unknown
throughout both stages of the problem, while market prices are considered to be known. The
vRES installed capacity is identified as ymax. The uncertain parameter y is represented by a specific
scenario ω within the set of many scenarios Ω. The uncertain parameters and decision variables
associated with the scenario ω are indicated with the subscript ω. Generation of scenarios for the
uncertain parameter is achieved through a state-of-the-art approach, specifically the integration of
a probabilistic forecast and a Gaussian copula to capture temporal dependencies [42]. Two sets
of scenarios of the uncertain parameter realization are considered. First, a set of scenarios ΩDA is
generated during the DA step to tackle the trading problem. Second, a new set of scenarios ΩS T is
generated during the ST step to tackle the control problem. In addition to vRES energy forecast,
the proposed architecture receives as input predicted frequency-control activation signals. Due to
the high volatility of these signals in real-time, it is very difficult to obtain a reliable forecast at
DA step. In this study, a moving average of the historical data is considered as a forecast for the
frequency-control activation signals, denoted with the superscript ˆ, e.g., α̂FCR. This forecast is
derived by computing the moving average over the last 60 minutes of historical data.

SDA SEMPC
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t

MW

t

Energy offer

FCR + aFRR offer

DA scenarios of
vRES energy forecast

Energy Market

Balancing AS market ST scenarios of vRES
energy forecast
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Figure 1: Graphical representation of the proposed SDA+SEMPC architecture to tackle the trading and control prob-
lem.

A two-level stochastic architecture is proposed, incorporating optimization-based approaches
to address the trading and control problem. First, the stochastic day-ahead (SDA) module employs
scenario-based stochastic optimization to tackle the trading problem during the DA step. Second,
a scenario-based SEMPC strategy is employed to tackle the control problem during the ST step.
This approach is denoted as the stochastic day-ahead + stochastic economic model predictive
control (SDA+SEMPC) architecture. The proposed SDA+SEMPC architecture is shown in Fig-
ure 1. During the DA step, the aggregator generates a set of DA vRES energy forecast scenarios
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yDA and predictions of the frequency-control AS activation signals α̂. Given these inputs, the SDA
module computes energy, FCR and aFRR offers for the energy and balancing AS markets. After-
wards, during the ST step, at each time t ∈ T , a new set of ST vRES energy forecast scenarios yST

t
is generated and the aggregator receives the actual frequency-control activation signals αt . Given
these inputs, the SEMPC module controls the BESS to optimize the economic objectives of the
aggregator (maximize market revenue and minimize storage degradation).

2.3.1. First level: stochastic optimization
The first level of the proposed architecture tackles the trading problem during the DA step.

The trading problem is formulated considering a sampling period ∆t. Given the DA vRES energy
forecast as input, this problem consists in deriving a simultaneous offer of energy and AS reserves.
The set of DA first-stage decision variables zDA,I and the set of DA second-stage decision variables
zDA,II are defined in Eq. (7) and Eq. (8), respectively.

zDA,I :=
{
EDA

t ,R
FCR,DA
t ,RaFRR,↑,DA

t ,RaFRR,↓,DA
t

∣∣∣ t ∈ T
}
. (7)

zDA,II :=
{
∆E↑,DA
ω,t ,∆E↓,DA

ω,t ,∆RFCR,DA
ω,t ,∆RaFRR,↑,DA

ω,t ,∆RaFRR,↓,DA
ω,t , xDA

ω,t , p
c,DA
ω,t , p

d,DA
ω,t , b

c
ω,t, b

d
ω,t

∣∣∣
t ∈ T, ω ∈ ΩDA

}
. (8)

To succinctly formulate the problem, it is convenient to introduce the following vectors. The
vector of reserve offers is denoted by RDA

t and is defined in Eq. (9).

RDA
t :=

[
RFCR,DA

t RaFRR,↑,DA
t RaFRR,↓,DA

t

]T
. (9)

The vectors of DA energy imbalances, denoted by ∆EDA
ω,t , DA reserve deficits, denoted by ∆RDA

ω,t ,
and DA BESS power commands, denoted by PDA

ω,t , are defined in Eq. (10), Eq. (11) and Eq. (12),
respectively.

∆EDA
ω,t :=

[
∆E↑,DA
ω,t ∆E↓,DA

ω,t

]T
. (10)

∆RDA
ω,t :=

[
∆RFCR,DA
ω,t ∆RaFRR,↑,DA

ω,t ∆RaFRR,↓,DA
ω,t

]T
. (11)

PDA
ω,t :=

[
pc,DA
ω,t pd,DA

ω,t

]T
. (12)

The vectors of reserve prices, denoted by πR
t , energy imbalances penalty prices, denoted by π∆E

t ,
and reserve deficits penalty prices, denoted by π∆R

t , are defined in Eq. (13), Eq. (14), and Eq. (15),
respectively.

πR
t :=

[
πFCR

t π
aFRR,comp,↑
t π

aFRR,comp,↓
t

]T
. (13)

π∆E
t :=

[
πE,↑

t − πE,↓
t

]T
. (14)

π∆R
t :=

[
π∆R,FCR

t π
∆R,aFRR,comp,↑
t π

∆R,aFRR,comp,↓
t

]T
. (15)
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The vector of predicted frequency-control activation signals is denoted by α̂t and is defined in Eq.
(16), while the vector of BESS charging and discharging efficiencies is denoted by η and is defined
in Eq. (17).

α̂t :=
[
α̂FCR

t α̂aFRR,↑
t − α̂aFRR,↓

t

]T
. (16)

η :=
[
ηc − ηd

]T . (17)

During the DA step, the aggregator aims at maximizing market revenue while minimizing
storage degradation. Thus, the objective function J DA of the trading problem is composed of three
terms, namely energy market revenue, balancing AS market revenue and the BESS degradation
function, and is defined in Eq. (18).

J DA :=
1

|T | |ΩDA|

∑
ω∈ΩDA

∑
t∈T

(
−πE

t · E
DA
t + π

∆E
t

T
∆EDA

ω,t︸                         ︷︷                         ︸
energy market revenue

−πR
t

T RDA
t + π∆R

t
T
∆RDA

ω,t︸                         ︷︷                         ︸
balancing AS market revenue

+

+ D
(
xDA
ω,t+1, x

DA
ω,t

) )
.

(18)

Then, the following SDA optimization problem is formulated to address the trading problem
during the DA step.

argmin
zDA,I ,zDA,II

J DA (19a)

s.t. EDA
t +

[
−1
1

]T

∆EDA
ω,t + α̂t

T
(
RDA

t − ∆RDA
ω,t

)
· ∆t +

[
∆t

−∆t

]T

PDA
ω,t = yDA

ω,t , (19b)

EDA
t +

 ∆t

∆t

−∆t


T

RDA
t ≤ ymax · ∆t + xmax, (19c)

xDA
ω,t+1 = xDA

ω,t + η
T PDA
ω,t · ∆t, (19d)

xDA
ω,0 = xi (19e)

xmin ≤ xDA
ω,t ≤ xmax, (19f)

pc,min · bc
ω,t ≤ pc,DA

ω,t ≤ pc,max · bc
ω,t, (19g)

pd,min · bd
ω,t ≤ pd,DA

ω,t ≤ pd,max · bd
ω,t, (19h)

bc
ω,t + bd

ω,t ≤ 1, (19i)

bc
ω,t, b

d
ω,t ∈ {0, 1}, (19j)

EDA
t ,R

FCR,DA
t · ∆t,R

aFRR,↑/↓,DA
t · ∆t ∈ [0, ymax · ∆t + xmax], (19k)

∆E↑,DA
ω,t ,∆E↓,DA

ω,t ,∆RFCR,DA
ω,t ,∆RaFRR,↑/↓,DA

ω,t ∈ R+, (19l)

∀ω ∈ ΩDA,∀t ∈ T. (19m)

Eq. (19b) ensures the energy balance between market offers, energy imbalances, reserve
deficits, energy storage and renewable power generation. Eq. (19c) is the market constraint
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that imposes offering a total amount of energy lower or equal to the system total capacity. Eqs.
(19d)-(19f) describe the BESS dynamics and limits. Eqs. (19g)-(19j) enforce the BESS charg-
ing/discharging power limits and avoid simultaneous charging and discharging (by means of the
binary variables bc

ω,t and bd
ω,t). Eqs. (19k)-(19l) define the admissible ranges of the decision vari-

ables.

2.3.2. Second level: SEMPC
The second level of the proposed architecture tackles the control problem during the ST step.

The control problem is formulated considering a sampling period ∆k, in general different from
the sampling period of the trading problem ∆t. This problem consists in adapting the aggrega-
tor’s schedule to answer the activation of frequency-control AS. The second level of the proposed
architecture receives as inputs the set of first-stage decisions zDA,I of the trading problem (19),
which has been computed during the DA step and is now fixed, and an updated version of vRES
energy forecast yS T , namely ST vRES energy forecast. Then, a SEMPC strategy is employed to
recompute the second-stage decision variables of the trading problem (19), which will be executed
in real-time.

At time t, the SEMPC takes as input the ST scenarios of vRES power generation yS T
ω,t+k and

calculates the optimal control sequence uST for each sampling time k within the prediction horizon
K. This sequence encompasses energy imbalances, reserve deficits, and BESS power commands.
Subsequently, only the first element uST

t|t of the optimal control sequence is executed at time t, and
this process is reiterated in the next time step t + 1. This methodology adheres to the standard
approach in MPC theory, as illustrated, for instance, in [20]. In the following, uST

t|t is kept constant
across all scenarios to ensure the feasibility of the control strategy, as shown in [33].

Eq. (20) defines the set of ST decision variables, denoted by zST.

zST :=
{
∆E↑,S T
ω,t+k|t,∆E↓,S T

ω,t+k|t,∆RFCR,S T
ω,t+k|t ,∆RaFRR,↑,S T

ω,t+k|t ,∆RaFRR,↓,S T
ω,t+k|t , xS T

ω,t+k|t, p
c,S T
ω,t+k|t, p

d,S T
ω,t+k|t,

bc
ω,t+k|t, b

d
ω,t+k|t

∣∣∣ k ∈ K, ω ∈ ΩS T
}
. (20)

The vectors of ST energy imbalances, denoted by ∆EST
ω,t+k|t, ST reserve deficits, denoted by

∆RST
ω,t+k|t, and ST BESS power commands, denoted by PST

ω,t+k|t, are defined in Eq. (21), Eq. (22),
and Eq. (23), respectively.

∆EST
ω,t+k|t :=

[
∆E↑,S T
ω,t+k|t ∆E↓,S T

ω,t+k|t

]T
. (21)

∆RST
ω,t+k|t :=

[
∆RFCR,S T
ω,t+k|t ∆RaFRR,↑,S T

ω,t+k|t ∆RaFRR,↓,S T
ω,t+k|t

]T
. (22)

PST
ω,t+k|t :=

[
pc,S T
ω,t+k|t pd,S T

ω,t+k|t

]T
. (23)

During the ST step, the aggregator aims to minimize market penalties and storage degradation,
while answering the activation of frequency-control AS. Thus, the objective function JST of the
control problem is composed of three terms, namely energy market penalties, balancing AS market
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penalties and the BESS degradation function, and is defined in Eq. (24).

JST =
1

|K| |ΩS T |

∑
ω∈ΩS T

∑
k∈K

 π∆E
t+k

T
∆EST

ω,t+k|t︸          ︷︷          ︸
energy market penalties

+ π∆R
t+k

T
∆RST

ω,t+k|t︸          ︷︷          ︸
balancing AS market penalties

+D
(
xS T
ω,t+k+1|t, x

S T
ω,t+k|t

) . (24)

Then, the following SEMPC strategy is formulated to address the control problem during the
ST step.

argmin
uST

t|t ,z
ST

JST (25a)

s.t. EDA
t+k +

[
−1
1

]T

∆EST
ω,t+k|t + αt

T
(
RDA

t+k − ∆RST
ω,t+k|t

)
· ∆k +

[
∆k

−∆k

]T

PST
ω,t+k|t = yS T

ω,t+k, (25b)[
∆EST

ω,t|t
T
∆RST

ω,t|t
T PST

ω,t|t
T ]T
= uST

t|t , (25c)

xS T
ω,t+k+1|t = xS T

ω,t+k|t + η
T PST
ω,t+k|t · ∆k, (25d)

xS T
ω,t|t = x0 (25e)

xmin ≤ xS T
ω,t+k|t ≤ xmax, (25f)

pc,min · bc
ω,t+k|t ≤ pc,S T

ω,t+k|t ≤ pc,max · bc
ω,t+k|t, (25g)

pd,min · bd
ω,t+k|t ≤ pd,S T

ω,t+k|t ≤ pd,max · bd
ω,t+k|t, (25h)

bc
ω,t+k|t + bd

ω,t+k|t ≤ 1, (25i)

bc
ω,t+k|t, b

d
ω,t+k|t ∈ {0, 1}, (25j)

∆RST
ω,t+k|t ≤ RDA

t+k , (25k)

∆E↑,S T
ω,t+k|t,∆E↓,S T

ω,t+k|t,∆RFCR,S T
ω,t+k|t ,∆RaFRR,↑,S T

ω,t+k|t ,∆RaFRR,↓,S T
ω,t+k|t ∈ R+, (25l)

∀ω ∈ ΩS T ,∀k ∈ K. (25m)

Eq. (25b) ensures the energy balance between market offers, energy imbalances, reserve
deficits, energy storage and renewable power generation. Eq. (25c) is introduced to force the
control strategy to be equal across all scenarios in the first prediction step of the MPC strategy, as
shown in [33]. Eqs. (25d)-(25f) describe the BESS dynamics and limits. Eqs. (25g)-(25j) enforce
the BESS charging/discharging power limits and avoid simultaneous charging and discharging (by
means of the binary variables bc

ω,t+k|t and bd
ω,t+k|t). Eqs. (25k)-(25l) define the admissible ranges of

the decision variables.
Finally, the two levels involved in our sequential SDA+SEMPC architecture are implemented

as shown in Algorithm 1.

2.4. Benchmark approaches for trading and control
To assess the benefits of the novel SDA+SEMPC architecture, two standard MPC-based ar-

chitectures employing deterministic models are presented in the following. The first benchmark
approach employs deterministic optimization to tackle the trading problem and a RTMPC strategy
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Algorithm 1: SDA+SEMPC architecture

Data: d =
{
xi, xmin, xmax, pc,min, pd,min, pc,max, pd,max, ηc, ηd, ymax

}
.

First level:
Generate DA vRES energy forecast scenarios yDA =

{
yDA
ω,t | ω ∈ ΩDA, t ∈ T

}
;

Generate predicted frequency-control activation signals α̂ ;
zDA,I⋆, zDA,II⋆ ← SDA

(
d, yDA, α̂

)
;

Second level:
x0 ← xi;
t ← 0;
while t ≤ |T | − |K| do

Generate ST vRES energy forecast scenarios yST
t =

{
yS T
ω,t+k | ω ∈ ΩS T , k ∈ K

}
;

Receive the frequency-control activation signals αt from the TSO ;
zDA,I

t
⋆
=

{
zt+k ∈ zDA,I⋆ | k ∈ K

}
;

uST
t|t
⋆
, zST⋆ ← SEMPC

(
d, x0, yST

t ,αt, zDA,I
t

⋆)
;

Apply uST
t|t
⋆;

x0 ← xt+1;
t ← t + 1;

end

to tackle the control problem. This is called the deterministic day-ahead + deterministic refer-
ence tracking model predictive control (DDA+DRTMPC) architecture. The second benchmark
approach employs deterministic optimization to tackle the trading problem and an EMPC strategy
to tackle the control problem. This is called the deterministic day-ahead + deterministic eco-
nomic model predictive control (DDA+DEMPC) architecture.

Our SDA+SEMPC shows two main differences compared to the proposed benchmark ap-
proaches:

• SDA+SEMPC employs economic-oriented control, while the DDA+DRTMPC employs
the traditional reference-tracking strategy to tackle the ST step/control problem.

• SDA+SEMPC employs a stochastic model to handle the uncertainty, while both of bench-
mark strategies employ a deterministic model.

Table 2 summarizes the main differences between DDA+DRTMPC, DDA+DEMPC and our
SDA+SEMPC.

Since these benchmark strategies employ deterministic models, the uncertain parameter y is
now modeled by a single scenario. Therefore, in the following, the subscript ω is dropped.

2.4.1. First benchmark approach: DDA+DRTMPC
Similar to the proposed SDA+SEMPC architecture, the DDA+DRTMPC consists of two dis-

tinct levels. The first level is formulated as (19), where now the set of DA vRES energy forecast
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Architecture Economic-oriented predictive control Stochastic model
DDA+DRTMPC - -
DDA+DEMPC ✓ -
SDA+SEMPC ✓ ✓

Table 2: Comparison between our SDA+SEMPC and the proposed benchmark approaches.

scenarios is reduced to a single scenario, i.e., |ΩDA| = 1. The second level employs a traditional
RTMPC approach to tackle the control problem during the ST step.

Unlike the objective function of our SEMPC, the control strategy of the RTMPC is designed
to minimize the squared difference between the BESS schedule computed during the DA step and
that of the ST step. This tracking error is defined in Eq. (26).

eb2
t+k|t :=

(
xDA

t+k − xS T
t+k|t

)2
. (26)

Moreover, the quadratic terms defined in Eq. (27) and Eq. (28) are introduced to penalize the
energy imbalances and the reserve deficits, respectively.

δE2
t+k|t :=

(
∆E↑,S T

t+k|t

)2
+

(
∆E↓,S T

t+k|t

)2
. (27)

δR2
t+k|t :=

(
∆RFCR,S T

t+k|t

)2
+

(
∆RaFRR,↑,S T

t+k|t

)2
+

(
∆RaFRR,↓,S T

t+k|t

)2
. (28)

Then, the optimization problem solved by the RTMPC to tackle the control problem during the
ST step is formulated as

argmin
zST

∑
k∈K

(
eb2

t+k|t + δE
2
t+k|t + δR

2
t+k|t

)
(29a)

s.t. (25b), (25d) − (25l), (29b)
∀k ∈ K, (29c)

where the decision variables in zST and the constraints (29b) are reduced to the case of a single
scenario of the uncertain parameter realization, i.e., |ΩS T | = 1.

2.4.2. Second benchmark approach: DDA+DEMPC
Similarly to our approach, the DDA+DEMPC architecture is composed of two levels. The

first level is formulated in the same way as in the DDA+RTMPC architecture. The second level
employs an EMPC strategy to tackle the control problem. In this case, the control strategy is aware
of market prices, as in our SEMPC, but it employs a deterministic model to handle the uncertainty,
as in the RTMPC.

Thus, the optimization problem solved by the EMPC to tackle the control problem during the
ST step is formulated as

argmin
zST

JST (30a)

s.t. (29b) (30b)
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∀k ∈ K, (30c)

where the decision variables in zST and the objective function JST are reduced to the case of a
single scenario of the uncertain parameter realization, i.e., |ΩS T | = 1.

3. Case study description

A real hybrid power plant, consisting of an onshore wind farm and a stationary BESS operating
under the same grid connection point, is examined. Historical time-series of wind power produc-
tion are considered, sourced from the Smart4RES EU Project [38]. A simulation period of three
months is considered (from August to October 2020). To ensure confidentiality, the capacities of
the hybrid system components are scaled by the installed capacity ymax of the wind farm. Thus,
the capacity of the BESS is 0.2MW/0.2MWh for a 1MW wind farm capacity. The parameters of
the BESS degradation model (6) are derived following the energy throughput degradation model
proposed in [43]. The parameter values used to perform the following simulations are reported in
Table 3.

Parameter Symbol Value
vRES installed capacity ymax 1 MW

BESS energy range
[
xmin, xmax

]
[0.04, 0.2] MWh

BESS charging/discharging power range
[
pc/d,min, pc/d,max

]
[0, 0.2] MW

BESS initial state xi 0.5 · xmax

Calendar aging threshold xcl,thr 0.8 · xmax

BESS charging efficiency ηc 0.95
BESS discharging efficiency ηd

1
0.95

Cost of a complete BESS charge/discharge cycle πB 20 RON/MWh
BESS cycling aging weight wcy 0.79
BESS calendar aging weight wcl 2.75

DA step/Trading problem sampling period ∆t 1h
ST step/Control problem sampling period ∆k 5min

Table 3: Simulation parameters.

Both ΩDA and ΩS T include 10 scenarios of the uncertain parameter realization. The former set
comprises scenarios at a 1-hour resolution, while the latter includes scenarios at a 5-minute reso-
lution. The SDA+SEMPC utilizes these sets of scenarios, whereas the deterministic benchmarks
use a vRES forecast profile obtained by averaging over the set of vRES forecast scenarios. Figure
2 characterizes the vRES forecast and its absolute error.

As described in section 2.2.2, the activation of balancing energy is driven by activation signals
sent by the TSO to the BSP. Figure 3 shows the observed average daily FCR and aFRR activation
signals, namely αFCR, αaFRR,↑ and αaFRR,↓.

Reference is made to the Romanian energy and balancing AS markets; consequently, all prices
are expressed in the Romanian currency (RON). To conduct the simulations outlined in the fol-
lowing section, we consider historical time-series of hourly prices for energy and balancing AS
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(a) DA and ST vRES forecasts as a function of the hour of the day.

(b) Absolute error of DA and ST vRES forecasts as a function of the hour of the day.

Figure 2: Boxplots of the vRES forecast and the absolute error of vRES forecast (absolute value of the difference
between real and forecast generation) as a function of the hour of the day. Both plots encapsulate data from the entire
three-month simulation period. The box represents the interquartile range, the line in the box is the median, and the
whiskers are set at the 5 and 95 percentile of the data range. Values are in MWh/MW since vRES energy is normalized
by the nominal capacity of the hybrid system.

during the three-month simulation period. Table 4 reports the observed average prices, offering a
characterization of the markets under consideration.

Simulations were carried out on a personal computer equipped with an Intel(R) Core(TM) i7-
10850H processor and 16GB of RAM. Python 3.8 was utilized as the programming language for
implementation, and Gurobi served as the solver. The computational performance of the SEMPC
and the proposed benchmarks is documented in Table 5.
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Figure 3: Average hourly forecast and observation of FCR activation signal (αFCR), and average hourly forecast and
observation of net aFRR activation signal (difference between αaFRR,↑ and αaFRR,↓). The forecast of AS activation
signals is determined by calculating the moving average over the preceding 60 minutes of historical data. The figure
illustrates the average values calculated for each hour of the day, considering the entirety of the three-month simulation
period.

Parameter Symbol Value
Energy market

Energy price πE 203.7 RON/MWh/h
Penalty price of negative energy imbalance πE,↑ 615 RON/MWh/h
Penalty price of positive energy imbalance πE,↓ -8.5 RON/MWh/h

Balancing AS market
FCR price πFCR 204 RON/MW/h

Penalty price of FCR deficit π∆R,FCR 1019 RON/MW/h
Upward/Downward aFRR price πaFRR,↑/↓ 65.5 RON/MW/h

Penalty price of upward/downward aFRR deficit π∆R,aFRR,↑/↓ 327.3 RON/MW/h
Price of activated upward aFRR balancing energy πaFRR,bal,↑ 691.8 RON/MWh/h

Price of activated downward aFRR balancing energy πaFRR,bal,↓ 27.7 RON/MWh/h

Table 4: Average prices of the Romanian energy and balancing AS markets.

Strategy MPC iteration time [s]
DRTMPC 1 (0.4)
DEMPC 1 (0.3)
SEMPC 4.3 (1.7)

Table 5: Computational performance. Mean value and standard deviation (in brackets).

4. Results

In the following, a comparison is proposed between our novel scenario-based fully stochastic
architecture for trading and control, namely the SDA+SEMPC architecture, and the deterministic
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benchmark approaches detailed in sections 2.4.1 and 2.4.2, referred to as DDA+DRTMPC and
DDA+DEMPC, respectively. First, the observed ex-post market revenue and BESS degradation
are presented in two different cases: one where the aggregator participates solely in the energy
market and another where participation occurs in both the energy and balancing AS market. Sec-
ond, an investigation into the performance of the economic-oriented control strategy is conducted,
contrasting it with the traditional non-economic-oriented reference-tracking control. Finally, it is
shown that the utilization of a stochastic model to handle uncertainty significantly enhances the
reliability of the decision framework, compared to the proposed benchmark strategies.

4.1. Ex-post evaluation
Table 6 shows a comparison between our SDA+SEMPC and the proposed benchmarks in

terms of the observed ex-post market revenue and BESS degradation, when the aggregator is
assumed to participate only in the energy market. As expected, the economic-oriented architec-

Strategy Market Revenue [RON/MW/h] BESS Degradation [RON/MW/h]
DDA + DRTMPC 24.6 (70) 0.62 (1.6)
DDA + DEMPC 24.8 (69.9) 0.5 (1.3)
SDA + SEMPC 26.3 (66.8) 0.52 (1)

Table 6: Normalized revenue and BESS degradation when participating only in the energy market. Hourly mean value
and standard deviation (in brackets). Values are in RON/MW/h since the energy generation is normalized by both the
nominal capacity of the hybrid system and the number of hours in the simulation period.

tures (DDA+DEMPC and SDA+SEMPC) are able to outperform the traditional DDA+DRTMPC.
Indeed, once the trading decisions are fixed at the end of the DA step, the economic-oriented ar-
chitectures employ the knowledge of market prices to directly optimize the economic objectives
of the problem at ST, while the traditional non-economic DDA+DRTMPC simply tracks the DA
decisions, which may results to be not optimal due to vRES energy forecast errors. Compared
to the DDA+DEMPC architecture, our SDA+SEMPC achieves a 7% increase in the revenue at
the price of a 4% increase in the storage degradation. Moreover, the SDA+SEMPC significantly
reduces the standard deviation of both objectives, compared to the proposed benchmarks. This
shows the superior ability of our fully stochastic approach to hedge against the effect of uncertain
renewable power generation, compared to benchmark strategies employing deterministic models
to handle the uncertainty.

Table 7 shows a comparison between our SDA+SEMPC and the proposed benchmarks, when
participating in the joint energy and balancing AS market. Similarly to the energy only case, the
economic-oriented approaches (DDA+DEMPC and SDA+SEMPC) significantly outperform the
traditional DDA+DRTMPC approach. Our SDA+SEMPC shows a 15% increase in revenue and
a 23% decrease in BESS degradation, compared to the traditional DDA+DRTMPC, as well as a
reduction in the standard deviation. This again confirms the reliability improvement achieved by
our fully stochastic architecture compared to the deterministic benchmarks.

To assess the impact of all sources of uncertainty, consideration is given to the case of unknown
market prices (persistent prices) and the ideal scenario of known prices and known AS activation
signals (perfect prices, perfect AS activation) when employing the DDA+DEMPC benchmark.
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Strategy Market Revenue [RON/MW/h] BESS Degradation [RON/MW/h]
Market modeling: Perfect prices, Persistent AS activation

DDA+DRTMPC 264.8 (99.35) 1.3 (1.4)
DDA+DEMPC 301.43 (86.27) 0.97 (1.4)
SDA+SEMPC 303.76 (83.4) 1 (1.2)

Market modeling: Persistent prices, Persistent AS activation
DDA+DEMPC 222.4 (169.6) 1 (1.4)

Market modeling: Perfect prices, Perfect AS activation
DDA+DEMPC 301.49 (86.15) 1 (1.4)

Table 7: Normalized revenue and BESS degradation when participating in the energy and balancing AS markets.
Hourly mean value and standard deviation (in brackets). Values are in RON/MW/h since the energy generation is
normalized by both the nominal capacity of the hybrid system and the number of hours in the simulation period.

In the former case, a significant reduction in the ex-post market revenue is observed, showing
that price uncertainty can significantly impact the performances of the decision framework. Con-
versely, in the latter case, adding a perfect knowledge of AS activation results in a minor increase
in the market revenue, compared to considering persistent AS activation. In both cases, the ex-post
storage degradation is almost unchanged.

To conclude this analysis, Table 8 presents the ex-post energy imbalances and reserve
deficits. On average, both economic-oriented approaches manage to avoid reserve deficits, in-
dicating higher reliability in providing AS compared to the DDA+DRTMPC benchmark. To

Strategy Imbalances [MWh/MW/h] Deficits [MWh/MW/h]
∆E↑ ∆E↓ ∆RFCR∆t ∆RaFRR,↑∆t ∆RaFRR,↓∆t

DDA + DRTMPC 0.04 (0.1) 0.43 (0.39) 0.003 (0.01) 0.03 (0.08) 0.12 (0.15)
DDA + DEMPC 0.04 (0.11) 0.48 (0.44) 0 (0) 0 (0) 0 (0)
SDA + SEMPC 0.04 (0.1) 0.5 (0.44) 0 (0) 0 (0) 0 (0)

Table 8: Normalized energy imbalances, FCR deficit and aFRR deficits, when participating in the energy and balanc-
ing AS markets. Hourly mean value and standard deviation (in brackets). Values are in MWh/MW/h since imbalances
and deficits are normalized by both the nominal capacity of the hybrid system and the number of hours in the simula-
tion period.

achieve this without significantly increasing the storage degradation, both the DDA+DEMPC and
SDA+SEMPC architectures experience, on average, larger deviations from the energy offer com-
pared to those of DDA+DRTMPC. This is motivated by the observed market prices, which pe-
nalize reserve deficits significantly more than the energy imbalances (see Table 4). High penalty
prices are expected to have a small impact on the traditional DDA+DRTMPC approach, whose
control strategy is insensitive to prices, and a significant impact on the economic-oriented ap-
proaches, whose control strategy is driven by market prices. Indeed, a traditional reference-
tracking approach will tend to distribute the deviations among all services, while an economic-
oriented strategy will tend to concentrate them on the less profitable markets only. Thus, un-
der the observed price conditions, when choosing DDA+DEMPC or SDA+SEMPC instead of
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DDA+DRTMPC, a reduction in the revenue obtained from the energy market is expected, in ex-
change for an increase in the revenue obtained from the balancing AS market and a decrease in
storage degradation.

4.2. Economic-oriented control versus reference-tracking control
In the following, a comparison is made between the economic-oriented control strategy of the

SDA+SEMPC and a traditional reference-tracking control approach, whose control strategy is in-
sensitive to prices. In Figure 4, a comparison is made between the typical BESS state of charge
(SoC) daily variation of the SDA+SEMPC approach and that of the DDA+DRTMPC benchmark.
During this day, there is no activation of FCR and aFRR prices are constant. Thus, the storage

Figure 4: Typical daily variation in the BESS SoC with DDA+DRTMPC (top) and SDA+SEMPC (bottom). P
identifies energy peak price periods, while R+ and R− identify activation of upward and downward aFRR balancing
energy, respectively.

commands are mostly driven by energy prices and aFRR activation signals. The evolution of the
storage SoC can be linked to three main events: periods of energy peak prices, denoted by P, and
the activation times of upward and downward aFRR balancing energy, denoted by R+ and R−,
respectively. Two energy peak price periods occur, first in the morning, then in the late evening.
Since prices are assumed to be known already during the DA step, both strategies are able to iden-
tify these events and discharge the storage to capitalize on this favorable market condition. On the
contrary, when aFRR is activated, the DDA+DRTMPC architecture is not always able to respond
appropriately. This is a consequence of the fact that the DDA+DRTMPC strategy aims to track
the BESS scheduling computed at DA, that may not coincide with the optimal economic schedule
of the ST step. Thus, when a first R+ period occurs (approximately at 4 a.m.) the DDA+DRTMPC
charges the BESS to follow the DA schedule, instead of discharging it to maximize the profit.
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When a second activation of upward aFRR occurs (approximately at 5 p.m.) our SDA+SEMPC
fully discharges the BESS, while the DDA+DRTMPC shows only a very small discharge, result-
ing in a large reserve deficit. Moreover, at R− (approximately at 8 p.m.), when the storage is
expected to charge to compensate for a downward aFRR activation, the traditional strategy shows
only a minor charge, since again the tracked DA BESS schedule is unable to identify this major
event. Finally, Figure 4 clearly shows the drawbacks arising from not including the BESS degra-
dation model in the control strategy. Indeed, compared to our SDA+SEMPC, the DDA+DRTMPC
benchmark shows many more smaller charge/discharge cycles, resulting in higher cycling aging,
and it is kept above xcl,thr for long periods, resulting in higher calendar aging as well.

For a more comprehensive understanding of the advantages of an economically oriented con-
trol, Figure 5 illustrates an example of BESS SoC variations with SDA+SEMPC when delivering
both energy and FCR. Throughout this timeframe, the hybrid system abstains from contributing
to aFRR. When the energy price is higher than the FCR price (at 10 a.m. and 11 a.m.), the ag-
gregator exclusively offers energy. Conversely, when the FCR price exceeds the energy price, the
aggregator solely engages in providing FCR. At both 11 a.m. and 12 a.m., unforeseen deficiencies
in vRES generation occur. As the BESS lacks sufficient capacity to cover shortages in both hours,
a decision is required on how to distribute deviations between the two markets. Given that the
proposed controller incorporates knowledge of market prices, the BESS is operated to minimize
the FCR deficit at 12 a.m., even at the expense of incurring penalties for an energy imbalance (at
11 a.m.). In contrast, a conventional reference-tracking control strategy would evenly distribute
deviations between the two markets, resulting in a less profitable solution compared to that of the
SDA+SEMPC, as confirmed by the results shown in Table 7.

(a) Hourly prices of energy market and balancing AS market. (b) BESS SoC, offers, vRES energy and hybrid system output.

Figure 5: Example of BESS SoC variations with SDA+SEMPC when providing energy and FCR. For each hour, the
figure provides market prices, the initial BESS SoC, the energy offer, activated FCR balancing energy, and the total
output of the hybrid system. Energy values are normalized by the nominal capacity of the hybrid system.

4.3. Stochastic model versus deterministic model
As shown in Table 7, both of the DDA+DEMPC and SDA+SEMPC show similar ex-post

results. Nevertheless, our stochastic approach improves reliability when forecast errors occur.
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In Figure 6, an example is presented wherein our SDA+SEMPC is shown to be more reliable
than the DDA+DEMPC benchmark. As depicted in Figure 6a, utilizing a stochastic model in the
SDA+SEMPC leads to a more conservative energy offer compared to that of the DDA+DEMPC.
In real-time, the aggregator faces a critical period (red area in Figure 6) in which the vRES power
generation is significantly lower than what was predicted at DA (see Figure 6b). In this critical
period, our SDA+SEMPC shows a superior ability to hedge against the effect of uncertainty, com-
pared to DDA+DEMPC. Indeed, while the conservative behavior of our SDA+SEMPC results in a
small energy imbalance, the aggressive bidding strategy of DDA+DEMPC results in a much more
imbalanced position (see Figure 6c). This in turns results in a large drop in the ex-post market rev-
enue obtained via DDA+DEMPC, compared to almost no effect observed when our SDA+SEMPC
is employed (see Figure 6d).

(a) Normalized energy offer in the DAM. (b) Normalized DA vRES energy forecast and observation.

(c) Normalized ex-post energy imbalance. (d) Normalized ex-post market revenue.

Figure 6: Normalized energy offer in the DAM, ex-post energy imbalance and ex-post revenue of our SDA+SEMPC,
compared to those of the DDA+DEMPC benchmark, when significant DA vRES energy forecast errors occur. Values
are normalized by the nominal capacity of the hybrid system.

To generalize the conclusions drawn from the previous example, an analysis is conducted
on the impact of vRES energy forecast errors on the observed ex-post DA objective function
value, i.e., the value of J DA once the uncertainty is realized. Define the ST vRES energy forecast
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error at time t as the difference between the mean ST vRES energy forecast yS T
t,ω and the observed

realization of the uncertainty yt, i.e., yt −
1
|ΩS T |

∑
ω∈ΩS T yS T

t,ω .
Figure 7 shows the mean and standard deviation of the normalized ex-post DA objective func-

tion values obtained with SDA+SEMPC and DDA+DEMPC, as a function of the ST vRES energy
forecast error. Our SDA+SEMPC lowers both the mean and standard deviation of J DA compared
to DDA+DEMPC, achieving up to 9% decrease in the mean value and up to 13% decrease in the
standard deviation. Thus, our SDA+SEMPC is shown to significantly reduce the sensitivity to
vRES energy forecast errors, compared to a decision framework employing deterministic models
to handle the uncertainty.

(a) Normalized ex-post mean of J DA. (b) Normalized ex-post standard deviation of J DA.

Figure 7: Impact of the ST vRES energy forecast error on the mean and standard deviation of the normalized ex-post
DA objective function value, i.e., ex-post value of J DA. Values are in RON/MW/h since J DA is normalized by the
nominal capacity of the hybrid system.

5. Discussion and conclusion

In this work, the trading and control problem of a hybrid variable vRES-BESS system partici-
pating in multiple electricity markets is addressed. First, the trading problem is addressed during
the DA step, when the aggregator submits bids to the energy and balancing AS markets. Subse-
quently, the control problem is addressed during the ST step, where the hybrid system is controlled
in near real-time to optimize the economic objectives of the aggregator.

A fully stochastic two-level architecture is proposed, incorporating stochastic programming to
address the trading problem and SEMPC to handle the control problem. Subsequently, a compar-
ison is conducted between the novel SDA+SEMPC architecture and two benchmarks employing
a deterministic model to handle the uncertainty, namely DDA+DRTMPC and DDA+DEMPC.
These strategies are evaluated ex-post on a real case study, using historical time series of prices
and renewable power generation. The main conclusions can be summarized as follows:

1. In contrast to a traditional RTMPC approach, SEMPC directly considers the economic ob-
jectives of the aggregator in the optimization-based control strategy. This leads to higher
ex-post market revenue and lower ex-post storage degradation. Under the observed price
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conditions, our SDA+SEMPC successfully tracks the activation of AS without deficits in
reserve provision, albeit with a modest increase in imbalances on the energy market.

2. Compared to the proposed benchmarks, which utilize deterministic models to handle uncer-
tainty, our SDA+SEMPC exhibits lower sensitivity to vRES energy forecast errors.

The assumption of known prices is unlikely to occur in real markets. However, this modeling
choice allows for a direct evaluation of the vRES energy forecast errors impact on the observed
results, which is among the core objectives of this study. Moreover, our SDA+SEMPC can be
easily extended to include also price forecast scenarios.

This work opens the way to further investigations in many directions, such as the provision of
additional AS (e.g., voltage control), or participation in additional markets. It could be interesting
to evaluate the benefits of our approach when additional sources of flexibility (e.g., controllable
loads) are considered. Such an integration of additional flexibility sources could result in a very
large portfolio. In this case, distributed optimization techniques could be employed to limit the
computational burden.
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[18] A. González-Garrido, A. Saez-de Ibarra, H. Gaztañaga, A. Milo, P. Eguia, Annual optimized bidding and oper-
ation strategy in energy and secondary reserve markets for solar plants with storage systems, IEEE Transactions
on Power Systems 34 (6) (2019) 5115–5124. doi:10.1109/TPWRS.2018.2869626.

[19] ENTSO-E (2018), An overview of the European balancing market and electricity balancing guideline,
https://www.entsoe.eu/news/2018/12/12/electricity-balancing-in-europe-entso-e-

releases-an-overview-of-the-european-electricity-balancing-market-and-guideline/,
(Last accessed April 2023) (2018).

[20] E. F. Camacho, C. B. Alba, Model predictive control, Springer science & business media, 2013.
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