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Abstract—High temporal resolution intra-day and day-ahead
photovoltaic (PV) power forecasts are important to maximize
the value of PV systems because they enable stakeholders to
participate in both the energy and ancillary services markets.
Whereas most day-ahead electricity markets feature an hourly
temporal resolution, intra-day markets may require forecasts at
5-minute resolution. In addition, battery integration can improve
power system management in isolated grids with high PV power
penetration, but battery control requires high temporal resolution
forecasts. We propose an efficient method based on pattern
matching to generate multivariate probabilistic forecasts, approx-
imated by trajectories, at high temporal resolution and without
the need to separately forecast the marginals and estimate the
covariance matrix. We compare the proposed method against
quantile regression forests in combination with copula theory and
show that our method reduces the forecast time by approximately
98% and simplifies the modeling chain while incurring a minor
performance penalty.

Index Terms—Scenarios, operational forecasting, renewable
energy sources, photovoltaic generation, virtual power plant

I. INTRODUCTION

Murphy divides the “nature of goodness in weather fore-
casting” into three aspects: (i) consistency, (ii) quality and (iii)
value [1]. In itself, a forecast does not have value until it is
used in a decision-making process [1]. In order to maximize
the monetary value of a renewable energy source (RES) fore-
cast, it is important that the system owner or system aggregator
be able to participate in both the energy and ancillary service
markets on the intra-day and day-ahead levels. Electricity
markets feature various requirements for parties to place bids;
of particular interest to this study are the requirements on
temporal resolution and forecast horizon. For instance, the
California Independent System Operator (CAISO) requires,
every 5 minutes, forecasts with a lead time of 7.5 minutes,
a temporal resolution of 5 minutes and a forecast horizon of
65 minutes for their real-time economic dispatch [2]. For its
short-term unit commitment, CAISO requires forecasts with a
lead time of 75 minutes, a temporal resolution of 15 minutes
and a forecast horizon of 5 hours, updated every hour [2]. For
its day-ahead market, CAISO requires hourly forecasts with
a lead time of 14 hours and a forecast horizon of 24 hours
[2]. Typically, research implementing RES forecasts in power
system applications focuses on one of the aforementioned

Parts of this research were carried in the frame of the Smart4RES project
(No. 864337), supported by the Horizon 2020 Framework Program.

markets. For instance, [3] estimate the optimal automatic
frequency restoration reserve (aFRR) offer that RESs can
provide on the day-ahead market. Similarly, [4] focus on offers
of aFRR and energy on the day-ahead market. In contrast, [5]
concentrate on CAISO’s short-term unit commitment market
described above.

The value of a forecast also relates to the continuity of
balance between supply and demand. Especially in isolated
grids featuring high RES penetration, the lack of synchronous
machines introduces challenges in power system management
[6]. In such a scenario, high temporal resolution RES forecasts
are important to inform the grid operator on future variability,
as well as to enable battery control, which in turn allows
for simultaneous provision of numerous services (e.g., peak
shaving or frequency containment reserve) [7]. In the context
of battery control, [8] generate 15-min resolution forecasts up
to 24 h ahead that are updated every 15 mins and subsequently
fed into a model predictive control algorithm.

Besides value, Murphy defines consistency as follows: “a
forecast should always correspond to a forecaster’s best judg-
ment” [1]. Since the forecaster faces several uncertainties , his
or her judgment is inherently uncertain and the forecast should
reflect that [1]. Moreover, sequential optimization problems,
e.g., model predictive control, require trajectory forecasts
that account for dependencies in time and space1 [9]. The
combination of a multitude of trajectory forecasts represents
an approximation of the multivariate probabilistic forecast and
can readily be employed in Monte-Carlo-type decision-making
processes [9].

The de facto method to issue trajectory forecasts is to
forecast the marginal cumulative distribution functions (CDFs)
over a forecast horizon and compute the probability integral
transform (PIT) variables to estimate a covariance matrix that
describes the dependence structure, e.g., [3], [4], [8], [9].
However, as both the temporal resolution and the forecast
horizon increase, the number of required marginal CDFs
increases rapidly, as does the computational burden. For in-
stance, a 48 h ahead forecast at a 5 min resolution requires
576 marginal CDFs, after which the covariance matrix needs
to be estimated. To alleviate the computational burden and to
simplify the model chain, we propose to generate trajectory

1Note that the spatial dependency is disregarded in the present study
because it focuses on aggregated power production.



forecasts using pattern matching in order to downscale hourly
numerical weather prediction (NWP) ensemble forecasts to
power forecasts at a 5 min resolution, similar to [5]. However,
unlike [5]—who use Mueen’s Algorithm for Similarity Search
[10]—we employ k-dimensional tree (kd-tree, [11]) to allow
for multivariate input features as recommended in [12]. This
approach constitutes a seamless method for the generation
of RES trajectories at intraday and day-ahead horizons, in
contrast with the seamless RES forecasting method of [13]
that generates probabilistic density forecasts without temporal
correlation.

The contributions of this paper can be summed up as
follows:

• We use a pattern matching algorithm to downscale NWP
ensemble forecasts to high temporal resolution multivari-
ate probabilistic PV power forecasts, which has not been
attempted before as far as we are aware.

• The proposed method significantly reduces the compu-
tational burden and greatly simplifies the forecast model
chain.

• The use of kd-tree means that the proposed method can
be applied to any RES power forecast model chain using
any number of input features.

The remainder of this paper is organized as follows: Section II
provides an overview of the state-of-the-art and describes
the data, methods and scoring rules. Section III presents and
discusses the results while Section IV concludes our study.

II. BACKGROUND AND METHODOLOGY

A. Problem formulation

In this study, we concern ourselves with temporal trajectory
forecasts only and what follows is a description of how such
trajectories are often generated. We follow [14] to estimate
the covariance matrix that describes the dependencies across
time. This method requires that the marginal predictive CDFs
be calibrated, which is to say that the observations Y are
statistically similar to samples from the CDFs F , i.e., Y ∼ F .

Mathematically, a series of forecasts with horizon k is said
to be calibrated when Pk is uniformly distributed, i.e., Pk ∼
U [0, 1], where pk,i can be computed using the probability
integral transform (PIT)

pk,i = Fi+k|i(yi+k|i), ∀i (1)

where i is the index of the training set that runs from 1, . . . , N .
Likewise, t is the index of the testing set that runs from
1, . . . , T .

Subsequently, it is possible to transform Pk to a standard
normal random variable Zk ∼ N (0, 1) using the inverse
Gaussian CDF

zk,i = Φ−1 (pk,i) . ∀i (2)

In case of k = 1, . . . ,K forecast horizons, the random
vector Z = (Z1, . . . , ZK)

⊤ follows a multivariate normal
distribution, i.e., Z ∼ N (µ0,Σ) where µ0 is a vector of zeros
and Σ a covariance matrix that describes the dependencies

between forecast horizons with ones on its diagonal [14]. An
unbiased estimate of Σ is [14]:

Σ =
1

N − 1

N∑
i=1

ZiZ
⊤
i . (3)

The trajectory forecasts can then be generated by sampling
S K-dimensional vectors using a multivariate normal random
number generator with µ0 and Σ. Subsequently, the sampled
vectors can be transformed back to the uniform variable Pk

using the standard normal CDF Φ:

ps,k = Φ(zs,k) . ∀s, k (4)

Once the marginal inverse predictive CDFs F−1
t+k|t have been

generated on the testing set, the autocorrelated standard uni-
form samples ps,k can be used to generate trajectory forecasts
fs,t+k|t:

fs,t+k|t = F−1
t+k|t (ps,k) . ∀s, k (5)

The above-described method becomes computationally very
demanding when the temporal resolution and the forecast
horizon increase. For instance, a forecast horizon of 48 h at a
temporal resolution of 5 min requires 576 marginal predictive
CDFs, whereas a forecast horizon of 24 h at a temporal
resolution of 1 min requires 1,440 marginal predictive CDFs.
Clearly, an alternative method that performs similarly but
significantly faster is preferred, which is what we describe
in the next section.

B. Pattern matching
The pattern matching model (PMM) proposed here is con-

ceptually straightforward and is based on the analog ensemble
[15]. However, rather than searching for analogs for a single
forecast horizon to approximate Ft+k|t, we aim to search for S
analog trajectories to approximate the multivariate predictive
CDF F t. In addition, we intend to leverage the computational
efficiency of kd-tree, which can improve the computational
performance by three orders of magnitude compared to brute-
force search [16]. To that end, we modify the original simi-
larity metric in [15] such that X t contains the query NWP
forecast issued at testing time t organized as one vector.
Similarly, Ai is a single vector containing the analog NWP
forecast issued at training time i. The similarity metric accepts
any number of variables and is defined as [12]

d(X t,Ai) =

√√√√ J∑
j=1

wj

(
x
(j)
t − x

(j)
i

)2

, (6)

where for simplicity J is the total dimension and wj = 1 ∀ j.
The result is the approximate predictive distribution F t

comprising detrended 5-min PV power measurements ob-
served from time i+1 up to time i+K, such that F t ∈ RS×K

and the corresponding observations are yt ∈ RK . In addition,
we compute the clear-sky global horizontal irradiance (GHI)
vector gt ∈ RK with which F t is multiplied to attain PV
power measurements, see Section II-D. In order to value each
feature similarly, Ai is centered and scaled and these factors
are used to center and scale X i.
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Fig. 1. Map of the area of interest where the red points represent the grid
points at which we have collected NWP forecasts.

C. Benchmarks

1) Quantile regression forests (QRF): In random forests,
the prediction is the weighted average of the observed response
variables. In contrast, in QRF, the output is the weighted
distribution of the observed response variables [17]. During
training, each tree is grown on a random sample of the
training data, thus reducing the correlation between the trees.
To further decrease this correlation, a random subset of the
features is selected at each candidate split [17]. Note that
QRF is combined with the Gaussian copula described above
to generate state-of-the-art trajectory forecasts.

2) Multivariate probabilistic ensemble: The second bench-
mark is the naive multivariate probabilistic ensemble (MuPEn)
of which the marginal predictive CDFs are identical to those
of the complete-history persistence ensemble [18]. It can be
constructed by gathering all N K-length vectors from the his-
torical observations that start at the same time (“HH:MM”) as
the current forecast issue time t. The result is an N×K matrix
from which we randomly sample—without replacement—S
trajectories such that the result is a multivariate predictive
distribution F t ∈ RS×K .

D. Data

In this study we use two data sources, the first of which is
the aggregated PV power measurements at a 1-min resolution
from Rhodes, Greece, which we average to a 5-min resolution.
The only available metadata is the installed capacity, which is
18,164 kW. The PV power measurements are subsequently
detrended using clear-sky GHI generated by the McClear
model [19] for a tilt of 25° and azimuth of 180° due south.
These values constitute the optimal orientation on Rhodes
and we assume that a large share of the PV systems are
installed with this orientation [20]. However, we notice that
the tails of the PV power measurements at sunrise and sunset
do not coincide with the clear-sky GHI, which is likely caused
by a number of systems orientated towards the east and

west, respectively. The detrended PV power measurements
are therefore set to 0 when the zenith angle is larger than
90° or when the clear-sky GHI is lower than 1 W/m2 as
these values would otherwise be significantly higher than can
be reasonably assumed. The PV power is normalized with
the installed capacity so that the errors can be presented as
dimensionless numbers or as percentages.

The second data source is the hourly NWP forecasts issued
by the European Centre for Medium-Range Weather Forecasts
(ECMWF), issued daily at 00:00 UTC. Figure 1 presents the
grid points in red at which we have collected NWP forecasts,
i.e., 66 grid points in total to capture the large scale weather
pattern. The variables used in this study are surface solar
downward radiation (SSRD) converted to GHI and then clear-
sky index, total cloud cover (TCC), 10 meter u- and v-wind
components (U10 and V10) and 2-meter temperature (T2M).
In order to have a sense of the variability present in the
forecasts, we use the ensemble prediction system featuring 50
ensemble members [21]. Given the 48 h forecast horizon of
interest, query X t has a length of 48×66×50×5 = 792, 000.
To reduce the vector length, we summarize the grid points and
ensemble members in two ways: (i) the mean and standard de-
viation of the ensemble members at each grid point, resulting
in 31,680 features (referred to as case study MS); and (ii) the
0.01, 0.02, . . . , 0.99 quantiles over all ensemble members and
grid points, resulting in 23,760 features (referred to as case
study QS).

Given the relatively short length of the data set (1 year),
we test on a monthly basis while the remaining months serve
as training data. For instance, when forecasting January, we
use February up to and including December as training data.
In addition, it is important to note that forecasts are issued
on a rolling basis with hourly intervals. This means there are
approximately 700 forecasts per month, although this can be
fewer in the case where the PMM is unable to find sufficient
quality analogs. Finally, we train 48 QRF models instead of
576 and use each model to forecast the 12 horizons within the
hour to ease the computational burden.

E. Forecast verification

Since consistency is one of the three aspects of a “good”
forecast, it is encouraged in expectation by proper scoring rules
[1]. Such scoring rules can be used to evaluate the quality
of forecasts, which is Murphy’s second aspect [1]. In this
study, we use the continuous ranked probability score (CRPS)
to evaluate the sharpness and calibration of the marginal
predictive CDFs Ft+k|t, which is defined as [22]

CRPS(Ft+k|t, yt+k|t) =

∫ α

0

(
Ft+k|t(x)− 1{yt+k|t ≤ x}

)2
dx,

(7)

where 1 is the indicator function and α is the maximum
observed power. Subsequently, we average the CRPS over all
forecast valid times where the zenith angle is smaller than 85°.



To evaluate the multivariate predictive CDFs F t, we use
the energy score (ES) and variogram score (VS). ES is a
generalization of CRPS and can be defined as [22]

ES (F t,yt) = EF ∥Xt − yt∥ −
1

2
EF ∥Xt −X ′

t∥, (8)

where Xt and X ′
t are independent random vectors sampled

from F t and ∥ · ∥ represents the Euclidean norm. A disadvan-
tage of ES is that it is unable to discriminate between poorly or
correctly specified dependence structures [23]. Therefore, we
include VS to compare the quality of the dependence structure
specification, which is defined as [24]:

VSp (F t,yt) =

K∑
i,j=1

wij (|yi − yj |p − EF |xi − xj |p)2 , (9)

where xi and xj are components i and j of random
vector Xt, which is distributed according to F t. In this
study, F t is approximated by S K-dimensional trajectories(
x(1) x(2) · · · x(S)

)⊤
and EF |xi − xj |p can be approxi-

mated by [24]:

EF |xi − xj |p ≈ 1

S

S∑
s=1

|x(s)
i − x

(s)
j |p, i, j = 1, . . . ,K,

(10)

where x
(s)
i and x

(s)
i are elements i and j of the sth trajectory

forecast. Although weights wij can be used to add or reduce
importance between certain forecast horizons, we use identity
weights and set p = 0.5 as recommended in [24]. Finally,
CRPS, ES and VS are averaged over the testing samples after
which skill scores relative to MuPEn are computed.

III. RESULTS AND DISCUSSION

A. Experimental setup

Preliminary experiments reveal that the zenith angle along
the entire forecast horizon provides valuable information to
accurately determine sunrise and sunset timing. Similarly,
U10, V10 and T2M do not contribute positively to the forecast
accuracy and are therefore omitted for the PMM. In addition,
we find that a larger number of trajectories S positively affects
VS, likely because it is more challenging to approximate the
prevailing dependencies with fewer trajectories. We therefore
set S = 50 in our experiments. Furthermore, recall that the
forecast horizon is 48 h and that the temporal resolution is 5
min, which means that K = 576. Finally, recall that the two
ways of representing the spatio-temporal information from the
NWP forecasts are abbreviated by MS and QS, resulting in
four case studies (e.g., PMM+MS or QRF+QS).

B. Univariate forecasts

Figure 2 presents histograms of the PIT variables computed
over the testing set using (1). In addition, Fig. 3 presents
the CRPS in percent of the nominal capacity as a function
of the forecast horizon. The mean and standard deviations
are computed across the 12 testing months, as described
above. Several interesting observations can be made from these

MS QS
P

M
M

Q
R

F

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

1

2

3

0

1

2

3

Probability integral transform

R
el

at
iv

e 
co

un
t

Fig. 2. Histograms of the marginal PIT variables combined over all forecast
horizons and testing instances where the zenith angle is smaller than 85°.

figures. First, Fig. 2 shows that the PMM+MS and QRF+QS
forecasts tend to be underdispersed. In contrast, forecasts
generated by PMM+QS and QRF+MS are calibrated better
in the main distribution although the lowest quantile deviates
in case of the former and the most extreme quantiles deviate
in case of the latter.

Second, Fig. 3 shows that PMM+MS does not perform well
and that is mainly caused by poor forecasts in December (not
shown here). The poor performance during December is likely
due to the inability of the PMM to find high quality analogs,
although PMM+QS did not suffer from this problem. The poor
performance in December could therefore be caused by the
way the NWP ensemble information is summarized.

Third, CRPS of PMM+QS is constant over the forecast
horizon, whereas CRPS of QRF+MS and QRF+QS increases
sharply over the first hours and then stabilizes. In control
problems, stability in the forecast error variance over the entire
forecast horizon is preferable because it reduces the bullwhip
effect [5]. For instance, underdispersive forecasts could result
in an optimistic strategy by the control algorithm that could
lead to the overutilization of available storage to correct for
the forecast errors.

Finally, QRF+MS performs best in terms of CRPS. How-
ever, it is likely that more data would favor the PMM as it
requires a long history to find quality analogs. In contrast, QRF
has been proven to be robust against relatively small data sets.
In terms of computation time, it is important to note that the
PMM is approximately 98% faster than QRF.

C. Multivariate forecasts

Figure 4 presents ES and VS as monthly averages in addi-
tion to the total averaged scores. The figure clearly shows that
PMM+MS performs poorly in December. Besides December,
the figure shows that QRF+MS performs substantially better
in February than the other models. Overall, QRF+MS outper-
forms the others but given the limited number of forecast-
verification pairs—recall that there are about 700 forecast-
verification pairs per month—it is worthwhile to test the
significance of the difference between the forecasts.
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In hypothesis testing it is common to set the null hypothesis
(H0) such that there is no difference between the forecasts
whereas the alternative hypothesis (Ha) is that there is a
difference. The Diebold-Mariano (DM) test is commonly used
to test H0. The test requires computation of the forecast error
loss differential dt = ℓ(F 1,t,yt) − ℓ(F 2,t,yt). However,
the DM test is designed specifically for a forecast horizon
and consequently, we are uncertain whether it applies here.
Furthermore, the paired t-test is not recommended when tem-
poral dependence and contemporaneous correlation are present
[25]. Instead, [25] recommend the Hering-Genton (HG) test
and circular block bootstrapping. We choose to use block
bootstrapping because the HG test, like the DM test, assumes
that the series d is covariance stationary, whereas circular
block bootstrapping is relevant for small testing sets [25]. The
bootstrap is repeated 10,000 times with a block length of

√
T

and the results are presented in Table I as the mean plus-
minus the standard deviation and the confidence interval (CI,
significance level α = 5%) in parentheses. As the table shows,
0 always lies within the CI and therefore we cannot reject H0.

Finally, we report the skill scores relative to MuPEn in
Table II, computed as 1 − Lmodel/LMuPEn and where L is

the loss averaged over the testing set. Evidently, QRF+MS
performs best on all scores. However, given that the marginal
predictive CDFs of PMM+QS are calibrated slightly better,
that no learning step but only proper data organization is re-
quired, and that computation time is reduced by approximately
98%, we argue that the PMM is at the very least a highly
efficient and interpretable asset in a forecaster’s toolbox.

IV. CONCLUSIONS

We proposed a forecast model based on a pattern matching
model (PMM) and used it to generate multivariate probabilistic
forecasts of aggregated photovoltaic (PV) power production,
approximated by trajectories. We compared the PMM against
the de facto method of generating trajectories, namely by sepa-
rately forecasting the marginal predictive distributions and es-
timating the covariance matrix that describes the dependencies
between forecast horizons. Quantile regression forests (QRF)
were used to forecast the marginals and mostly outperformed
the PMM, although block bootstrapping indicated that we
could not reject the null hypothesis of an accuracy difference
between the forecasts with α = 5%. We argue that because
of its simplicity and efficiency, PMM can be a valuable asset



TABLE I
BLOCK BOOTSTRAPPED LOSS DIFFERENTIAL PRESENTED AS µ± σ (2.5%− 97.5%).

ES

PMM+QS QRF+QS PMM+MS QRF+MS
PMM+QS 0±0 (0—0) 0.06±0.31 (-0.5—0.83) -0.08±0.21 (-0.67—0.31) 0.13±0.32 (-0.4—0.82)
QRF+QS (-) 0±0 (0—0) -0.11±0.29 (-0.78—0.46) 0.11±0.22 (-0.2—0.68)
PMM+MS (-) (-) 0±0 (0—0) 0.15±0.27 (-0.31—0.74)
QRF+MS (-) (-) (-) 0±0 (0—0)

VS

PMM+QS QRF+QS PMM+MS QRF+MS
PMM+QS 0±0 (0—0) 397.02±1116.4 (-1557.52—3187.29) -246.11±794.92 (-1996.46—1632.91) 722.43±1199.35 (-977.84—3611.67)
QRF+QS (-) 0±0 (0—0) -533.09±1108.93 (-3073.65—1598.25) 534.45±1119.49 (-657.42—4011.29)
PMM+MS (-) (-) 0±0 (0—0) 776.92±1091.41 (-770.52—3274.18)
QRF+MS (-) (-) (-) 0±0 (0—0)

TABLE II
CRPS, ES AND VS SKILL SCORES, RELATIVE TO MUPEN. NOTE THAT WE

COMPUTE THE MEAN AND STANDARD DEVIATION (µ± σ) OVER ALL
FORECAST HORIZONS FOR CRPS.

Model CRPS ES VS
PMM+MS 0.188 ± 0.250 0.237 0.384
PMM+QS 0.241 ± 0.234 0.272 0.398
QRF+QS 0.289 ± 0.221 0.308 0.452
QRF+MS 0.348 ± 0.203 0.361 0.536

in a forecaster’s toolbox. Lastly, it is important to highlight
that the limited amount of available data may have had a
negative effect on the quality of the analogs found by the
PMM, whereas QRF is known to be robust against small
sample sizes. Furthermore, extensive feature selection could
improve the PMM’s performance further. These aspects will
be investigated in future work.
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