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Abstract—Spatially aggregating renewable power plants is ben-
eficial when participating in electricity markets. In this context,
a substantial number of features is available from various data
sources. In machine learning, feature selection is common so as to
relieve the curse of dimensionality and avoid overfitting. However,
there is no guarantee that the selected features result in reliable
forecasts and post-processing can therefore be valuable. In this
study, we combine model agnostic feature selection with linear
and nonlinear probabilistic forecast combination techniques.
Moreover, the filters automatically compute the weights for our
analog ensemble (AnEn) forecast model. We verify our model
chain by generating intra-day forecasts of the aggregated output
of 20 photovoltaic power plants using 831 input features in total.
We show that the collection of filters selects a heterogeneous
feature set but that each individual AnEn-filter combination
results in underdispersed forecasts, which is efficiently remedied
by the forecast combination techniques.

Index  Terms—Filtering, forecast combination, high-
dimensional data, virtual power plant, probabilistic forecasts

I. INTRODUCTION

The power generated by renewable energy sources (RESs)
such as photovoltaic (PV) systems or wind turbines is highly
variable and it is well-established that probabilistic forecasts
contribute to optimising power system management when
used in functions like unit commitment [1]. Unit commitment
is usually performed on the day-ahead market (DAM) and
real-time market (RTM), where penalties are incurred based
on the forecast errors. Consequently, the accuracy of the
probabilistic forecasts is important, which is challenged by the
aforementioned variability. The variability can be relieved by
aggregating spatially distributed power plants. The resulting
virtual power plant (VPP) outputs a smoother power profile
caused by the reduced spatial correlation. However, forecasting
the VPP output requires more input features as the VPP
likely covers large geographical areas reflected by multiple
grid points of Numerical Weather Prediction (NWP) models
or satellite images.

There are at least two challenges that arise when including
vastly more input features: (i) features may be multicollinear;
and (ii) the curse of dimensionality. In other words, it is
important to select important features and discard redundant
ones in order to retain accuracy and reduce time complexity.

The present research was carried as part of the Smart4RES Project
(European Union’s Horizon 2020, No. 864337).

Often, feature selection is classified into three categories,
namely: (i) filtering methods; (ii) wrapper methods; and (iii)
embedded methods [2]. Filtering methods rank features based
on a score, e.g., Pearson correlation, to subset the features,
and is therefore model agnostic. Recently, an ultra-fast algo-
rithm for similarity search was proposed to preselect relevant
features [3]. Wrapper methods aim to find the optimal feature
subset by subsetting the feature set, learning a predictor on this
subset and comparing its performance to the same predictor on
other feature subsets. Wrapper methods are not common due
to their computational cost although a brute-force attempt to
find a relevant subset of endogenous variables was made in [4].
Finally, the embedded methods embed the feature selection
method, such as Lasso regression [5]. A multitude of studies in
solar forecasting have applied embedded methods, e.g, Lasso
combined with quantile regression [6].

As the penetration of RESs increases, it becomes more perti-
nent to aggregate these assets as VPPs in order to participate—
with high reliability—in market bidding and power system
regulation. For such large portfolio end-users dispose often
multiple forecasts originating from different service providers
or different NWPs etc. In this paper we combine feature
selection methods with forecast combination techniques to
derive a model that outperforms the state of the art. It is
well-known that forecast combination can reduce modeling
uncertainty although it is not commonly researched in solar
forecasting [7]. Probabilistic forecasts can be combined using
heuristic, linear and nonlinear combination methods; see [7]
for an overview. For instance, the opinion linear pool (OLP)
is a heuristic method that linearly combines predictive dis-
tributions by assigning equal weights to each expert. In solar
forecasting, minimization of the continuous ranked probability
score (CRPS) has been used to learn the weights to linearly
combine predictive distributions in a traditional linear pool
(TLP) [8]. Thorey et al. [9] developed an online optimization
of the CRPS to linearly combine forecasts, which improved
the calibration although underdispersion remained. Besides
TLP, nonlinear combination methods have been proposed, i.e.,
the spread-adjust linear pool (SLP) and the beta-transformed
linear pool (BLP) [10]. Mdller and Grof3 used SLP to calibrate
the ensemble prediction system of the European Center for
Medium-range Weather Forecasts (ECMWF) [11], while BLP
was used to combine two parametric predictive densities from
regression models based solely on lagged observations [12].
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Fig. 1. Overview of the satellite and NWP grid points and the PV systems.

Consequently, there is need for additional study into nonlinear
combination methods applied to solar forecasting.

In this study, we focus on operational forecasts of the
intra-day aggregated output of a VPP that consists of 20
PV plants with a combined nominal capacity of 4005 kW,
located in mid-west France. The total number of features is
831: 289 satellite pixels and 108 NWP grid points with 5
variables and 2 astronomical variables (cf Fig. 1). We generate
the probabilistic forecasts with an Analog Ensemble (AnEn),
which is an established forecasting method that compares the
current weather state to historical weather states and outputs
the observed power generation accompanying the most similar
historical states as an ensemble forecast [13]. We use 6
filtering methods based on mutual information to select the
input features for our AnEn model and automatically compute
their weights. Since a recent benchmark study of 22 filter
methods concludes that “there is no subset of filter methods
that outperforms all other filter methods” [14], we combine
the predictive distributions using 1 linear and 2 nonlinear
combination methods. The contributions of this study can
therefore be summarized as follows: (i) we employ 6 filtering
methods based on mutual information to account for the fact
that no filter works best in all circumstances [14] and to
account for the nonlinearity between PV power generation and
the features; (ii) we apply linear and nonlinear probabilistic
combination methods to minimize model uncertainty, which is
an underserved area of research in solar forecasting [7]; and
(iii) these methods combined generalize existing probabilistic
forecasting approaches by automating filtering and model
combination.

The remainder of this paper is organized as follows. Sec-
tion II details the methods used in this study. Then, Section III
presents the results and Section IV concludes this paper.

II. METHODOLOGY

This section describes the methodology of the paper and
starts with describing the filtering methods and the forecast
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Fig. 2. A flowchart of the pre-process, forecast, and post-process steps.

combination methods. Then, the forecast evaluation tools used
in this study are described. Figure 2 presents an overview of
the methodology.

A. Filtering

Filtering is a category of feature selection in which a score
is computed to rank the importance of features. The goal
is to find a feature subset S from the complete feature set
X that represents the target variable Y with high accuracy
and minimal residual uncertainty [14]. In this study, the
filtering methods are based on mutual information, which
originates from information theory and describes the amount
of information that can be known about random variable Y
when knowing random variable X [14].

For the remainder, it is helpful to introduce the entropy of a
discretized random variable Y with marginal probability mass
function p [14]:

H(Y) ==Y py)log, (p(y)), 0

which measures the uncertainty of Y. In addition, the condi-
tional entropy of Y given X is defined as [14]:

H(Y|X) =) p(x) (—Zp(ylx)logz (p(ylx))> )

The mutual information between Y and X is then defined
as I(Y;X) = H(Y) — H(Y|X) and describes how the
uncertainty of Y is lowered by knowing X [14]. In this
study, we use the praznik package [15] in the statistical
software R. The praznik toolbox discretizes the range of
the continuous features into max{min{%, 10}, 2} intervals that
are equally spaced, where n is the number of training samples
[15].



As mentioned above, we use 6 different filtering methods
based on mutual information. The first filter, mutual informa-
tion maximization (MIM), computes the mutual information
between feature k and target variable Y as:

S (X ®) = 1(v; xR, 3)

and returns a predetermined number of features that maximizes
J [15].

The remaining filters greedily add a feature to S that at each
iteration maximizes the score J(X(*)). The first of those is
minimal conditional mutual information (CMIM), which uses
the score

Jovma (X)) = mi“{I(Y;XW)? min I(Y;X<’“>|XU)>},
XU es
“

where I(Y; X®|X0) = H(Y|XU) - HY|X®, X))
[15]. Similar to MI, CMIM describes how knowing X (*)
lowers the uncertainty of Y~ given that we already know X ().

The third filter is conditional mutual information (CMI),
which ranks features according to the score:

Jo(X®) = 1(v; XWS), (5)

and essentially evaluates the added value of feature X (%) given
the already selected features.

The fourth filter is double input symmetrical relevance
(DISR), which uses the score [15]:

I(Y; X®) | x()

(k) _ 9 )

Tosn(XT) = 3 H(Y,X®) X))’
X es ’ ’

(6)

where I(Y; X X0)) evaluates the complementary in-
formation that X(*) and X provide for Y, whereas
H(Y,X®) X)) reduces the possibility to choose highly
variable features [14].

Maximum relevance and minimum redundancy (MRMR) is
the fifth filter and uses the following score to rank the features:

1 .
T > 1(x®; x@), (7)
XU es

which is designed to ensure that there is as little redundancy
as possible between X (%) and S (second term) and providing
maximal information about Y [15].

The sixth and final filter is minimal normalized joint mutual
information (NJMIM), which scores the features according to
[15]:

JMRMR(X(k)) = I(Y, X(k))

I(Y; X X 0))
(k,) _ . 9 )
Honane(X) = roia { H(Y,X®, X0) } - ®

which is a modification of filter DISR and evaluates the
minimal relative information between Y, X (*) and already
selected features instead of the sum [14].

Our algorithm runs over testing time instances ¢ = n +
1,---,n’. The data that the filters are applied to comprise the
d previous days recorded during the same time stamp as ¢
(expressed as “HH:MM”). This setup allows us to include the

most recent data in our filtering method. In order to account for
temporal dependencies, we also include one time instant prior
to “HH:MM” and one time instant after “HH:MM” (except
for t 4+ 1). Consequently, the filters have a total of 3-d — 1
time instances at their disposal.

These filters have been selected because (i) they can uncover
nonlinear relationships; (ii) do not require the random variables
to be on the same scale; (iii) performed decently as [14]
concludes; (iv) tend to select a different order of features [14],
which could benefit forecast diversity; and (v) except for MIM,
take into account interactions between features.

B. Forecast Combination

As mentioned above, OLP is a heuristic method in which
m predictive distributions F); are linearly combined as G =
>oiewiFy where w; > 0 and >0 w; = 1 with equal
weights w; = 1 /m. In this work, however, we determine
the weights w; based on a scoring rule; specifically, the
logarithmic score (IGN) as proposed by Gneiting and Ranjan
[10]. The following subsections describe the three combination
methods in detail. In addition, OLP is used as a reference
method to compare the combination methods below with.

1) Linear Combination: The traditional linear pool (TLP)
is similar to the opinion pool, except that we determine the
weights by optimizing the logarithmic score. The weights can
be determined by evaluating g;(y) = Z;nzl w; fij(y) and
minimizing over n fitting samples:

1 n m
IGN = —— 1 fii(yi) |, 9
n; og ;wjfj(y) &)

which is equivalent to maximizing the log-likelihood [7]. The
main challenge of TLP is that it increases dispersion (cf. The-
orem 3.1 in [10]) and is therefore not suited when the forecast
members are probabilistically calibrated or overdispersed.

2) Nonlinear combination: In this study, we consider
two nonlinear combination methods. The first is the spread-
adjusted linear pool (SLP) that includes a strictly positive
parameter ¢ which adjusts the spread of the predictive dis-
tributions. The combined predictive distribution is defined as
follows [10]:

(10)

m
c Y — Hij
Gi(y) :ijFz%< - ”>7
j=1

where F;; = F% (y — wqij) and p;; is the median of predictive
distribution of F};;. Equation 10 shows that, in case ¢ = 1, SLP
reduces to TLP. Setting ¢ < 1 tends to improve calibration
when the individual predictive distributions are overdispersed
or neutrally dispersed and setting ¢ > 1 may benefit underdis-
persed predictive distributions [10]. The flexibility of SLP is
limited but it can be effective when the component forecasts
are underdispersed or neutrally dispersed [10].

Therefore, we additionally consider the beta-transformed
linear pool. Generalized by Gneiting and Ranjan [10], the



predictive cumulative distribution function (CDF) of the beta-
transformed linear pool is defined as

GIP(y) = Bap | D _wiFy;(y) | . (11)
j=1

where B, g represents the beta CDF with parameters o > 0
and 8 > 0, and BLP reduces to TLP when o = 3 = 1. Gneit-
ing and Ranjan [10] prove that when the weights wy, ..., wy,
are fixed, the variance of the probability integral transform
random variable can attain any value in the open interval
(0, %), with % indicating neutrally dispersed probabilistic
forecasts.

C. Analog Ensemble

The work in [13] was one of the first studies that applied
AnEn to solar forecasting. Therein, the authors compare the
most recent NWP forecast to historical NWP forecasts and
select the most similar NWP historical forecasts (the analogs),
of which the corresponding PV power measurements form
the ensemble forecast. In this study, we modify the original
similarity metric to include additional data sources, similar to
[16]. Furthermore, we leverage the algorithmic efficiency of
k-dimensional tree (kd-tree), as suggested by [17]. For this,
we further modify the original similarity metric such that the
lags of the features are distinct features [7]:

J
. AN\ 2
aexey, Al = | S wh (o - a) (12)
Jj=1

where J = N, - (2f + 1) is the total dimension, w;‘ is the j®
weight for the h™ forecast horizon and z(7) is the j™ feature.
Vector X ? contains the most recent filtered features, which
comprises the NWP forecasts and clear-sky data (CLS) valid
at time ¢, as well as the satellite derived clear-sky index and
PV power measurement observed h time steps before. Vector
A? contains the same filtered features as X ,’f except historical
ones. Note that the features in .A? are scaled and centered and
these scaling factors are used to scale and center X ? .

Herein, the weights wéf in eq. 12 are taken directly from
the scores that the filtering methods assign to the features.
The weights are subsequently normalized by the sum of all
feature scores so that the weights sum to 1. This allows us to
dynamically update the feature weights instead of employing
a costly wrapper.

D. Complete History Persistence Ensemble

We employ the complete history persistence ensemble (CH-
PeEn) to evaluate the forecast methods described above [18].
CH-PeEn is an external multiple-valued climatology, is in-
dependent of forecast horizon and its output is calibrated
by design [18]. Note that the CH-PeEn is constructed using
detrended PV power measurements, as Section II-F details.

E. Forecast Verification

An important aspect of forecasts is their quality, which
in the case of probabilistic forecasts consists of calibration,
resolution and sharpness. To evaluate the probabilistic cali-
bration of our forecasts, we compute the probability integral
transform (PIT) z; = Fi(y:) and plot these as a histogram for
visual verification [10]. In case of probabilistic calibration, the
resulting histogram is close to flat and has a variance close to
1/12.

In addition, we evaluate the forecasts numerically and
normalize the results using the nominal capacity of the VPP.
The first score is the CRPS, which is a strictly proper and
a negatively-oriented score. Interestingly, it is possible to
decompose the average CRPS into reliability, uncertainty and
resolution terms as CRPS = Reliability + Uncertainty —
Resolution [19]. Additionally, we use the CRPS to compute a
skill score, i.e., the relative improvement over CH-PeEn, that
has a maximum value of 100%. Finally, we use the square
root of the average of the variance (RMV) of the predictive
distributions as a measure of the sharpness [10].

Although this study focuses on probabilistic forecasts, the
root mean squared error (RMSE) is arguably one of the most
common verification metrics and is therefore included in our
analysis.

F. Data

The available PV power measurements extend from 2019-
01-01 until 2020-09-30 and measurements recorded at a zenith
angle larger than 85° are removed. The period from 2019-
01-01 until 2019-09-30 is used for training, while 2019-10-
01 until 2019-12-31 is used to optimize the combination
weights. The remainder of the data is used for testing. The
PV plants have the same orientation and tilt, therefore we
compute the clear-sky global tilted irradiance (GTlI) at the
averaged coordinates. We detrend the PV power measurements
by dividing them with the GTIs and note that more elegant
solutions exist but they require additional system information
that is unavailable to us. We include the last PV power
observation as feature (referred to as “VPP”), as well as the
zenith angle and solar azimuth as features (referred to as
“CLS”).

The NWP forecasts come from the ECMWE, issued daily
at 00:00 UTC with a spatial resolution of 0.1° x 0.1°. The 5
features that we extract are surface solar radiation downwards
(SSRD), 100 m U- and V-wind speed (U100 and V100), 2 m
temperature (2T) and total cloud cover (TCC). The SSRD is
converted to global horizontal irradiance (GHI) and detrended
to the clear-sky index using the McClear clear-sky model [20].

Finally, we include satellite derived GHI from Meteosat
Second Generation (MSG) satellite images (referred to as
“SAT”). The GHI is derived using an improvement over the
Heliosat-2 method [21] and stored as a GHI time series for
each pixel. Similar to NWP GHI forecasts, the satellite derived
GHI is converted to the clear-sky index. Figure 1 indicates
where the satellite and NWP grid points and PV systems are
located.
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III. RESULTS

The first contribution of this study pertains to feature
selection by means of the filters described in Section II-A.
Figure 3 presents the normalized weights assigned by each
filter to the feature groups as a function of the forecast
horizon and for each forecast issue time. As can be seen,
there are some notable differences between the filters. For
instance, filter CMI includes feature group CLS even though
the input and output features have been detrended. Note also
that filters DISR and MIM to a large extent ignore the most
recent power measurement. This can be expected of MIM
since it does not consider interaction between input features
and is therefore likely to select many similar features if they
are relevant to Y. Since DISR evaluates the complementary
information between input features, it does not specifically
promote feature diversity. As mentioned above, filter NJMIM
is a modification of DISR by evaluating the minimal relative
information between features, which likely helps it to select
more diverse features. As a final note, CMI and MRMR select
diverse features as they are designed to reduce redundancy.

The second contribution concerning forecast combination
aims at improving the calibration of the component forecasts.
Table I presents the combination weights and SLP and BLP
parameters, expressed as “mean =+ standard deviation” over
all forecast horizons. The differences between the combination
methods are not drastic although it is interesting to note that
BLP favors MIM and DISR, whereas TLP and SLP assign
less importance to these filters. Interestingly, SLP parameter ¢
is lower than 1, which may suggest overdispersed component
forecasts [10]. In this case, we reason that the combination

introduces overdispersion and parameter c tries to compensate.

Figure 4 presents the PIT histograms of the AnEn forecasts
generated with the inputs provided by the filters and their
combinations. The value in each subfigure corresponds to the
variance, which should be close to 1/12 (= 0.083) for neutral
dispersion [10]. The figure shows that the predictive distribu-
tions are calibrated in the main distribution but deviate at the
extreme quantiles, which could be attributed to the selection
of too few or redundant features. Linear forecast combination
increases the dispersion [10], and Fig. 4 confirms this; OLP
and TLP are both much closer to uniformity and their variance
is closer to 1/12. In our setting, SLP combines the component
forecasts most effectively, i.e., results in the most desirable
calibration. Interestingly, BLP introduces negative bias, which
could be due to the fact that the component forecasts are
underdispersed, due to limited training instances or due to a
discrepancy between the validation and verification sets.

The numerical results are presented in Fig. 5. It can be
seen that the combination methods, especially OLP, TLP and
SLP, improve upon the component forecasts across all scores
and forecast horizons. Interesting to note is that OLP tends
to perform only slightly worse when compared to TLP and
SLP, which indicates that linear forecast combination can be
highly effective with minimal computational effort as long as
the component forecasts are underdispersed. Furthermore, it
can be seen that the forecasts resulting from the filters are
only slightly less sharp than the combination methods, which
indicates that the PIT histogram shape is caused by the lowest
(highest) quantile frequently being above (below) the target.

IV. CONCLUDING DISCUSSION

In this study, we generated intra-day forecasts of the aggre-
gated output of a virual power plant with a nominal capacity
of 4005 kW. We applied the analog ensemble (AnEn) as a
base model as it requires no training. Given the large number
of inputs comprising numerical weather prediction, satellite,
endogenous and astronomical data, we proposed to use a
variety of filters to (i) reduce the problem dimensionality and
(ii) automatically and dynamically learn the AnEn feature
weights. The results showed that the collection of filters selects
a rather heterogeneous feature set but that each individual
AnEn-filter combination suffers calibration issues.

We employed linear and nonlinear forecast combination to
improve the component forecasts, since that is an underserved
area of research in solar forecasting. We showed that even a
naive linear combination significantly improves the calibration,
which is supported by theoretical results [10]. In our case,
the spread-adjusted linear pool proved to be most effective

TABLE 1
THE COMBINATION WEIGHTS AND SLP AND BLP PARAMETERS EXPRESSED AS “MEAN & STANDARD DEVIATION” OVER ALL FORECAST HORIZONS.

Model CMI CMIM DISR MIM MRMR NIMIM c o B
TLP 0.267 £ 0.07  0.214 £ 0.097  0.076 £ 0.056  0.06 £ 0.084 0.274 £ 0.06  0.108 £ 0.033 — — —
SLP 0.277 £ 0.065 0.206 4+ 0.099  0.087 &+ 0.065  0.068 £+ 0.078  0.253 £ 0.057  0.109 + 0.046  0.931 + 0.028 — —
BLP 0.227 £ 0.032  0.206 £ 0.066  0.11 £ 0.063  0.131 £ 0.069  0.224 £ 0.05  0.102 &+ 0.026 — 0.855 £ 0.039  1.388 + 0.069
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at calibrating component forecasts as well as maximizing
sharpness. Regardless, we recommend forecast practitioners
to at least include naive linear forecast combination.

An interesting direction for future research on feature selec-
tion would be to augment the filters with a time-dependent fac-
tor to weigh recent data more. Regarding forecast combination,
interesting directions for future research include (i) combining
a wider variety of forecast models and (ii) developing methods
to compute the combination weights online.
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