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Highlights

Strain localization analysis in materials containing randomly distributed voids: Com-
petition between extension and shear failure modes

Clément Cadet, Jacques Besson, Sylvain Flouriot, Samuel Forest, Pierre Kerfriden, Laurent
Lacourt, Victor de Rancourt

• Ductile fracture is studied by simulating the failure of random microstructures.

• Rice’s criterion allows to detect localization and failure mode (shear or extension).

• A strong anisotropy of failure behavior is observed when rotating loading.

• This intrinsic anisotropy is stronger in single void cells than in random cells.

• Minimal failure strain curves with low ductility in generalized shear are obtained.
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Abstract

In ductile fracture, strain localization can often be a precursor to the failure of the
material. The paper proposes to investigate this phenomenon in the case of random mi-
crostructures. Such microstructures are cubic cells made of an elastic-perfectly plastic
matrix embedding distribution of identical spherical voids. They allow a better representa-
tion of the interaction between voids and greater diversity of failure modes than single-void
(or unit) cells. The cells are simulated by finite element for proportional stress loading paths.
Strain localization is detected with Rice’s criterion computed at the level of the cell. This
criterion is shown to accurately detect the onset of localization and the type of failure mode:
in extension or in shear. Moreover, the influence of the loading orientation (that is, the
orientation of the principal frame of the applied stress with respect to the microstructure) is
systematically studied. A strong anisotropy of failure behavior is observed, which can be
attributed to the intrinsic anisotropy of the simulation cells. Finally minimal failure strain
values on all loading orientations are found. A zone of reduced ductility is observed in
generalized shear.

Keywords: Ductile fracture, Strain localization, Cell computation, Porous materials,
Anisotropy

1. Introduction

Ductile fracture is a major failure mode for industrial metallic parts subjected to
monotonic loading. Understanding this type of fracture is crucial for an accurate prediction
of the part’s resistance and therefore efficient design. Simulating ductile fracture remains a
challenging problem (Boyce et al., 2014, 2016). It involves various small scale phenomena
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such as void nucleation, growth and the final failure by void coalescence or void sheeting
(Besson, 2004), all strongly dependent on the material behavior and loading type.

In order to accurately simulate ductile fracture, analytical models have been developed,
such as Gurson’s (1977) seminal one. This model, enriched by Tvergaard and Needleman
(1984), is now widely used for simulating failure. This has allowed the development of
a class of models, which continues to be developed by incorporating the effects of other
physical mechanisms, such as coalescence (Benzerga and Leblond (2014); Morin et al.
(2016); Torki (2019) among others) or strain localization (Keralavarma et al., 2020). The
effect of void shape (e.g Cao et al. (2015)) or of random distributions of voids (Leblond
and Mottet, 2008; Danas and Ponte Castañeda, 2009, 2012; Vincent et al., 2009) can also
be represented by such models. Following Koplik and Needleman (1988), such models are
frequently compared to results from simulations on unit cells, in which an elastoplastic cubic
or parallepipedic matrix containing a single void is simulated up to failure. Such simulations
can also be used on their own to help identify and distinguish failure mechanisms.

However, single void unit cells correspond to a periodic array of voids, and do not
represent accurately interactions between voids, especially at high porosity. This interac-
tion should therefore be investigated by considering more general configuration of pores.
Qualitative understanding of the interaction of pores was achieved by simulations involving
a cluster of a small number of voids (Bandstra and Koss, 2008; Tvergaard, 2016, 2017;
Trejo Navas et al., 2018). Shakoor et al. (2018) described precisely the mechanisms of
ductile fracture in random populations of voids. However these studies can not provide
failure models as they consider too few loading conditions. Fritzen et al. (2012) used
simulations on microstructures with a random distribution of voids to identify a Gurson-
Tvergaard-Needlemann yield criterion. This approach was extended to other material
behaviors (Fritzen et al., 2013) or other void populations (Khdir et al., 2014, 2015). Yet
such studies only deal with yield behavior and not the ultimate failure of the microstructure.
Recently, Hure (2021) and Cadet et al. (2021) simulated random microstructures up to
coalescence and investigated the scatter of failure strain due to the random distribution of
voids. A significant scatter was found even for large populations. Moreover, by considering
the influence of the Lode parameter, Cadet et al. (2021) identified differences in failure be-
havior between unit and random cells. The latter can more freely express shear-dominated
failure modes. Therefore random microstructures can better represent failure mechanisms
and they should be favored for determining failure models.

A significant issue of cell studies is to operationally detect the onset of failure. Many
indicators have been proposed, focusing on different physical mechanisms and characteristic
features (see review by Zhu et al. (2020a) and discussion by Cadet et al. (2021)). These
different choices are not equivalent and a given microstructure’s resistance (strain at failure)
can significantly depend on the considered indicator. A traditional approach to failure is
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to focus on evaluating the ratio between the components of the deformation gradient in
the ligament between voids, and far from it (Needleman and Tvergaard, 1992; Barsoum
and Faleskog, 2007; Dunand and Mohr, 2014; Luo and Gao, 2018; Vishwakarma and
Keralavarma, 2019). The failure of the cell is declared when this ratio reaches a critical
value, which means that strain is no more homogeneous but concentrated in the ligament.
However, Barsoum and Faleskog (2011) showed that this approach fails at high stress
triaxiality and in generalized shear. Another classical approach defines failure as the
instant when a maximum load motivated by limit analysis (Thomason, 1985; Benzerga and
Leblond, 2014; Morin et al., 2016), or a maximum reaction force (Guo and Wong, 2018) is
reached.

Nonetheless, Tekoğlu et al. (2015) pointed that cell failure could actually be linked
to two distinct processes: strain localization and void coalescence. Stricto sensu void
coalescence corresponds to different voids fusing together in a single larger void, but the
material model often cannot represent this process. Void coalescence can be identified
by a transition to a specific strain state, where ligaments are uniaxially strained and the
rest of the cell becomes rigid . Operationnally, the cell ceases thinning in the directions
transverse to the main loading axis, and reaches a state of simple extension. This approach
was used by Koplik and Needleman (1988) and Ling et al. (2016). Cadet et al. (2021)
reformulated this indicator in terms of the macroscopic deformation gradient rate (and
especially its determinant) and proposed an extension of this indicator to handle shear modes
of failure. Coalescence can also be considered from an energetic point of view (Wong
and Guo, 2015): when strain concentrates in the ligament, there is an elastic unloading in
the rest of the cell, so the ratio between macroscopic elastic and plastic power can help
detect coalescence. On the other hand, strain localization corresponds to the concentration
of deformation within bands, generally containing voids, as an increased local porosity
facilitates localization. This process can be linked to the loss of ellipticity of the governing
partial differential equations. A mathematical characterization was given by Rice (1976).
This criterion is mostly used for structural computations (see for instance Al Kotob et al.
(2020)) but has also been recently used for unit cell studies by Zhu et al. (2020a). Guo and
Wong (2018) also claimed their maximum applied force criterion is equivalent to Rice’s
analysis. Tekoğlu et al. (2015) and Guo and Wong (2018) showed that coalescence, if
it happens, is always preceded by strain localization. Morin et al. (2019) tried to match
experimental ductile failure results with localization and coalescence and found a slightly
better agreement with coalescence, so that structural failure may be better linked to the
coalescence process. However localization criteria may provide a relevant lower bound
for ductile failure resistance. In the context of random microstructures, Cadet et al. (2021)
already investigated ductile failure with a coalescence indicator. However the localization
behavior of such random microstructures has not been investigated yet.
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If a full response surface for ductile fracture is desired, sufficiently general loading
conditions should be used. For an isotropic material model subjected to a proportional
loading, stress triaxiality and Lode parameter are mainly used. Yet conflicting results
with respect to the influence of the Lode parameter on the failure strain are reported in
literature. Barsoum and Faleskog (2011), Wong and Guo (2015) and Luo and Gao (2018)
found minimal ductility for generalized shear. On the other hand failure strain grows from
generalized tension to generalized compression, without a minimum in shear, according to
Guo and Wong (2018); Zhu et al. (2020a). In Cadet et al. (2021), the behavior was mostly
of the former type for random microstructures, and mostly of the latter type for unit cells.
The discrepancy, which can be interpreted as a strong indication of the intrinsic anisotropy
of the simulation cell, is due to different ways of applying the loading conditions, as pointed
out by Zhu et al. (2020a) and Cadet et al. (2021). However, a reliable failure model should
not present this anisotropy and this dependence on the methodology. In order to avoid
this effect, Barsoum and Faleskog (2011), Dunand and Mohr (2014) and Tekoğlu et al.
(2015) carried out the simulations by rotating the principal directions of the applied stress.
The failure strain of the cell is then found by minimizing over all loading conditions with
the same stress invariants. A minimal failure strain for generalized shear is then found.
However only one axis of rotation was considered in these studies. This choice is motivated
by Rudnicki and Rice’s (1975) results on localization, which show that localization bands
in homogeneous materials should be orthogonal to the eigendirection associated to the
middle principal stress. However it was never verified numerically for unit cells. Moreover
the situation for random microstructures could be more complex than for unit cells, which
have higher symmetry. Fully general three-dimensional loading orientations, i.e rotations
of the principal axes of the applied stress with respect to the cell’s axes, should therefore be
considered.

The present study therefore aims to investigate ductile fracture and more precisely
strain localization behavior in random microstructures, while fully accounting for the
effect of the loading orientation. To the authors’ best knowledge, this is the first time
that localization is studied in cells with a distribution of voids. Moreover, no previous
studies had considered the effect of loading orientation with such generality. To this end,
we generate cells consisting of a perfectly plastic matrix embedding a random distribution
of identical spherical pores. Using the finite element software Zset (2020), simulations
are performed in a large strain formulation. Various proportional loading conditions are
applied up to the failure of the cell. Following the methodology by Zhu et al. (2020a), this
failure is detected by Rice’s localization criterion, computed at the global scale of the cell
with a macroscopic tangent operator. The failure behavior for random microstructures and
unit cells is then compared depending on the loading conditions. It is shown that Rice’s
criterion successfully describes not only localization onset, as performed by Zhu et al.
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(2020a), but also failure mode. A region of low ductility is observed in generalized shear.
A strong anisotropy of failure behavior is observed for unit cells but is reduced for random
microstructures. Minimal failure strains depending on the loading conditions can then be
determined.

This paper is organized as follows. We first describe the methodology for generating
random microstructures, applying loading conditions, and detecting localization with Rice’s
criterion. Secondly, the performance of the criterion is assessed on simplified loading
conditions, in which the principal axes of the applied stress coincide with those of the cubic
cell. Thirdly, more general loading orientations are investigated. Finally, with the help
of further computations, we discuss the preceding results, especially the failure indicator
used, and the impact of cell anisotropy. Appendices present the numerical validation of
the failure indicator and the effect of the simulation parameters (mesh size, and temporal
discretization).

An intrinsic notation is used for tensors: vectors are represented as v = vie i, second
order tensors as A∼ = Ai je i⊗ e j, where (e i) is an orthonormal frame. The subscript 0 in the
notation A0 refers to the value of A in the initial configuration at time t = 0. The position
of a material point initially at x 0 evolves with time t as x = Φ (x 0, t); the deformation

gradient is then defined as F∼ =
∂Φ
∂x 0

. Quantities decorated with an overlying bar, such as Ā,
refer to the macroscopic counterpart (at the level of a cell) of a quantity A defined locally.
For instance F̄∼ is the average deformation gradient over the cell.

2. Methodology of micromechanical finite element simulations

This section presents the general methodology for micromechanical simulations, carried
out with Zset software (Besson and Foerch, 1998; Zset, 2020). The generation and meshing
of the random microstructures, the material behavior used for the matrix, the boundary
and loading conditions are described. This methodology follows initially Cadet et al.’s
(2021) one, so it will be here only summarized. The subsection 2.3 presents however an
extension of the previous methodology allowing a greater variety of loading conditions
when compared to Cadet et al.’s (2021) work.

2.1. Generation of microstructures and meshing
The microstructures are made of a periodic population of Nvoids identical non-

overlapping spherical voids of radius r within a cubic matrix of size acube. The total
initial porosity

f0 =
4π

3
Nvoids (r/acube)

3 (1)
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and the number of voids Nvoids determine together the radius of the spheres. A sphere
intersecting the cube is copied on the other side (two copies for an intersected face, four for
an edge and eight for a vertex). The periodic microstructure with its spherical voids is thus
able to pave space. The positions of the spheres are chosen randomly according to a simple
iterative dart-throwing process: A position of the center is chosen uniformly on the cube,
and the new sphere is added to the collection if it (or its periodic copies) does not intersect
any already accepted sphere.

The microstructure is then meshed by the NETGEN software Schöberl (1997), ensuring
finer elements close to the voids. The validity of the meshing parameters for ductile fracture
analysis was already verified by Cadet et al. (2021). Most of the simulations on random
microstructures will be performed on the cells R1 and R2 visible in Fig. 1a and 1b. They
were constructed with a porosity of f0 = 6% and Nvoids = 27 voids and have already been
used in Cadet et al.’s (2021) study. A unit cell with a single void, is also used for comparison
(Fig. 1c). All meshes use quadratic elements with reduced integration.

2.2. Material behavior law at finite strain
Simulations use a finite strain framework to account for the large deformation than can

take place in the matrix. The strain rate D∼ and Cauchy stress σ∼ tensors are convected in a
corotational frame (Besson et al., 2009):

ė∼= R∼
T D∼R∼ s∼= JR∼

T
σ∼R∼ (2)

where R∼ is a rotation matrix verifying −R∼
T Ṙ∼ = Ṙ∼

T R∼ = skew(Ḟ∼F∼
−1) (material spin tensor).

The matrix is chosen elastic-plastic with isotropic elasticity and von Mises plasticity without
hardening:

ė∼= ė∼e + ė∼p e∼e =
1+ν

E
s∼−

ν

E
(trs∼)1∼

svm =

√
3
2

s∼
dev : s∼

dev f (s∼) = svm−R0 ≤ 0

ė∼p = ṗ
∂ f
∂ s∼

(3)

with s∼
dev the deviatoric part of the rotated Cauchy stress tensor s∼, svm the equivalent von

Mises stress and ṗ =
√

2
3 ė∼p : ė∼p playing the role of the plastic multiplier. The Young

modulus, the Poisson ratio and the yield strength are respectively chosen as E = 200 GPa,
ν = 0.3 and R0 = 500 MPa.
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(a) Random cell R1 with 27 voids (255628 nodes)

1

2
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(b) Random cell R2 with 27 voids (176982 nodes)
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(c) Unit cell (104521 nodes)

Figure 1: Meshes of the cells repeatedly used in the study
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2.3. Boundary and loading conditions
Periodic boundary conditions are applied on the sides of the cube (Besson et al., 2009).

The displacement field u should therefore have the form:

u = (F̄∼ −1∼) · x 0 + v (x 0) = E∼ · x 0 + v (x 0) (4)

with F̄∼ the average deformation gradient, E∼ = F̄∼ −1∼ and v a periodic displacement fluc-
tuation field with zero average gradient over the cell. The periodicity of v and the anti-
periodicity of traction vectors mean that:

v (x +
0 ) = v (x−0 ) (5)

σ∼ ·n (x
+
0 ) =−σ∼ ·n (x

−
0 ) (6)

if x +
0 and x−0 represent two homologous points on opposite sides of the periodic mesh and

n (x 0) represent the outward-pointing normal to the mesh boundary at x 0. These periodic
boundary conditions are numerically imposed by multi-point constraints on homologous
nodes. In this formulation (already used by Ling et al. (2016) and Cadet et al. (2021)),
the degrees of freedom (DOF) are the three components of the displacement fluctuation
field for each node of the mesh and the nine components of E∼ ). The components of the
macroscopic deformation gradient therefore appear as explicit degrees of freedom. In order
to control rigid body motion, a node of the mesh is fixed, and the tensor F̄∼ (or equivalently
E∼ ) is kept upper triangular:

E21 = E31 = E32 = 0 (7)

This condition was investigated by Cadet et al. (2021) and found to yield equivalent results
to the condition imposing F̄∼ to remain symmetric (Ling et al., 2016). In order to facilitate
the ulterior computation of Rice’s criterion, this condition is applied by penalization. For
(i, j) ∈ {(2,1),(3,1),(3,2)}, a high stiffness spring connects the DOF Ei j to a fixed one
Êi j = 0. The force applied on the DOF Ei j is then:

REi j = k(Êi j−Ei j) (8)

where k is a stiffness (chosen sufficiently high compared to the stiffness of the simulated
cube).

The macroscopic Boussinesq (or first Piola-Kirchhoff) S̄∼ and Cauchy stress tensors σ̄∼
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are defined by:

S̄∼ =
1
V0

∫
V0

S∼dV0 =
1− f0

V0

∫
V matrix

0

S∼dV0 (9)

σ̄∼ =
1
J̄

S̄∼.F̄∼
T (10)

where J̄ = det
(
F̄∼
)

and V0 is the volume of the cell (matrix and defects) in the initial
configuration. The integration on V0 considers that stress is well-defined and identically
zero in the voids. The components of S̄∼ also correspond, up to a factor V0, to the reaction
forces conjugate to the degrees of freedom Ei j.

The loading conditions are applied by an extension of Ling et al.’s (2016) method. A
special spring element with ten degrees of freedom is used: Nine are connected to the
Ei j degrees and the last one, Ê11, corresponds to the displacement of a ghost node. This
element guarantees the following form for the macroscopic Boussinesq stress tensor:

S̄11 = k(Ê11−E11)/V0 (11)

S̄∼ = Jσ̄11η
∼

F̄∼
−T (12)

where k is a stiffness which can be chosen equal to that of Eq. (8), and η
∼

is a constant
symmetric tensor with η11 = 1. Eq. (12) can be rewritten in terms of Ei j, ηi j and Ê11 and K
by using Eq. (11) and explicitly inverting F̄∼ . The derivation is straightforward but tedious so
the resulting expressions were obtained with the SymPy computer algebra software (Meurer
et al., 2017) and are not reproduced here. With this spring element, the average Cauchy
stress tensor remains proportional to the constant tensor η

∼
throughout the simulation:

σ̄∼ = σ̄11η
∼

(13)

The loading is then driven by E11, which essentially coincides with Ē11 due to the high
stiffness k.

Zhu et al. (2020a) and Cadet et al. (2021) studied the case where η
∼

is diagonal (i.e.
η12 = η13 = η23 = 0). Barsoum and Faleskog (2007), Wong and Guo (2015) and Liu et al.
(2016) used conditions equivalent to η22 = η33 and η12 = η23 = 0. Following Barsoum
and Faleskog’s (2011) example, several studies have considered rotating the applied stress
σ∼ around e 2. The problem is here considered with more generality, with a potentially full
η
∼

tensor. As η
∼

is a symmetric tensor, it can be diagonalized in an orthonormal frame and
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its components can be more usefully expressed as:

[η
∼
] =

 1 η12 η13
η12 η22 η23
η31 η32 η33

= Q

σ̄I/σ̄11 0 0
0 σ̄II/σ̄11 0
0 0 σ̄III/σ̄11

QT (14)

where σI ≥ σII ≥ σIII are the principal stresses and Q is a rotation matrix defining the
loading orientation (that is, the orientation of the eigendirections of η

∼
) with respect to the

frame canonically associated to the cube.
From the principal stresses, which are linked by the condition η11 = 1, two stress

invariants can be extracted. The stress triaxiality T and the Lode parameter L are here
defined as:

T =
tr σ̄∼

3σ̄vm
(15)

L =
2σ̄II− σ̄I− σ̄III

σ̄I− σ̄III
(16)

where σ̄eq is the von Mises equivalent stress. In our convention, the values L =−1, L = 0
and L = 1 respectively correspond to states of generalized tension, shear and compres-
sion. Therefore a loading condition can be defined by T , L and a 3D orientation matrix Q.
Conversely, given a triplet (T,L,Q) triplet, the correct tensor η

∼
can easily be found by com-

puting the principal stresses (Zhu et al., 2020a), applying the rotation Q, and normalizing
so that η11 = 1.

2.4. Formulation and implementation of the macroscopic Rice criterion
The simulations are primarily aimed at determining the random microstructures’ resis-

tance to ductile failure. As the material model defined in subsection 2.2 does not account
for damage, failure should be investigated at the cell level. An indicator is required to
identify failure. In this work, the localization approach is used by applying Zhu et al.’s
(2020a) methodology to the random microstructures. Rice’s indicator could also be more
suited to complex loading conditions, as used in section 4.

Let L̄ be the macroscopic tangent operator linking the macroscopic Boussinesq stress
and deformation gradient rate tensors:

˙̄S∼ = L̄ : ˙̄F∼ (17)

Rice’s criterion predicts strain localization when, for some direction n the acoustic tensor
along n becomes singular:

det
(
nkL̄ik jlnl

)
= 0 (18)
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In the following, the expression det
(
n L̄ n

)
will refer to the above equation with the correct

choices of indices.
Whereas the local tangent operator L is directly given by the material behavior, the

macroscopic operator L̄ should be computed at the level of the cell in order to link ˙̄S∼ and ˙̄F∼ .
It therefore combines the local material behavior and structural effects. Zhu et al. (2020b)
compared several numerical techniques to compute this macroscopic tangent operator. A
condensation method derived from Zhu et al. (2020a) but tailored to our finite element
formulation is here used. The general idea of the condensation technique is to compute a
Schur complement on the finite element matrix separating macroscopic and local degrees
of freedom.

More precisely, from subsection 2.3, three types of DOF can be distinguished in the
simulation : (i) Ei j, macroscopic DOF corresponding to the component i j of F̄∼ −1∼; (ii) vn,i,
nodal DOF corresponding to the displacement fluctuation in the direction i of the node n;
(iii) four ghost nodes Ê11, Ê21 Ê31, Ê32 useful to control the applied stress or the rigid body
motion. The vector collecting the Ei j (resp Êi j, vn,i) DOF is noted E (resp. Ê, V ).

The stiffness matrix K computed during the Newton iterations of the FEM simulation,
can thus be decomposed in blocks so as to verify:KÊÊ KÊE 0

KEÊ K̃EE KEV
0 KV E KVV

∆Ê
∆E
∆V

=

∆RÊ
∆RE
∆RV

 (19)

The right hand side represents the external forces on each DOF. RV corresponds to the nodal
forces, whereas [RE ]i j = V0S̄i j with S̄∼ the macroscopic Boussinesq stress tensor applied to
the cell, and V0 the initial volume of the cell. The blocks KÊV and KV Ê are zero because
the ghost nodes are not linked to the displacement fluctuation DOF. Moreover, K̃EE is
obtained by combining a contribution KEE from the tetrahedral elements of the mesh and
contributions from the springs:

K̃EE,i j,kl = KEE,i j,kl + ∑
sspring

K(s)
Ei j,Ekl

(20)

where K(s)
Ei j,Ekl

is the elementary stiffness matrix of the spring. Up to a factor equal to the
volume of the cell, KEE represents the average local tangent operator on all tetrahedral
elements. For each spring controlling the rigid body motion, only one coefficient in the
block EE is non-zero: K(s)

E21,E21
= k for the E21 spring, for example. Similarly K(s)

E31,E31
=

K(s)
E32,E32

= k. The expressions for the extension of Ling et al.’s (2016) special spring element
are more complicated but always computable, provided Ê11 and F̄∼ are known. The tilde
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on K̃EE represents the modification of the quantity KEE linked to the physical mesh by
contributions from the springs.

The effect of Dirichlet boundary conditions and multi-point constraints on K should
now be considered. Dirichlet boundary conditions, which are applied on the ghost nodes,
lead to the elimination of DOF. For multi-point constraints applying the periodic boundary
conditions of Eq. (6), rows related to homologous DOF should be summed and combined
in a single new row (and the same for columns). Eliminating the Ê DOF due to Dirichlet
boundary conditions and combining rows and columns for homologous V DOF is equivalent
to modifying the matrix:

K′ =
(

K̃EE K′EV
K′EV K′VV

) (
∆E
∆V ′

)
= K′−1

(
∆RE
∆R′V

)
(21)

The block K̃EE has not been modified and the DOF Ê have disappeared. Had the conditions
E21 = E31 = E32 = 0 not been imposed with springs, these DOF would have disappeared
from the stiffness matrix. Computing the related coefficients in the macroscopic tangent
operator would have been impossible.

Computing the macroscopic tangent operator means determining the linear relationship
between ∆F̄∼ and ∆S̄∼, and therefore between ∆E and ∆RE , when no other force is applied. In
this context, the nodes of the meshed cell are free to move so that ∆R′V = 0 at equilibrium.
In Eq. (19), this implies K′V E∆E +K′VV ∆V ′ = 0, hence:

∆RE = ˜̄K∆E with ˜̄K = K̃EE −KEV K−1
VV KV E = ([K

′−1]EE)
−1 (22)

In the last expression, the EE block of K−1 is extracted. The macroscopic tangent operator
should then be computed from ˜̄K by removing the contribution from the springs. Otherwise,
even for a homogeneous cube, it would not coincide with the local tangent operator. L̄ is
then obtained as:

L̄i jkl = K̄Ei jEkl/V0 with K̄ = KEE −KEV K−1
VV KV E (23)

K̄/V0 is therefore different from KEE/V0, which is the average value of the tangent operator
over all the elements of the cell. It includes the structural effect −KEV K−1

VV KV E .
In practice, at the end of each increment of the Z-set simulation, a Python script with

references to Z-set’s internal variables is called. This script can access the global stiffness
matrix with boundary conditions K′. The quantity [K′−1]EE can then be computed by
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solving the following equation for the nine Ei j DOF:

K′
(

α∆E
α∆V

)
=

(
α∆Ri j

E
0

)
(24)

where all the coefficients of ∆Ri j
E are zero, except the coefficient related to Ei j: Ri j

E,i j = 1.
The quantity α is a very large value, allowing to neglect the modifications of the right hand
side made by the Dirichlet boundary conditions. The matrix [K′−1]EE is then constructed
from the nine solutions by taking for each column, only the coefficients from the E block.
Solving these nine equations with Z-set’s solver is computationally efficient. No inversion
of the matrix K′ is necessary, and its factorization is only performed once, during the
increment.

The matrix [K′−1]EE is then inverted by means of the Scipy solver. This inversion is
inexpensive as [K′−1]EE is only of size 9×9. The resulting matrix ˜̄K can then be stored in
a separate file. This process is repeated for each increment of the simulation. Finally, as
a post-processing operation, K̄ is computed from ˜̄K by subtracting the contribution of the
springs.

The macroscopic tangent operator L̄ has now been computed, and Eq. (18) remains to
solve. Rather than solving it directly, the minimum of det

(
n L̄ n

)
is found for n on the

unit sphere. By continuity, if this minimum is nonpositive, Eq. (18) has a solution, and the
cell has exhibited strain localization. The BFGS minimizer from SciPy (Virtanen et al.,
2020) is used with the multi-start procedure described by Al Kotob et al. (2020).

The Appendix A validates the methodology for computing L̄ by comparison with
theoretical results and other methods. Note than L̄ only computes the consistent macro-
scopic tangent operator used in numerical computations, and not directly the instantaneous
tangent operator corresponding to the material formulation (Besson et al., 2009). However
the validation from Appendix A proves that the difference can be neglected for sufficiently
small steps.

3. Investigation of localization with Rice’s criterion for a diagonal loading

Unit cell studies frequently consider the application of diagonal macroscopic stress
tensors. To compare with literature, the analysis is first restricted to diagonal η

∼
loading. The

loading is then characterized only by T and L. Rice’s criterion’s is shown in the following
to efficiently detect localization onset and failure mode for random microstructures.

3.1. Strain at localization depending on T,L loading conditions
The methodology for Rice’s criterion is first verified on the simple case of the unit

cell loaded with T = 1, L = −1. This loading condition corresponds to generalized
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uniaxial tension. For such a loading condition, the failure onset directly corresponds to an
inflexion point in the stress-strain curve. It is also well understood by applying Koplik and
Needleman’s (1988) criterion: the cell stops thinning and the macroscopic transverse strain
E22 (or equivalently E33) stabilizes.

Fig. 2 thus compares the evolution of three quantities throughout the computation,
parametrized by the macroscopic strain E11: the transverse strain E22, the macroscopic stress
component σ̄11 along the loading axis, and the Rice quantity mindet

(
n L̄ n

)
throughout the

computation. For E11 ' 0.28, mindet
(
n L̄ n

)
= 0, which corresponds to Rice’s criterion

activating. This localization is simultaneous with the stabilization of the transverse strain
and the inflection point of the strain-stress curve. The three failure indicators therefore
yield the same failure onset, which points to the soundness of the methodology using Rice’s
criterion. This allows defining the strain at localization Eloc as:

Eloc = argmin
E11
{E11|mindet

(
n L̄ n

)
≤ 0} (25)

The dependence of the strain at localization on T and L is depicted in Fig. 3 for the unit
cell and the random cells R1 and R2. Each subfigure considers a slice of the (T,L) space: A
parameter is fixed whereas the other one varies. At fixed L=−1 (axisymmetric, generalized
tension) or L = 0.5, failure strain decreases almost exponentially with stress triaxiality, for
all cells. Such a decrease mostly agrees with the evolution Eloc ∝ exp(−3T/2) from Rice
and Tracey (1969), although the agreement, especially regarding R2, is slightly reduced
compared to Cadet et al. (2021), who used a coalescence indicator.

For fixed T = 1 and varying L (Fig. 3c), the situation is more complex and differs
between cells. For the unit cell, three zones can be distinguished. For L <−0.5 or L > 0.3,
failure strain evolves slowly with L and the plot forms a plateau. A slow increase of Eloc
with L is frequently found in unit cell studies with diagonal loading (Zhu et al., 2018,
2020a). On the contrary, between L = 0.5 and L = −0.3, Eloc is a convex function of L,
minimal for L = 0 where the localization is almost immediate. An early localization in
shear is expected for an homogeneous perfectly plastic material. For the random cells, the
central zone of reduced ductility with a minimum for L = 0 is wider than for unit cells.
The plateaus at high |L| are reduced and even disappear for the cell R2. For the cell R1,
the distinction between the plateaus and the reduced ductility zone are still present. A
local maximum associated to a strong slope discontinuity is present at L∼ 0.5 and marks
the transition between the central low ductility zone and the upper plateau. For random
cells, the reduced ductility zone is therefore dominant. Such an evolution is reminiscent
of the results by Barsoum and Faleskog (2007), Barsoum and Faleskog (2011) or Wong
and Guo (2015); Luo and Gao (2018), who considered non diagonal loading conditions.
The difference with Zhu et al. (2020a) who also used a localization criterion and a diagonal
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loading can be explained by the present use of a cubic cell (instead of a parallelepipedic
cell by Zhu et al.) which is more sensitive to shear localization.

The distinction between plateaus and a central reduced ductility zone was already
predicted by a coalescence criterion in Cadet et al. (2021). However, the localization
criterion used in the present study, predicts a wider reduced ductility zone, especially for
the unit cell. In the previous article, that zone was limited to the immediate vicinity of
L = 0. Moreover, the plateaus at high |L| are not necessarily present with the localization
criterion. A more precise comparison between these failure indicators will be performed in
subsection 5.1.
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Figure 2: Evolution of transverse strain, stress component σ̄11 and Rice criterion for a simulation of a unit cell
at T = 1, L =−1. The stabilization of the transverse strain and the localization onset are almost simultaneous.
This instant also corresponds to an inflection point of the stress-strain curve.

3.2. Localization bands and failure mechanisms
In the previous section, Rice’s criterion was used as an indicator for failure onset. A

complex dependence of Eloc with respect to L was found with several failure zones. Cadet
et al. (2021) correlated these zones with differences in failure modes, identified by their
plastic strain fields. However the methodology of Rice’s criterion can help quantify and
distinguish failure mechanisms.

Let n be a unit vector such that det
(
n L̄ n

)
= 0, and call g the unit eigenvector of

n L̄ n with eigenvalue 0. Rice’s criterion then predicts a localization band of normal n ,
and the two sides of the band have a relative velocity along g . Two extremal cases can
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Figure 3: Deformation at localization for unit and random cells (diagonal loading) and slices of the (T,L)
space. The triangles indicate a slope of −3/2 in the log-lin plot: Eloc ∝ exp(−3T/2)
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be distinguished. The case where g and n are collinear represents a perfect extension
mode: the band opens without tangential movement. If g and n are orthogonal, the two
half spaces delimited by the band have a pure tangential displacement: this represents pure
shear. Therefore the analysis of the acoustic tensor n L̄ n at localization allows finding the
localization mode within the cell. Furthermore the value of g ·n distinguishes extension and
shear failure modes. This analysis can be performed not only at localization onset, but more
generally throughout the computation. To this end, the vector n minimizing det

(
n L̄ n

)
is

found, and the eigenvector for the lowest eigenvalue of the associated acoustic tensor is
computed. The solution (n ,g ) only describes a localization band at the instant of failure.
Nonetheless, this provides insight on likely bands before localization, and the evolution of
such bands after localization.

Fig. 4, 5, 7 and 8 depict the characteristics of the localization band for the unit cell
and the random cell R1 for two loading conditions (T = 1, L =−1) and (T = 1, L = 0).
Each figure shows first the plastic strain rate field at the instant of localization. Plastic
strain rate is normalized by the strain rate Ė11, which is required to drive the computations
but plays no role for a rate-independent plastic material. The evolution of g ·n and of the
principal stress σ11 is then represented for the whole simulation. Finally the evolution of the
det
(
n L̄ n

)
landscape is shown at several time steps during the simulation. The minimizing

value is shown with a blue triangle (resp. red dot) before (resp. after) localization. White
areas correspond to negative values of det

(
n L̄ n

)
. The unit vector n is parametrized as:

n = (sin(φ)cos(θ),sin(φ)sin(θ),cos(φ)) (26)

For the unit cell loaded with (T = 1, L =−1), localization takes place near Eloc ∼ 0.25.
The localization band is a plane orthogonal to the first axis, as shown by the plastic
deformation rate field. This is consistent with the evolution of the det

(
n L̄ n

)
landscape.

Initially, while the cell is still completely elastic, det
(
n L̄ n

)
does not depend on n . As

soon as plasticity begins, a minimum is found near (but not exactly) θ = 0[π],φ = π/2, i.e.
n = e 1. The quantity g ·n increases until localization and stabilizes shortly after at a value
close to 1. The failure mode is thus extension, which is consistent with a localization band
orthogonal to the tensile axis. On the contrary, for (T = 1, L = 0), the localization takes
place immediately after yield. Two equivalent localization bands at 45◦ from the cube’s
first axis are present. These bands can also be seen on the det

(
n L̄ n

)
landscapes. At the

localization onset, g ·n ∼ 0.1: this low value is characteristic of the shear failure mode.
However, during the rest of the simulation, g ·n continues to grow, and the local minima
in the det

(
n L̄ n

)
come closer one to another. They even merge for E11 ∼ 0.3, which also

correspond to a stabilization of g · n at a value close to 1. This can be interpreted as a
transition from an initial strain localization in shear mode to an extension mode (Fig. 6).
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Figure 4: Characteristics of the localization band for the unit cell, at (T = 1, L =−1)
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Figure 5: Characteristics of the localization band for the unit cell, at (T = 1L = 0)

(a) E11 = 0.02 (b) E11 = 0.2 (c) E11 = 0.25 (d) E11 = 0.3

Figure 6: Transition from shear mode to extension mode for the unit cell (T = 1, L = 0)
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For the random cell R1 with T = 1,L =−1, results are globally similar to the situation
of the unit cell for the same loading condition. However the localization band has a
more complex pattern, as it tries to connect several voids (already discussed in Cadet et al.
(2021)). The overall orientation of this band remains orthogonal to the first loading axis. For
T = 1,L = 0, localization takes place early, in shear mode. Contrary to the case of the unit
cell, no stabilization of g ·n and no transition to extension mode are witnessed. Moreover,
due to the lower symmetry of the random microstructures, the det

(
n L̄ n

)
landscape has

lost its symmetry with respect to φ = π/2. The oscillations on Fig. 8b correspond to an
alternation between two local minima.
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Figure 7: Characteristics of the localization band for the random cell R1, at (T = 1, L =−1

The link between localization mode and failure strain is shown in Fig. 9. For all cells,
the zones of reduced ductility identified in Fig. 3c are systematically associated to shear
failure mode. On the other hand, the peaks and plateaus correspond to extension modes.
These results are consistent with those obtained by Cadet et al. (2021) with a coalescence
criterion. However, in the previous study, modes were only distinguished by the inspection
of the plastic deformation field. On the contrary, the present study’s analysis of the acoustic
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Figure 8: Characteristics of the localization band for the random cell R1, at (T = 1,L = 0)
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tensor and its eigenvectors allows to distinguish quantitatively the two localization modes.
Moreover this analysis is straightforward, as the acoustic tensor has already been computed
in order to apply Rice’s criterion.
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Figure 9: Link between the deformation at localization and the localization mode (T = 1). Same as Fig. 3c,
but with localization modes highlighted. The extension mode (resp. shear mode) is shown in red (resp. green)
and corresponds to g ·n ≥

√
2/2 (resp. g ·n <

√
2/2 ) at localization

4. Influence of the loading orientation with respect to the cube

In the previous section, Rice’s criterion was found to effectively predict failure by
localization and was able to distinguish between extension and shear modes. Only simple
loading conditions with a diagonal η were considered. The evolution of the strain at
localization with respect to L in Fig. 3 showed plateaus and cusps due to the hesitation
between failure modes. It is questionable whether this evolution still holds for different
loading orientations with respect to the cube. General loading conditions with an arbitrary
η
∼

are thus now considered. They allow investigating the influence of the loading orientation.
The effects of the intrinsic anisotropy of the simulation cells can then be explored.

4.1. Parametrisation of the general loading orientation
As shown in Eq. (14), the tensor η

∼
, defining the average Cauchy stress tensor up to a

proportionality constant, is equivalent to the combination of T , L, and a rotation matrix Q.
This rotation represents the orientation of the loading with respect to the cube. In order to
define the computations and report on the results, a suitable parametrisation for Q should
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be adopted. As the rotation group SO3 is three-dimensional, Q can be represented by three
parameters, for instance by the three components of a Rodrigues vector. If Q corresponds
to the rotation of angle θ around the direction given by the unit vector m , with ||m ||= 1,
the associated vector is:

d = tan(θ/2)m (27)

In order to explore all possible loading orientations, the whole rotation group SO3 is
not necessary due to symmetry conditions. The periodic boundary conditions are naturally
associated to cubic symmetry. The unit cell display exactly this symmetry so no generality
is lost when reducing loading orientations by cubic symmetry. In order to limit the
computational expense, we suppose that it is also the case for random microstructures.
Equivalently, the image of a random microstructure by a symmetry of the cube can be
thought as a distinct microstructure, whose behavior is not studied in this work. On the other
hand, the symmetric tensor η

∼
is characterized by three orthogonal axes bearing distinct

principal stresses. It can thus be associated to orthotropic symmetry. Accounting for
symmetries, the set of all possible loading orientations with respect to the simulation cell is
the cubic-orthotropic disorientation space (using Heinz and Neumann’s (1991) terminology).
Inversion of a principal axis does not change η

∼
, so the disorientation space is only one half

of the one found by Heinz and Neumann (1991). The appropriate disorientation space can
be expressed in Rodrigues formalism:

0≤ di ≤
√

2−1 for i = 1,2,3
d1 +d2 +d3 ≤ 1

(28)

A sample of loading orientations in this space is represented in Fig. 10. They are
repeatedly used in the following section. Red points correspond to the vertices of the
disorientation space, whereas green points were randomly sampled. The latter were first
sampled on the unit quaternion sphere with a uniform probability distribution, then were
converted to Rodrigues vectors. The representative in the disorientation space is then
computed with the method by Grimmer (1974).

From T , L and a Rodrigues vector d , the macroscopic stress tensor η
∼

can be computed
with the methodology described in subsection 2.3. However the 1-axis plays a special
role in the spring element applying boundary conditions (Eq. (12)). The computations
were found to be more stable when η11 is the maximal component on the diagonal of η

∼
.

The principal axes of η are thus cyclically permuted until this condition is reached. This
operation is compatible with cubic symmetry and does not change the equivalence class of
loading orientations.

The component E11 does not take into account rotations of the loading axes, and cannot
be used to compare simulations in different loading orientations. By extension of the
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Figure 10: Disorientation space representing all loading orientations with respect to the cube, along with
simulation points frequently used in this study

diagonal case, the following definition of the failure strain is proposed. At the onset of
localization tloc (where t is the fictitious time driving the simulation), the macroscopic
deformation gradient F̄∼ (tloc) is extracted. If eI is the normalized eigenvector of η

∼
, associated

to its largest eigenvalue, Eloc can be defined as:

Eloc = F̄∼ (tloc) : (e I⊗ e I) (29)

This is equivalent to rotating the deformation gradient in the principal frame of the applied
stress, and extracting the new component E11:

Eloc =
[
QT · (F∼ loc−1∼) ·Q

]
11 (30)

where the notation of Eq. (14) is used. In the case of diagonal loading, Q is the identity,
and the previous definition of Eloc is recovered.

4.2. Results for general loading orientations
With the preceding formalism, simulations with any loading orientation can be per-

formed. Before exploring the full orientation space, the simpler case of a rotation with
respect to one axis of the cube is studied (Fig. 11). For the condition (T = 1, L = −1),
simulations are performed on the unit cell and two random cells. The applied stress is

24



rotated with various angles around the second or third axes of the cubes. In the Rodrigues
formalism, d is collinear with e 2 or e 3. As L = −1 is an axisymmetric case, rotation
around e 1 has no effect on the applied stress. For the unit cells, results for the second and
third axes are identical, due to symmetry. Failure strain decreases as the angle of rotation
increases, until a minimum is reached at approximately 35◦. Notwithstanding the angular
discretization, this is fully consistent with the results by Barsoum and Faleskog (2011), who
found a minimum for an angle of 37◦. On the other hand, the two random microstructures
show a more complex dependence of the failure strain with respect to the angle of rotation.
The symmetry between the axes 2 and 3 is lost with the random cell. Moreover, results from
R1 and R2 are quite different one from another. Minimum failure strain is not necessarily
found for an angle of 37◦ (10◦ for R1, for instance). A clear peak is found for R1 and R2
for a rotation of 40◦ around e 2. The analysis of plastic deformation fields (not presented
here) shows a transition of modes between the two sides of the peak. This phenomenon is
similar to the cusps in Fig. 3c.
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Figure 11: Dependence of the deformation at localization for different rotations around the axes (three cells,
T = 1, L =−1)

In order to explore the effect of orientation for given values of T and L, 150 different
rotations were chosen in the disorientation space. Failure strain values were computed for
these rotation points on the unit cell and the random cells at (T = 1, L =−1). Results are
displayed in the disorientation space (Fig. 12). The case (T = 1, L = 0.5) is also shown
for the unit cell. In the rest of this section, a coarser mesh with 7682 nodes (the same as in
(Cadet et al., 2021)) was chosen for the unit cell in order to limit the computational expense.
For all cases, failure strain strongly depends on the loading orientation. Note that the
minimal failure strain is systematically lower than in Fig. 11. In order to find this minimal
failure strain, restricting to rotations around the axes is therefore not justified. Values of
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failure strain appear to depend in a rather smooth way on the loading orientation: Peaks
corresponding to hesitation between modes as in Fig. 11a are scarce. Very clear trends can
be seen for the unit cell. For instance, at (T = 1, L = 0.5), Eloc appears to mainly depend
on the value of d2. However results from different cells or different values of L do not
display the same trends with respect to the loading orientation.

(a) Unit cell, T = 1, L =−1 (b) Unit cell, T = 1, L = 0.5

(c) Cell R1, T = 1, L =−1 (d) Cell R2, T = 1, L =−1

Figure 12: Deformation at localization for 150 different loading orientations, represented in the disorientation
space

After having understood the structure of the dependence with respect to Q for a given
value of L, we consider the loading condition as mainly a function of (T,L) and study the
scatter which can be attributed to the effect of the loading orientation. Computations were
performed on the three cells for various values of L, at fixed T = 1. For each value of
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L, 30 simulations with different loading orientations (visible on Fig. 10) were performed.
Results are shown in Fig. 13 as box plots, representing the minimum, first, second (median),
third quartiles and maximum for the 30 different orientations. For each cell, loading
orientation is responsible for a large scatter. An order of magnitude can sometimes be
found between the minimal and maximum failure strain for a given L. Results from the
unit cell are even more scattered, which is the sign of greater anisotropy for the localization
behavior. For L = 0, this scatter is however minimal, because the behavior of the material
imposes early localization in shear. For random cells, minimal failure strain is mostly a
symmetric function of L, with minimal value for L = 0. The curve of the minimal failure
strain is however flatter for the unit cells, due to the higher anisotropy. Counter-intuitively,
localization is thus found to take place earlier in the unit cell than in the random cells,
because the former is more sensitive to the loading orientation.
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Figure 13: Localization onsets for three cells (T = 1, varying L). Each box plot corresponds to the results of
30 different loading orientations.
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The localization mode can also be investigated depending on the loading orientation.
Fig. 14 shows the plastic deformation rate fields just after localization for the random
cells R1 (Fig. 14a to 14d) and R2 (Fig. 14e to 14h). Two loading cases are considered:
(T = 1, L =−1) (first and third rows) and (T = 1, L = 0.4) (second and fourth rows). For
each loading case, the results for the most (resp. least) resistant orientations associated to
the maximal (resp. minimal) failure strain value are shown on the left (resp right). The
failure mode for the least resistant orientation is always associated to a shear failure mode.
This is even true for the cell R2 at L =−1, for which the localization band is parallel to
the sides of the cube. For the most resistant, shear or extension modes are possible. This
shows that L is not sufficient to distinguish between the two failure modes. For a given L,
the failure mode can change depending on the loading orientation.

The link between early localization and shear failure mode can be quantified with g ·n ,
as in subsection 3.2. Fig. 15 correlates g ·n at localization and Eloc for all the simulations
on random cell R2, seen in Fig. 13b. Eloc is almost a linear function of g ·n . A small failure
strain is thus systematically associated to shear failure mode, whereas late localization is
only found with extension mode.

The results of this section show the strong influence of the loading orientation. Yet the
response of an isotropic material should only depend on the stress invariants T and L. The
dependence with the loading orientation is therefore the sign of the anisotropic behavior of
the cubic simulation cells. This anisotropy can not be avoided but could be reduced with
larger simulation cells. The random microstructures already display a smaller anisotropy
than the unit cell. As proposed by Barsoum and Faleskog (2011) and in order to obtain
conservative results, the application of simulations to isotropic models should focus on the
critical loading orientation with the minimal failure strain. This critical orientation may
vary with T and L, but is always associated to a shear failure mode.

5. Discussion

The previous results are now discussed with help from complementary simulations.
Rice’s criterion is first compared to other criteria from literature. Then the link between cell
anisotropy and the scatter of results is further analyzed. The anisotropy in yield strength is
studied, and the influence of a reduced porosity on localization is investigated.

5.1. Comparison of failure criteria for diagonal loading
In this study, Rice’s localization criterion was used to detect the failure of the cells. Its

prediction in the case of diagonal loading are here compared to those of two coalescence
criteria (Fig. 16). The energy criterion from Wong and Guo (2015) compares the macro-
scopic plastic power Ẇp and elastic power Ẇe. In the coalescence state, elastic unloading
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(a) Cell R1, T = 1, L =−1: Emax
loc = 0.32 (b) Emin

loc = 0.07

(c) Cell R1, T = 1, L = 0.4: Emax
loc = 0.57

(d) Emin
loc = 0.01

(e) Cell R2, T = 1, L =−1: Emax
loc = 0.28 (f) Emin

loc = 0.046
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(g) Cell R2, T = 1, L = 0.4: Emax
loc = 0.63 (h) Emin

loc = 0.007

Figure 14: ṗ/Ė11 just after localization, for the orientations maximizing (left) and minimizing (right) Eloc, for
the two random cells and two loading conditions (rows). To better visualize the failure mode, the deformed
mesh is represented, and a factor is applied to the displacements.
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Figure 15: Link between localization strain and localization mode (characterized by the value of g ·n ) for
varying L (T = 1, random cell R2)
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Figure 16: Comparison of the failure onsets, as indicated by three different criteria: Rice’s localization, Cadet
et al.’s (2021) criterion on the determinant of the deformation gradient rate, and Wong and Guo’s (2015)
energy criterion. All computations with a diagonal loading, at T = 1. For the random cell, the data points
from the δ and energy criteria are directly taken from (Cadet et al., 2021).

occurs far from the voids, so the ratio Ẇe/Ẇp is minimal. The δ criterion from Cadet
et al. (2021) assumes that for shear or extension coalescence modes, the macroscopic
deformation gradient rate ˙̄F∼ becomes singular (rank one for extension, and rank two for

shear). The evolution of det
(

˙̄F∼
)

can then be compared to that of a homogeneous loading.
Coalescence is thus detected when this ratio reaches zero (within a given precision). More
precise definition and implementation of these two criteria can be found in Cadet et al.
(2021).

For both the unit and random cells, localization (from Rice’s criterion) takes place
earlier than or almost at the same time as coalescence (from the two other criteria). This is
consistent with the findings by Guo and Wong (2018) and Zhu et al. (2020a). For the unit
cell, the three criteria give very similar predictions for L <−0.5 and L > 0.3. However, in
the region L ∈ [−0.5,0.3], localization takes place very early, whereas failure strain from
the energy criterion remains high and grows with L. The behavior of the δ criterion is
intermediate, with results close to that of the energy criterion, except in the immediate
vicinity of L = 0, where failure strain is minimal. This division of the Eloc–L curve in
three zones matches the results from Fig. 9. The three criteria give similar results when
the unit cell fails in extension, and quite different results for the shear failure mode. The
case L = 0 can be better understood from Fig. 6. There is early strain localization in shear,
but the failure mode ends switching to extension mode, which is recognized by the energy
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criterion. For the random cell, at low and high L, coalescence criteria give the same results.
Coalescence and localization are almost simultaneous at high L, whereas localization
occurs significantly earlier at low L (for generalized tension). In the region L ∈ [−0.5,0.4],
the energy criterion fails to detect any coalescence (effect already seen in (Cadet et al.,
2021)). The failure strain from the Rice and δ criteria both form a U-shaped curve. The
curve is wider for localization, as localization takes place earlier than coalescence. In this
region, failure takes place in shear mode and no switch to extension mode was seen in
Fig. 8. To summarize, localization always precedes coalescence. The three criteria yield
similar results for extension modes. For shear modes, the energy criterion fails to detect
coalescence whereas the other criteria can recognize this mode. The zone of low ductility
is wider for the localization criterion.

5.2. Anisotropy of the cells
The results of subsection 4.2 showed a major dependence of the failure strain on the

loading orientation with respect to the cell axes. This can be interpreted as an evidence
of an anisotropic localization behavior of the simulation cells. In order to precise this
anisotropy interpretation, we show that the dependence on loading orientation does not
only concern localization strain, but also the initial yield stress. The simulations from
Fig. 13 are analyzed again, and the maximum value of the principal stress σ̄I is extracted.
Values of σ̄I can be directly compared between simulations at different loading orientations.
Fig. 17 shows the scattering of stress values with respect to the orientation for the unit
cells and the random cells R1 and R2. This scattering is significant but is not as marked
as for failure strain values. It confirms the anisotropic behavior of the simulation cells.
Compared to unit cells, anisotropy is significantly reduced for the random microstructures,
in agreement with Fig. 13. However, the scatter of maximum stress is maximal near L = 0,
whereas the scatter of localization strain was minimal there. The anisotropic behavior, both
for localization and for initial yield stress, is due to the geometric anisotropy of the cells.
With the periodic boundary conditions, the material is a cubic array of voids and therefore
displays cubic anisotropy. The anisotropy is smaller for random microstructures because
they are associated to larger volume elements, or equivalently because the period of the
cubic array created by boundary conditions is larger (relatively to the size of the voids).

Cubic unit cells thus exhibit major anisotropy. In order to determine an isotropic
response from cell simulations, computations should be performed for many loading
orientations. For random microstructures, this anisotropy is smaller but remains significant.
With larger microstructures containing more voids, the anisotropy could probably be further
reduced, at the expense of a higher computational cost. Another method would be to use
different boundary conditions. Such a modification was proposed by Coenen et al. (2012)
to counteract the influence of the periodic boundary conditions, which are here responsible
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for the anisotropy. The most likely localization band is detected from the strain field. The
boundary conditions are then adjusted to allow the development of this band (and only this
one). Yet this approach does not seem adapted to the complex localization patterns seen in
Fig. 14 or to possible transitions of failure modes (Fig. 6).
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Figure 17: Anisotropy of the maximum principal stress, for the unit cell and two random ones. Computations
at T = 1, varying L, for 30 different loading orientations.

5.3. Effect of porosity
A single fixed porosity of 6% was considered up to now. In order to assess the influence

of the porosity, a unit cell of porosity 1% was generated with the same procedure as
previously. The only difference resides in the radius of the embedded spherical void. This
cell was subjected to the same loading conditions as in Fig. 13 and the results is presented in
Fig. 18. When compared to the 6%-porosity unit cell, a significant influence of the loading
orientation is still present. The minimal failure strain still draws a U-shaped curve, with
a minimum near L = 0. However the values of failure strain are generally higher. This is
logical as lower porosity induces higher resistance to ductile fracture. More interestingly,
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Figure 18: Strain at localization for T = 1, varying L and 30 different loading orientations, on a unit cell with
porosity 1%

the relative scatter with orientation is reduced, and the curve of minimal failure strain is
less flat than for the 6%-porosity cell. As the void is less susceptible to interact with the
periodic boundary conditions, the anisotropy is reduced for low volume fractions.

6. Conclusion

Random microstructures consisting in a perfectly plastic matrix containing a random
distribution of voids were simulated up to failure. A wide range of loading conditions,
characterized by the stress triaxiality and the Lode parameter, was studied. The orientation
of the principal directions of the applied stress with respect to the cubic cell’s axes was
systematically investigated. Failure was detected with a strain localization indicator: Rice’s
criterion computed at the macroscopic level. The major findings of this study follow:

• Rice’s criterion successfully detects the onset of strain localization, the orientation of
the localization band. Moreover it allows distinguishing two types of failure modes:
shear and extension modes.

• For diagonal loading, in which the directions of the applied stress coincide with those
of the cubic cell, a central zone of reduced ductility is found both for the unit cell and
the random cells. Shear failure mode is systematically associated to reduced ductility.

• The loading orientation strongly affects failure strain. For given stress invariants, the
values of failure strain in the least and the most resistant orientation can differ by
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more than one order of magnitude. The failure mode may depend on the loading
orientation.

• The sensitivity to loading orientation is due to the intrinsic anisotropy of the cell.
Although it affects both random and unit cells, the scatter is reduced for random
microstructures, as they are less anisotropic.

• Minimal failure strain on all loading orientations was obtained both for unit cells and
random populations of voids. It is a U-shaped function of L, minimal for L = 0. In
order to reach this minimum, considering only a rotation along a fixed axis of the
cube, as commonly done in literature, is not sufficient and general 3D rotations are
required.

In order to develop reliable models of ductile fracture, minimal failure strain should be
sought among all loading orientations. Moreover, random microstructures should be favored
over unit cells thanks to their lower anisotropy in localization. However the simulation of
random microstructures is significantly more computationally expensive than unit cells.
An extension of this work should be to obtain a surrogate model for the ductile fracture of
random cells. This model should require as small a number of simulations as possible by
leveraging the link between random microstructures and unit cells.

Appendix A. Validation of the computation of macroscopic tangent operator

The method for computing the macroscopic tangent operator is here validated by
comparison with other methods. Homogeneous cubes of 3× 3× 3 elements without
voids are first considered. A purely elastic material and an elastoplastic material are
considered. The formulation of Eq. (3) is used, but R0 is replaced either by Relas =+∞ or
Rhardening(p) = R0 +H p (with H = 2000 MPa). Periodic boundary conditions and a large
strain formulation are used. A diagonal loading condition corresponding to (T = 1, L=−1)
is applied. As the cubes are homogeneous, the macroscopic tangent operator is equal to the
local tangent operator, which is directly computed by the software (Zset, 2020) within the
element. Fig. A.19 compares the evolution of the Rice criterion using macroscopic tangent
operators obtained from three methods: (i) the condensation method of subsection 2.4;
(ii) the local operator within an element; (iii) taking KEE (in Eq. (23)) as a macroscopic
tangent operator. This last method is equivalent to averaging the local tangent operator over
all elements, and neglecting their interactions. The three methods give identical results
for the two types of materials, as should be. However, the averaging method only works
here because of the homogeneous cube. For the elastic material, the Rice criterion is not
constant because of the large strain formulation.
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Figure A.19: Validation of the computation of macroscopic tangent operator on homogeneous volume
elements

A more complex case is then considered with an elastic porous unit cell. Strain, and
therefore the local tangent operator, is no more homogeneous within the cell. The reference
results are now computed with a perturbation method (Zhu et al., 2020b). Regularly
during the main simulation, the state of the finite element problem is saved. Secondary
computations are then launched from the saved states by applying a small perturbation ∆F̄∼ =
e i⊗e j, with i, j ∈ [[1,3]]. The evolution of the Boussinesq stress tensor ∆S̄∼ is then observed.
The macroscopic tangent operator can then be estimated by L̄i jkl = ∆S̄i j/∆F̄kl . This method
is less practical than the condensation method because it requires launching nine secondary
computations for each output time of the main computation. More problematically, it is not
adapted to multibranch tangent operators, which is automatically the case in elastoplasticity.
Perturbations ∆F̄∼ =±e i⊗ e j may correspond to either plastic loading or elastic unloading.
Distinguishing which one corresponds to the correct evolution in the primary computation
is not easily possible a priori. This problem does not affect pure elasticity. For (T = 1, L =
−1) on the elastic unit cell, the condensation and perturbation methods give identical results
( Fig. A.20). However only taking the average of the local operators is not enough, for it
implies neglecting structural effects.

A last validation is performed by comparison with a theoretical result. The homogeneous
cube from the first validation is filled with with a softening material: Rsoft(p) = R0(1−
exp(500p) (with otherwise the same characteristics as in subsection 2.2). For a von Mises
material, according to (Besson et al., 2009), the localization should take place when
dR/d p =−E/4. This is effectively the case, as shown by Fig. A.21.
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Figure A.20: Validation of the computation of macroscopic tangent operator on an elastic unit cell
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Figure A.21: Verification of the -E/4 theoretical localization result on a homogeneous cube: for a von Mises
material with softening R(p), the localization takes place when dR/dp =−E/4
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Appendix B. Sensitivity of Rice’s criterion to simulation parameters

This section studies the influence of the temporal and spatial discretization on the local-
ization results (Fig. B.22). Simulations were carried out with diagonal loading conditions,
at T = 1 and various values of L. The fine mesh from Fig. 1c and the coarse mesh from
Cadet et al. (2021) were compared. The effect of fine time steps was also studied. As the
simulation is driven by the evolution of E11, time steps correspond to the increase ∆E11
between two iterations of the implicit Euler method. In the main study, increasing time
steps from ∆E11 = 0.0001 to ∆E11 = 0.005 were used. This allowed a sufficient precision
even in the case of early localization. Constant coarse (∆E11 = 0.005) and fine time steps
(∆E11 = 0.001) are here tried out. For the coarsely and finely meshed unit cells, the overall
appearance of the curves are similar with a plateau at low L and a zone of reduced ductility
around L = 0. The behavior at high L > 0.3 is however different with a clearer plateau for
the fine mesh. This justifies preferring the finely meshed cell in this study. Nevertheless,
the unit mesh was used for Fig. 12 and 13 in order to limit the computational cost. For the
fine cell, there is almost no effect of the time step (except at the lower end of the central
reduced zone). The effect is more pronounced for the coarse cell, especially in the L > 0.3
region. The finer the mesh and the time steps, the narrower the zone of reduced ductility.
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