
HAL Id: hal-03587262
https://minesparis-psl.hal.science/hal-03587262v1

Submitted on 24 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Learning for Optimal Energy
Management of Multi-energy Smart Grids

Dhekra Bousnina, Gilles Guerassimoff

To cite this version:
Dhekra Bousnina, Gilles Guerassimoff. Deep Reinforcement Learning for Optimal Energy Manage-
ment of Multi-energy Smart Grids. Lecture Notes in Computer Science, 2022, pp.15 - 30. �10.1007/978-
3-030-95470-3_2�. �hal-03587262�

https://minesparis-psl.hal.science/hal-03587262v1
https://hal.archives-ouvertes.fr


Deep Reinforcement Learning for optimal energy
management of multi-energy smart grids?

Dhekra Bousnina1 and Gilles Guerassimoff1

MINES ParisTech, PSL Research University, CMA - Centre de Mathématiques
Appliquées, Sophia Antipolis, France.

Abstract. This paper proposes a Deep Reinforcement Learning ap-
proach for optimally managing multi-energy systems in smart grids. The
optimal control problem of the production and storage units within the
smart grid is formulated as a Partially Observable Markov Decision Pro-
cess (POMDP), and is solved using an actor-critic Deep Reinforcement
Learning algorithm. The framework is tested on a novel multi-energy res-
idential microgrid model that encompasses electrical, heating and cooling
storage as well as thermal production systems and renewable energy gen-
eration. One of the main challenges faced when dealing with real-time
optimal control of such multi-energy systems is the need to take multi-
ple continuous actions simultaneously. The proposed Deep Deterministic
Policy Gradient (DDPG) agent has shown to handle well the continu-
ous state and action spaces and learned to simultaneously take multiple
actions on the production and storage systems that allow to jointly op-
timize the electrical, heating and cooling usages within the smart grid.
This allows the approach to be applied for the real-time optimal energy
management of larger scale multi-energy Smart Grids like eco-distrits
and smart cities where multiple continuous actions need to be taken
simultaneously.

Keywords: Deep Reinforcement Learning · Actor-Critic · energy man-
agement · smart grids · multi-energy.

1 Introduction

1.1 Context of the problem

Within the radical changes that the energy landscape is currently undergoing,
Smart Grids are playing a major role in the modernization of the electric grid [5].
These smart electricity networks have the great advantage of integrating in a
cost-effective way the behavior and actions of all the users connected to it,
including consumers, producers and prosumers, to ensure a cost-efficient and
sustainable operation of the power system while guaranteeing quality and se-
curity of supply [36]. Besides electrical networks, district heating and cooling
? Supported by the program Investissement d’Avenir, operated by l’Agence de
l’Environnement et de la Maitrise de l’Energie ADEME, France



2 D. Bousnina and G.Guerassimoff

systems also play a paramount role in the implementation of the new smart
energy systems [39]. In fact, the concept of smart thermal grids also comes up
with numerous advantages including flexibility potentials and ability to adapt
to the changes that affect the thermal demand and supply in short, medium
and long terms. Thus, Smart Thermal Grids, as well, are expected to be an
integrated part of the future energy system [4, 33]. However, research works on
the optimal control and energy management within the smart grid context tra-
ditionally focus solely on the electrical usages. Though, jointly optimizing the
electrical networks together with other energy vectors interacting with them like
heating and cooling networks has a great potential to increase the overall eco-
nomic and environmental efficiency and flexibility of the energy systems. This
idea brings about a generalization of the Smart Grid concept to Smart Multi
Energy Grids [22] that lies on the interaction between electricity and other en-
ergy sectors (like heating, cooling, gas and hydrogen) as well as other sectors
that electricity might interact with like the transport sector. Considering all
these interactions in the optimal management of energy systems allows to un-
lock considerable efficiency and flexibility potentials and represents one of the
main advantages of Smart Multi Energy Grids.
Optimal control of smart (multi-energy) grids is essential to guarantee a reliable
operation for the smart grid components and ensure an optimal management
of controllable loads, production units and storage systems while minimizing
energy and operational costs [21]. One of the most popular and widely used op-
timal control techniques is Model Predictive Control (MPC), also referred to as
Receding Horizon Control [10,25]. MPC is a feedback control method where the
optimal control problem is solved at each time step to determine a sequence of
control actions over a fixed time horizon. Only the first control actions of this
sequence are then applied on the system and the resulting system state is mea-
sured. At the next time step, the time horizon is moved one step forward and
a new optimization problem is then solved, taking into account the new system
state and updated forecasts of future quantities. This receding time horizon and
periodic adjustment of the control actions make the MPC robust against the
uncertainties inherent to the model and forecasts [11]. MPC has been used in
many successful applications in the field of Microgrid/ Smart Grid energy man-
agement including [1,26,27,38]. Nevertheless, MPC and model-based approaches
in general, rely on the development of accurate models and predictors and on the
usage of appropriate solvers. This does not only require domain expertise but
also needs to re-design these components each time that a change occurs on the
architecture or scale of the Smart Grid [12]. Furthermore, classical optimization
approaches based on Mixed Integer Linear Programming (MILP), Dynamic Pro-
gramming (DP) or heuristic methods like Particle Swarm Optimization (PSO)
generally suffer from time-consuming procedures. In fact, they have to compute
all or part of possible solutions in order to choose the optimal one, and have
to re-run a generally time-consuming optimization procedure each time that an
optimal decision needs be taken. Therefore, such methods, despite their ability
to provide quite accurate results, generally fail to consider on-line solutions for
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large-scale real data-bases [32].
Learning-based techniques, on the other hand, do not need accurate system mod-
els and uncertainty predictors and can, thus, be an alternative to model-based
approaches. Reinforcement Learning (RL) [34] has been gaining popularity over
the past few years when it comes to dealing with challenging sequential deci-
sion making tasks [6]. Nevertheless, RL-based approaches fail to handle large
state and actions spaces owing to the curse of dimensionality [41]. This ma-
jor limitation of RL can be overcome by Deep Reinforcement Learning (DRL)
which is a state-of-the art Machine Learning (ML) technique evolving through
the interface between RL and Deep Learning (DL) [23]. In other words, it com-
bines the strong nonlinear perceptual capability of deep neural networks (DNNs)
with the robust decision making ability of RL [7]. Unlike RL, it therefore ex-
hibits strong generalization capabilities in problems with complex state spaces.
One of the main advantages of DRL compared to other classical optimization
approaches is that, once it learned an optimal strategy, it can take optimal de-
cisions in a few milliseconds without having to re-compute any costly optimiza-
tion procedure. This makes DRL algorithms less time-consuming than classical
optimization approaches and makes them, as a consequence more suitable for
real-time optimization problems. DRL has, this way, shown successful appli-
cations in various real-life problems with large state spaces like Atari and Go
games [30], robotics [2, 37], autonomous driving [16,29] and other complex con-
trol tasks [23]. More recently, [3] proposed a novel assembling methodology of
Q-learning agents trained several times with the same training data for stock
market forecasting. The use of DQN aimed at avoiding problems that may occur
when using supervised learning-based classifiers like over-fitting. Other recent
successful applications of DRL include intrusion detection systems as presented
in [20]. Furthermore, [19] proposed a new ensemble DRL model for predicting
wind speed and the comparison of the proposed model with nineteen alternative
mainstream forecasting models showed that the DRL-based approach provided
the best accuracy. Moreover, Google has announced in 2018 that it gave control
over the cooling of several of its data centers to a DRL algorithm [13].

1.2 Deep reinforcement Learning in Smart Grids: related work

When it comes to the energy field, there have recently been several successful
applications of DRL for instance in the context of microgrids, smart homes and
Smart Grids, mainly for the development of cost optimization and energy man-
agement strategies. For example, [8] considers an electricity microgrid featuring
PV generation, a Battery Energy Storage System (BESS) and a hydrogen stor-
age, and adresses the problem of optimally operating these storage systems using
a Deep Q-Learning (DQL) architecture. The developed Deep Q-Network (DQN)
agent was tested on the case of a residential customer microgrid located in Bel-
gium and showed to successfully extract knowledge from the past PV production
and electricity consumption time series. However, it only takes discrete actions
for the hydrogen storage (whether to charge at maximum rate, discharge at max-
imum rate or stay idle). The operation of the BESS, on the other hand, is not a
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direct action of the DRL agent but is rather dynamically adapted based on the
balance equation of the microgrid. Similarly, [12] proposed a DQN approach to
develop real-time generation schedules for a microgrid while optimizing its daily
operational costs. DQL algorithms have also been applied in [28] for the coor-
dinated operation of wind farms and energy storage and in [18] for the on-line
optimization of a microgrid featuring PV and wind generation, diesel genera-
tors, fuel cells, electric load and a BESS. Among the various DRL algorithms,
the conventional DQL remains the most widely used approach and algorithms
such as Policy Gradient (PG) and Actor-Critic (AC) are rarely investigated. This
is primarily due to the simplicity of the DQL and to the fact that it handles well
discrete action spaces. Meanwhile, DQL can not be directly applied to prob-
lems with continuous action spaces since they need to discretize the action space
which leads to an explosion of the number of actions and, as a consequence, to
a decreased performance [9,17]. Indeed, considering only discrete actions for the
planning and control of the Smart Grid components significantly restrains their
flexibility potentials and prevents from obtaining the best optimal scheduling
and control strategies. Unlike DQL, Deep Policy Gradient (DPG) algorithms
are capable of dealing with environments with continuous actions spaces. In this
respect, [24] proposed the use of DQL and DPG for online building energy op-
timization through the scheduling of electricity consuming devices. The results
showed that DPG algorithms are more suitable than DQN to perform online
energy resources scheduling. Even though this work pioneered the use of DRL
for online building energy optimization, the actions it considers are restricted to
the on/off status of flexible load devices in a smart building. Besides, the DPG
algorithms are also often criticized for their low sampling efficiency as well as
the fact that their gradient estimator may have a large variance, which is likely
to lead to slow convergence [14]. In order to overcome this limitation, Actor-
Critic (AC) algorithms were proposed to combine the strong points of DPG and
DQL approaches by estimating both the policy and the Q-value function during
the training. In this respect, two DRL algorithms were designed for Smart Grid
optimization in [32]: on the one hand, DQL was applied for the discrete action
control tasks like charging/discharging the BESS or switching the buy/sell modes
of the grid. On the other hand, an AC algorithm named H-DDPG (Hybrid-Deep
Deterministic Policy Gradient) was developed to deal with continuous state and
action spaces. Yet, only the results of the DQN approach were presented in the
paper and benchmarked with the results of a Mixed Integer Linear Program-
ming (MILP) optimization Matlab tool. Even though DDPG algorithms were
proposed for some applications in the energy systems context namely for deal-
ing with cost optimization problems in Smart Home energy systems in [40], for
flow rate control in Smart District Heating Systems (SDHS) in [42], and for
solving the Nash Equilibrium in energy sharing mechanisms in [15], most of
these applications consider mono-action and/or mono-fluid use-cases. In other
words, they consider solely electrical or thermal Smart grids and do not con-
sider jointly optimizing the uses of several energy vectors within a multi-energy
Smart Grid. Besides, most of the previous works consider applications on the
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Smart Home or building level and do not consider testing these approaches on a
larger smart district-level. Finally, thourough comparisons of the performance of
DDPG-based approaches with other widely used techniques like MPC for deal-
ing with energy management systems in Smart Grids have rarely been reported
in the literature.
In the present work, we propose a DDPG-based approach to deal with the real-
time energy management of multi-energy Smart Grids. More specifically, we
formulated the optimal control problem as a POMDP and developed a DDPG
agent to perform real-time scheduling of the multi-energy systems within a Smart
Grid. The main contributions of the present work are the following:

– Unlike most of previous works where mono-fluid (electrical or thermal) Smart
Grids are considered, we focus on multi-energy (electrical, heating, cooling,
hydrogen) smart grids that interact with the main utility grid. A variable
electricity price signal is considered and a DRL-based energy management
system is developed to take price-responsive control actions.

– The DDPG algorithm is proposed instead of the mostly used DQN to deal
with the continuous action and state spaces inherent to the multi-energy
smart grid model. At each time step of the control horizon, multiple con-
tinuous actions are simultaneously taken by the DDPG agent to optimally
schedule the various storage systems as well as the thermal production units.

– The proposed approach is tested on a residential multi-energy smart grid
model and will be applied on a real-life district-level multi-energy smart grid
which is being currently under construction in France. More specifically, the
developed DDPG agent is aimed at operating real-time energy management
of the various energy systems within an eco-district: BESS, heating and
cooling storage systems, controllable loads of the buildings, heated water
storage tanks, as well as District Heating and Cooling production units,
Electric Vehicle Charging Stations and the public lighting of the district.

– The proposed approach is benchmarked with an MPC-based approach.

The remainder of this paper is organized as follows: in section 2, the considered
multi-energy smart grid model is described together with the optimal energy
management problem addressed in this work. In section 3, the problem is for-
mulated as an MDP and a DRL-based approach is proposed to solve it. Section
4 presents the simulations and results and finally conclusions and future work
are asserted in section 5.

2 The multi-energy smart grid model and optimal control
mechanism

The Smart multi-energy grid model considered in this paper is shown in figure 1.
It is composed of residential electric, heating and cooling loads, distributed en-
ergy generators (PV panels), heating and cooling production units consisting of
geothermal Thermo-Refrigerating Heat Pumps (TRHPs), a BESS, a heat storage
system (by phase-change materials) and a cold storage system (by ice storage
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Fig. 1: Architecture of the multi-energy Smart Grid

tanks). The Smart Grid components are related to the main utility grid. In fact,
besides the residential electrical usages, the TRHPs also consume electric power
to produce heat and cold for the thermal needs of the buildings. At each time
step, the electric loads of the buildings are met by the local PV generation, by
discharging the BESS or by withdrawing electricity from the public utility grid.
Thermal needs in terms of heating, on the other hand, are met whether by di-
rectly producing heat via thermo-refrigerating heat pumps or by discharging the
heat storage system. Similarly, cooling loads are ensured by directly producing
cold via TRHPs or by discharging the cooling storage system.
In order to jointly optimize the operation of the multi-energy systems of the
Smart Grid, an energy management system is needed to schedule the different
controllable units while minimizing the daily operational costs. To solve this
sequential decision making problem, we formulate it as a Markov Decision Pro-
cess (MDP). In fact, the energy level of each energy storage system, at each
time step, depends only on the current energy level, together with the current
charge/discharge power, and as a consequence, the scheduling of the different
energy storage systems and production units can be formulated as an MDP
M = (S,A, T,R, γ) where its key components, the state space S, the action
space A, the reward R and the transition function T are designed as follows:

– State: the environment state at each time step t ∈ H is denoted by st and
is composed of six types of information:
st = (sStoraget , sLoadt , sDERt , sGridt , sProdt , sTempt ) where sStoraget ∈ SStorage

denotes the storage operation of the Smart Grid and describes the amount
of energy stored in each of the battery, hydrogen, heating and cooling stor-
age systems sStoraget = (sBatt , sH2

t , sHSt , sCSt ), sLoadt ∈ SLoad contains the
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h past realizations of the electric, heating and cooling loads, where h, the
history length is set as 24, so that the history length covers one day of past
realizations with time steps ∆t = 1 hour. Similarly, sDERt ∈ SDER contains
the h past realizations of PV generation, sGridt ∈ SGrid contains the h past
realizations of the electricity prices as well as the amount of power with-
drawn from the main utility grid at time step t, sProdt ∈ SProd contains the
quantities of heat and cold produced by the TRHPs at time step t. Finally,
sTempt ∈ STemp contains both the indoor and outdoor temperatures.

– Action: the aim of the energy management system is to decide the charg-
ing/discharging power of each energy storage system PSS , the amount of
energy to be purchased from the public utility grid PGrid and the thermal
energy (heat or cold) produced by the TRHPs QTRHP .

– Reward: when an action at ∈ At is applied on the system, this triggers the
environment to move from state st−1 to state st and hence a reward rt is
obtained. Since the aim of the agent is to minimize the total energy costs
within the Smart Grid, the reward signal rt corresponds to the negative of
rescaled instantaneous operational revenues at time step t:

rt = −α.[Cgen.Pgen(t) + Cgrid(t).Pgrid(t)] (1)

Where Cgen is the cost of distributed power generation and Cgrid(t) is the
cost of power purchase from the public utility grid ie the variable energy
price, and α is a factor by which we rescale the cost function, such that

0 < α ≤ 1 (2)

3 The proposed Deep Reinforcement Learning-based
approach

RL is an Artificial Intelligence (AI) paradigm where the AI agent interacts with
its environment by taking actions over a sequence of time steps in order to
maximize a cumulative reward signal [34]. At each time step t, the agent performs
a control action at based on the measure of the current state of the environment
st and receives, in return, a reward rt and information on the new state of the
environment st+1 for the next time step t+1. This way, the RL agent learns an
optimal control policy through the interaction with the environment as shown
in figure 2.a.

DRL [23] is a family of methods which evolve through the interface between
RL and DL. Such a combination of RL and DL has recently shown its ability
to learn complex tasks directly from high-dimensional inputs. DRL methods are
divided into two main types, namely value-based and policy-based methods. In
value-based methods, the neural network learns the optimal Q-function Q∗(s, a)
of each action a given a state s, which is the maximum sum of rewards rt
discounted by a factor γ at each time step t achievable by a policy π = P (at|st)
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(a) (b)

Fig. 2: (a) : The agent-environment interaction in Reinforcement Learning; (b) : The
actor-critic architecture, from [34].

after taking and action at given a state st:

Q∗(s, a) = max
π

E[rt + γ.rt+1 + γ2.rt+2 + ...|st = s, at = a, π] (3)

Meanwhile, for policy-gradient methods, the artificial neural network learns a
probability distribution of the action a at a given state s instead of computing
the Q-function. Value-based methods are known to be suitable for discrete action
spaces whereas policy-based algorithms handle well continuous actions spaces.
This work proposes an application of the DDPG (Deep Deterministic Policy Gra-
dient) algorithm which is a policy-based algorithm belonging to the actor-critic
(AC) family [31]. AC methods rely on the idea of combining DPG and DQN:
the policy function µ(s, θµ) is referred to as the actor where θµ represent the
weights of the actor network. It specifies the current policy by deterministically
mapping states to a specific action. The value-function Q(s, a) is known as the
critic and produces an error signal given the state, the output of the actor and
the resultant reward signal as shown in figure 2.b [17].
When the agent takes an action at, under a given state st, according to a policy
µ(s, θµ), the value of reward is given by the Bellman equation [35]:

Qµ(st, at) = Eµ[rt + γ.Qµ(st+1, µ(st+1, θ
µ))] (4)

The Q-network loss function is then given by:

L(θQ) = Eµ[(Q(st, at|θQ)− yt)2] (5)

where
yt = rt + γ.Q(st+1, µ(st+1|θQ)) (6)

The performance objective which measures the performance of the policy µ is
given by:

Jβ(µ) =

∫
S

ρβ(s)Qµ(s, µ(s))ds (7)

Where ρβ is the probability-distribution function of st. The aim of the training
process is to maximize performance objective Jβ(µ) while minimizing the loss
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function L(θQ). The training process of the used DDPG algorithm implemented
in this work is given by Algorithm1, also described in [15].

Algorithm 1: DDPG algorithm
Initialize the actor network µ and the critic network Q with random weights
θµ and θQ ;

Initialize target network µ′ and Q′ with the weights θµ
′
← θµ and θQ

′
← θQ;

Initialize the experience replay Buffer B ;
for episode← 0 to Nepisodes do

Initialize a random process R for action exploration;
Get initial observation of state S1 at time step t = 1;
for T ← 1 to Nsteps do

Select action at = µ(st|θµ) +Rt according to the current policy and
exploration noise ;

Execute action at in the environment and observe the resulting reward
rt and the new state st+1 ;

Store the transition (st, at, rt, st+1) in experience replay buffer B;
Sample a random mini-batch of N transitions (si, ai, ri, si+1) from B ;
Set yi(ri, si+1) = ri + γ.Q′(si+1, µ

′(si+1|θµ
′
)|θQ

′
) ;

Update the critic by minimising the loss
L = 1/N

∑
iQ(si, ai|θQ)− yi)2 ;

Update the actor policy using the policy gradient
∇θµ1/N

∑
s∈B Q(s, µ(s|θµ)|θQ) ;

Update the target networks: θQ
′
← (1− ρ).θQ + ρ.θQ

′
and

θµ
′
← (1− ρ).θµ + ρ.θµ

′

end
end

This algorithm was integrated in a specifically-designed multi-energy Smart
Grid energy management framework where the DDPG agent interacts with the
Smart Grid environment to generate an optimal schedule of its various energy
systems. The Smart Grid environment describes the dynamics of the energy



10 D. Bousnina and G.Guerassimoff

systems within the Smart Grid and is modeled as follows:

min

H∑
t=1

Cgen.Pgen(t) + Cgrid(t).Pgrid(t) (8a)

s.t. PGrid,t = PLoad,t + PBat,t + PH2,t + Ppv,t + PTRHP,t ∀t (8b)

QH−prodTRHP,t +QC−prodTRHP,t = COPTRHP .PTRHP,t∀t (8c)

QH−prodTRHP,t = QH−load,t +QHS,t∀t (8d)

QC−prodTRHP,t = QC−load,t +QCS,t (8e)

P
(i)
t = P

(i)
ch,t + P

(i)
disch, t ∀i ∈ SS,∀t (8f)

E
(i)
1 = E

(i)
init.(1− k

(i)
sd ) +∆t

(
P

(i)
Ch,0ηCh − P (i)

Disch,0
1

ηDisch

)
∀i ∈ SS (8g)

E
(i)
t+1 = E

(i)
t .(1− k(i)sd ) +∆t(P

(i)
ch,t.ηch −

1

ηdisch
.P

(i)
disch,t ∀i ∈ SS,∀t (8h)

E
(i)
min ≤ E

(i)
t ≤ E

(i)
max ∀i ∈ SS,∀t (8i)

P
(i)
min ≤ P

(i)
t ≤ P (i)

max ∀i ∈ SS,∀t (8j)

Where ∆t is the time slot (set to 1hour) and H is the optimization time horizon.
Equation (8a) represents the cost function to be minimized, equations (8b) to
(8e) express the electrical and thermal power balance within the Smart Grid,
equations (8f) to (8h) express the dynamics of the multi-energy storage systems
within the Smart Grid and equations (8i) to (8j) express the limitations on energy
and charge and discharge power of each storage system, while SS represents the
set of energy storage systems within the Smart-Grid.

4 Implementation details, simulations and results

A framework was developed based on the previously described DDPG algorithm
and tested on the designed environment of a residential consumer multi-energy
smart grid which parameters are given in table 1. During the training process,
the DDPG agent was provided with three years of actual past realizations of
PV generation, electric loads and electricity prices, as well as simulated data of
heating and cooling loads and indoor and outdoor temperatures, for a residential
consumer located in France. The historical data of a typical day in winter and
in summer can be visualized in figures 3.a and 3.b. As in [8], we split the time
series into a training set and a validation set that correspond to a different one
year of historical data each. The Deep Neural Network (DNN) obtained at the
end of the training process is then used in a test environment to provide an
independent estimation of the final policy. Finally, to evaluate the performance
of the proposed DRL approach, we use a benchmark solution that we refer
to as "theoretical MPC". In this solution, we use an MPC controller that is
supposed to have, at each day, a "perfect knowledge" of the stochastic system
variables for the next 24 hours. Unlike the DDPG, the MPC was given the
actual future realizations of the unknown quantities in the predictor. The MPC
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Fig. 3: Historical data used for (a): a typical winter day ; (b) : a typical summer day.

Table 1: Implementation details.
Parameters of the Smart Grid Optimization parameters
size of the battery ξbat: 15 kWh DDPG number of training episodes: 5000
Battery charge/discharge efficiency ηbat: 90% DDPG number of training steps 438.105

size of the hydrogen ξH2: 1,1 kWh DDPG learning rate of the actor:
Hydrogen charge/discharge efficiency ηH2: 65% DDPG learning rate of the critic: 0,0001
size of the heat storage ξHS : 1,2 kWh DDPG learning rate of the critic: 0.0002
HS charge/discharge efficiency ηHS : 75% DDPG discount factor γ: 0, 99
size of the cooling storage ξCS : 0,8 kWh DDPG and MPC time step: 1hour
CS charge/discharge efficiency ηCS : 75% DDPG reward rescale factor α : 0, 001
Average electric consumption/day : 18 kWh/day MPC time-horizon: H = 24 hours
Peak power generation of PV: 15 kWp Solver used in MPC optimization: GLPK
Maximal heat/cold generated by TRHP :50 kWh

with a time step t = 1 hour and a time horizon H = 24 hours was run for
a one-year simulation, with the objective of minimizing the total operational
costs. As shown in figure 4, the performance of the proposed DDPG-based
approach is close to "theoretical MPC" optimum. These results demonstrate the
effectiveness of the proposed DRL approach for multi-energy management of
Smart Grids under uncertainty. The DDPG was able to take multiple scheduling
continuous actions simultaneously and succeeded to extract knowledge from the
past realizations of the stochastic variables. The DRL agent learnt a strategy
similar to the optimal strategy given by the MPC-based approach. We notice
for instance that the DRL agent successfully learnt to purchase electricity from
the main utility grid at low price periods and to rather discharge the storage
systems during peak price periods. It also successfully learnt to maintain the
power balance within the multi-energy Smart Grid.
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DDPG

Theoritical MPC

Fig. 4: Learning curve of the DDPG approach for a 5000-episode training process

5 Conclusion

This paper presented a DRL-based approach to deal with optimal energy man-
agement of multi-energy Smart Grids. The considered sequential decision making
problem was formulated as an MDP and is addressed using a Deep Determin-
istic Policy Gradient (DDPG) algorithm. The developed framework was tested
on the model of a multi-energy smart grid where the DDPG agent was designed
to optimally schedule the various energy storage and thermal production units.
The simulations showed that the agent handles well the continuous state and
action spaces and learns to take multiple control actions simultaneously. Bench-
mark tests were conducted using a "theoretical MPC" solution to evaluate the
performance of the proposed approach. Results showed that the total rewards
obtained by the DDPG algorithm were close to the theoretical optimum and
thus showed the effectiveness of the proposed DRL-based approach for dealing
with optimal energy management of multi-enenrgy Smart Grid. More detailed
results regarding the behavior of the policy will be given at the conference and
will be the subject of upcoming papers. Future works also include the exten-
sion of the smart grid model to a district level smart grid where further devices
are to be controlled including Heated water Storage tanks and other buildings
controllable loads, Electric Vehicle Charging Stations and public lighting of the
district. The proposed framework will also be applied on a real-life project of a
multi-energy smart grid currently under construction in France.
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Nomenclature

PGrid Grid power consumption
Pgen Distributed power generation
CGrid Cost of power purchase from the grid
Cgen Cost of distributed power generation
PLoad Load power
Ppv PV power generation
PBat Battery power
PH2 Hydrogen storage power
PTRHP electric power consumed by TRHP
QH−prodTRHP,t heat produced by TRHP
QC−prodTRHP,t cold produced by TRHP
COPTRHP Coefficient of performance of TRHP

QH−load heating load
QC−load cooling load
t Time step
P(i) power of a storage system i
P

(i)
Ch Charging power of a storage system i
P

(i)
Disch Discharging power of a storage system i
P

(i)
min minimum power of storage system i
P

(i)
max maximum power of storage system i
η
(i)
Ch Charging efficiency of a storage system i
η
(i)
Disch Discharging efficiency of a storage system i
k
(i)
sd self-discharge rate of a storage system i
E

(i)
init energy initially stored in storage system i

E(i) energy stored in storage system i

Acronyms

PV Photo-voltaic
SoC State of Charge
MG Microgrid
SG Smart Grid
TRHP Thermo-Refrigerating Heat Pump
SDHS Smart District Heating System
MPC Model Predictive Control
MDP Markov Decison Process

ML Machine Learning
DL Deep Learning
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DQN Deep Q-Networks
DQL Deep Q-Learning
DPG Deep Policy Gradient
DDPG Deep Deterministic Policy Gradient
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