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Context of the problem

Generation Storage Consumption

Figure: The Meridia Smart Energy eco-district - Energy systems
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Optimization Objectives

@ Reduce energy consumption, load peaks and energy bills
@ Maximize self-consumption and energy self-sufficiency

@ Minimize GHG emissions related to energy consumption and
mobility

o Value flexibility potentials of the Smart Grid (ancillary services)
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Optimization Objectives
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Figure: Flexibility potentials in the MSE Multi-energy Smart Grid
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Optimization objectives

Intrad
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Planning optimization problem Control optimization problem

Figure: Optimal planning and optimal control of the energy systems
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e A wide range of methods: Exact (LP, MILP), predictive
(MPC), meta-heuristics (genetic algorithms, PSO)

@ Time-consuming, not suitable for on-line solutions, large-scale
databases

@ Rely on accurate models and predictors, appropriate solvers
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Figure: Reinforcement Learning paradigm (Sutton & Barto, 2018)
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Figure: Deep Deterministic Policy Gradient
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Input data

Figure: Example of historical data for a typical winter day/ summer day
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A benchmark solution: MPC
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Figure: Model Predictive Control
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Some results
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Figure: Learning curve for a 5000 episode training
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Some results

HS soc: State of charge of the heating storage
S soc: State of charge of the cooling storage

S0C_bat: State of charge of the battery
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Summary and future work

@ This work proposes a strategy for the optimal operation of a
multi-energy Smart Grid

@ It uses a DRL approach (Deep Deterministic Policy gradient
algorithm)

@ Future works include a further comparison of the performance
the DRL approach with the benchmark solutions

@ The model of the environment will be replaced with the digital
twin, then with the district-level real-life Smart Grid
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Thank you for your attention!
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