
HAL Id: hal-03565161
https://minesparis-psl.hal.science/hal-03565161

Submitted on 10 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Data Replication and Placement Strategy in
Geographically Distributed data centers

Laila Bouhouch, Claude Tadonki, Mostapha Zbakh

To cite this version:
Laila Bouhouch, Claude Tadonki, Mostapha Zbakh. Dynamic Data Replication and Placement Strat-
egy in Geographically Distributed data centers. Concurrency and Computation: Practice and Expe-
rience, 2023, 35 (14), �10.1002/cpe.6858�. �hal-03565161�

https://minesparis-psl.hal.science/hal-03565161
https://hal.archives-ouvertes.fr

Received ; Revised ; Accepted
DOI: xxx/xxxx

Dynamic Data Replication and Placement Strategy in
Geographically Distributed data centers

Laila Bouhouch1 | Mostapha Zbakh1 | Claude Tadonki2

1National School of Computer Science and
Systems Analysis, Mohammed V
University in Rabat, Morocco.

2MINES ParisTech-PSL / CRI, Paris, France.

Abstract

With the evolution of geographically distributed data centers in the Cloud Computing
landscape along with the amount of data being processed in these data centers, which
is growing at an exponential rate, processing massive data applications become an
important topic. Since a given task may require many datasets for its execution and
the datasets are spread over several different data centers, finding an efficient way to
manage the datasets storage across nodes of a Cloud system is a difficult problem.
In fact, the execution time of a task might be influenced by the cost of data trans-
fers, which mainly depends on two criterias. The first one is the initial placement
of the input datasets during the build-time phase, while the second is the replica-
tion of the datasets during the runtime phase. The replication is explicitly consider
when datasets are being migrated over the data centers in order to make them locally
available wherever needed. Data placement and data replication are important chal-
lenges in Cloud Computing. Nevertheless, many studies focus on data placement or
data replication exclusively. In this paper, a combination of a data placement strat-
egy followed by a dynamic data replication management strategy is proposed, with
the purpose of reducing the associated cost of all data transfers between the (distant)
data centers. Our proposed data placement approach considers the main character-
istics of a data center such as storage capacity and read/write speeds to efficiently
store the datasets, while our dynamic data replication management approach consid-
ers three parameters: the number of replicas in the system, the dependency between
datasets and tasks and the storage capacity of data centers. The decision of when
and whether to keep or to delete replicas is determined by the fulfillment of those
three parameters. Our approach estimates the total execution time of the tasks as well
as the monetary cost, considering the data transfers activity. Our experiments are
conducted using Cloudsim simulator. The obtained results show that our proposed
strategies produce an efficient data management by reducing the overheads of the
data transfers, compared to both a data placement without replication (by 76%) and
the selected data replication approach fromKouidri et al. (by 52%), and by improving
the financial cost.
KEYWORDS:
Big Data, Cloud Computing, Data Placement, Dynamic Data Replication, Cloudsim.

2 BOUHOUCH ET AL

1 INTRODUCTION

With the expansion of Internet technologies and virtualization, Cloud Computing has established a new and exciting computing
paradigm for common applications in various areas such astronomy5, physics6 and bioinformatics7, to name a few. It provides
several services8 like high performance computing resources, distributed computing, mass storage devices and lower cost of
infrastructure (pay-as-you go model), and can scale as desired by considering a geo-distributed data center configuration.
Nowadays, various applications produce terabytes or even petabytes of data9 that need to be efficiently analyzed, stored

and processed. In addition, some data need to be exchanged and shared between different actors of the data market. Hence,
scientists and industrials have adopted Cloud Computing environment as a good solution to deploy large-scale data applications
and thereby simplify storage, partitioning, distribution and assignment of massive data over distant heterogeneous nodes of a
given cluster10. Moreover, the principle of geographically distributed data centers brought a great value for these Cloud-based
platforms by improving the access times, availability and scalability of the stored data, where the heterogeneity refers to main
characteristics of a data center such as hardware type, storage capacity and processing speed.
There are many challenging problems for deploying big data applications in a Cloud environment11. Sometimes it is hard to

get enough space available to store a large amount of data, and it might quiet expensive to move datasets between data centers
when the tasks of of a given workflow need them (i.e. when the source data center is different from the target one where the
requesting task is being executed).
In addition, the resources are provided in a cost-effective manner3. This trend toward economy-based systems raises new

challenges for interactions between Cloud providers and users. As the user might need to adjust its current configuration, Cloud
resources are provided in an elastical way and the monetary cost is determined on the pay-as-you-go basis4. Like any eco-
nomic enterprise, Cloud service providers seek maximal profit. For this purpose, an efficient data management is essential as it
contributes to obtain better performances.
However, in large-scale applications executed across different and distant data centers, a given task might require several input

datasets, but there is guarantee that both the task and the required datasets are in the same data center. If the required datasets
are not locally available on the same node than that of the consumer task, then they have to be transferred via the network. Thus,
migrating these (large-sized) datasets obviously impacts the global execution time of the job. An inefficient data management
can lead a severe penalty on the execution time as well as on the monetary cost. In the literature, many techniques are available
to boost the performance of Cloud environment16,17,18 such as initial data placement19 and data replication20 strategies. In fact,
data placement strategies aim to reduce the total volume of data transfers. The idea is to store the datasets in the appropriate data
centers before starting the workflow execution. Afterwards, data replication strategies, which might be dynamic, also aim to to
decrease the overall cost of data transfers through the use of replicas at runtime (after using a requested dataset, it might be kept
as a copy to serve further requests in a most efficient way through the election of the best source). These techniques are regularly
improved by the researchers at various levels. However, most of studies focus on the placement and the replication separately30.
In our work, we improve and combine the two techniques of initial placement of the datasets over data centers and efficient

management of data replication during the workflow. The main goal is to reduce the time and cost cost of data migrations.
Our two-phase strategy starts with a static placement, considered before starting the execution (build-time phase) and is based
on our previous work2. It carefully places the datasets over the distributed data centers considering the heterogeneity of their
characteristics (read/write speeds, network bandwidth). We start by computing the matrix of the transfer costs, that gives the
global transfer time of every dataset from all possible locations to all possible destinations (the destination is where the dataset
is requested by a given task for its execution). Then, using that costs matrix, a greedy algorithm is applied to optimally decide
about the final location of the datasets. In other words, instead of reducing the number of data movements among data centers,
which does not ensure reducing the time consumption, we directly focus on reducing the data transfers time cost through an
appropriate formulation. Henceforth, all the required datasets for a given task will be efficiently transferred to the corresponding
data center.
The second phase of our strategy is replication, which is performed itertaively at runtime and aims to manage (keep or delete)

multiple copies of the datasets. We are aware about the fact that a replication is automatically handled during the build-time
phase by the Cloud system itself, but we do not consider this explicitly in our initial placement because we need to exploit the
efficiency of our proposed dynamic replication strategy. Our proposed replication strategy takes advantage of the data movement
that occur during tasks execution. In other words, when a gievn dataset are transferred from one location to another, a data
replication might be considered. In order be able to create a new replica when there aren’t enough space, we decide which copy to

BOUHOUCH ET AL 3

keep or delete following a specific procedure. Three parameters are considered our choice: (1) the minimum number of replicas
that should exist in the entire system to ensure availability, (2) the dependency between datasets and future tasks, and (3) the
storage capacity of the data centers to avoid saturation . Our main objective is to further minimize the total task execution time
and financial cost through an efficient management of the datasets as previously explained.
We evaluated the performance of our strategies through simulations using Cloudsim tool. We illustrate that our strategy not

only reduce the time consumption of data migrations but also decrease the monetary cost.
The rest of the paper is organized as follows: Section 2 presents a summary of the related works on data placement and data

replication strategies. In section 3, we present and describe our model. Section 4 explains in details our static data placement
algorithm followed by our dynamic data replication algorithm. Section 5 present a case study and discusses the experimental
results obtained using an extension of Cloudsim toolkit. Finally, we draw our conclusions and future work in section 6.

2 RELATEDWORK

We present the related literature and give a summary of some existing works on data placement (static) and on data replication
(dynamic). Finding an optimal data placement is considered as a critical issue in geographically distributed data center systems,
mainly because of the important cost of each transfer. A reasonable data placement strategy definitely reduces the time overhead
of data migration. Several disseminated studies propose different techniques related to that concern.
Authors of21 propose a K-means algorithm to solve the data placement problem. They distribute the data over the data centers

based on a dependency matrix that they first compute, and they chose to store strongly interdependent datasets into the same
data center. In22, the authors consider a data placement algorithm based on the genetic algorithm paradigm, where a better
solution is produced at each new generation. They get a better approximated-optimal solution for placing and scheduling datasets
compared to a Monte Carlo algorithm and the exhaustive search algorithm. The work in23 contains two contributions: (1) a
genetic algorithm based on a heuristic approach, (2) a load balancing procedure over the data centers taking into account the
constraints related to the workload and the storage capacity. The combination of the two strategies reduces significantly the
amount of data transfers. Another contribution is described in24, where the datasets are clustered based on the correlation
between them. The size of the datasets is considered as the main factor for the correlation that is used for the clustering procedure.
In25, the proposed data placement strategy aims to decrease the total amount of data migrations between virtual machines based
on a genetic algorithm. The most interdependent datasets are placed on the same virtual machine. The data transfer rate between
virtual machines is also considered.
However, as far as we know, most of the afromentioned works mainly focus on reducing the number of data migrations

rather than the time consumption of data transfers, which is the current interest. In fact, while processing a data intensive
application in a geographically distributed data centers, multiple datasets are migrated from one data center to another distant
location. Considering the heterogeneity of the data centers in terms of storage capacities, processing and read/write speeds and
the bandwidth of the connections, the total cost of data transfers will definitely affect the overall efficiency. So, only reducing
number of data movements over distributed data centers is not equivalent to decreasing the data migrations time cost. For this
reason, in this work, we propose a data placement strategy in order to minimize time to transfer datasets when running large-scale
applications in a Cloud Computing environment and consequently improve the global performance.
Beside data placement technique in managing big data applications, there is also the data replication technique which is

adopted to create multiple copies of datasets and geographically disperse them. The main goal of replicating data is to improve
data availability by saving bandwidth consumption which is a considerable obstacle that impacts data access, reduce the data
transfers amounts/costs and minimize execution time when tasks are processed in the Cloud. Given this, data replication man-
agement is considered one of the hot spot researches in large-scale distributed systems. The data replication strategies can be
categorized into two types: static replication12,13,14,15 and dynamic replication26,27,28,29,30,31. Static data replication strategies
create and manage replicas manually and are incapable to be adjusted with the various changes especially in a large-scale Cloud
systems. While the dynamic data replication strategies are able to automatically generate and delete replicas as things keep
going. Hence, studies defined new dynamic techniques to deal with this major issue.
Authors in work26 suggest a data replication strategy to ensure a good response time of tenant’s query while satisfying the

Cloud provider in term of economic profitability. The replication process is triggered only if it doesn’t effect the expenditures of
the provider and if the estimated response time of the query is greater than the response time threshold. In27, authors propose a
two-step big data replicas placement strategy where the first step aims to group tasks using the same replicas. While the second

4 BOUHOUCH ET AL

step aims to group datasets that are used together by the same tasks. The main goal of this work is to reduce the data movement
among data centers when executing tasks and progress task parallel execution. Authors of28 suggested a replica placement
algorithm to minimize the response time of the workflow while reducing the number of replicas. The replica placement strategy
established some parameters such as the size of replica, the number of replicas accesses andwhen the replica was requested lately,
in order to rationally decide about which datasets to replicate and which one no to due of the storage limitations. Results of this
work show the efficiency of the proposed algorithm regarding the response time, the network usage, the replication frequency
and also the storage usage. The data replication strategy proposed in29 aims to minimize the cost of data communication and
data storage. Their approach is based on three parameters: datasets dependencies, access latency for each dataset and data centers
capacities. The replication process is done in the pre-built phase, after the initial data placement is accomplished. In30, authors
combined job scheduling and dynamic replication strategies into one framework to better minimize the total response time
and data movement among virtual machines. The most frequently used datasets are replicated and stored in the machine that
contains enough storage space and doesn’t already store the replicate dataset. This work shows better results when strategies
are applied together. The study in31 proposed an adaptive geo-replication strategy inspired by Ant Colony algorithm. Their
algorithm dynamically determines the number of replicas, the location of replicas and when replicas are deleted from a site based
on predefined thresholds. Read and write operations on data centers were taken into consideration to implement the strategy and
results provided an optimal solution in terms of availability/accessibility, scalability and latency.
To the best of our knowledge, the afromentioned contributions on data replication approaches do not take into account the

replicated data resulting from data movement during task execution, which we address in our paper. In fact, we proposed a
replica management strategy to take advantage of these replicated datasets and that occur as a result of dataset transfers, then
reuse them for the execution of other tasks. In this manner, we will have more datasets available on the data centers and less data
movement. Considering the number of existing replicas, the dependency between datasets and tasks that are not yet executed,
and the storage capacity, during the execution of a task, some datasets will be kept and others will be removed from a specific
data center to ensure the execution of the task. In our study, we also address the economic aspects of the replication process
in Cloud systems as well as the concept of geographically distributed data centers which are not much studied in many works.
Moreover, the objective of our study is to combine both strategies, the quantities and costs of data migration will be progressively
reduced due to the availability of datasets across data centers; therefore, the overall task execution time and the total monetary
cost of replication will be further improved.

3 SYSTEMMODEL

In order to reduce the time cost of data transfers among data centers in a Cloud Computing environment, we seek a good datasets
management through an optimal placement at the build-time phase and a skillful replication at runtime. We first list the basic
elements of our model.

3.1 Symbols and notations
Table 1 depicts the essential symbols and notations.

3.2 Description of the model
We now define the model as follows:

1. Data centers graph:We consider a system of geographically distributed and interconnected data centers. We model the
system with a graph G = (M,w, r, B).M= {mi, 1 ≤ i ≤ p} is the set of data centers. Each data center mi is characterised
by its storage capacity ci, its read speed ri and its write speed wi. Next, we consider matrix B = (bij)1≤i,j≤p to model the

BOUHOUCH ET AL 5

TABLE 1 Parameters and variables of our model

Inputs
M = (mi) mi designates the itℎ data center
C = (ci) ci is the storage capacity of data center mi
R = (ri) ri is the read speed of data center mi
W = (wi) wi is the write speed of data center mi
B = (bij) bij is the bandwidth of the connection between data centers mi and mj
Ψ = (ij) ij is the elementary data transfer time between data centers mi and mj
T = (ti) ti designates the itℎ task
� = (�i) �i is the index of the data center where task ti is assigned to (i.e. m�i)
D = (di) di designates the itℎ dataset
V = (vi) vi is the volume of dataset di
F = (fij) fij = 1 if di is required by tj , and 0 otherwise (F is the datasets to tasks assigments matrix)
� = (�ik) �ik is total cost of all necessary transfers of di from data center mk
E = (eij) eij = 1 if there is a copy of di stored in data center mj , and 0 otherwise (E is the replication matrix)
Q = (qi) qi is the total monetary cost of the data storage associated to task ti (per unit of volume)
P = (pi) pi is the total monetary cost of all data transfers associated to task ti (per unit of volume)

Objective function
WCC Total workflow data transfers cost

Outputs
Φ = (�i) �i is the index of the data center where dataset di is (indicated to be) placed (i.e. m�i)
S = (s(j)i) s(j)i is the index of the chosen source data center for di required by tj (i.e. ms(j)i)

interconnection between the data centers, where bij , 1 ≤ i, j ≤ p is the bandwidth of the connection between data centers
mi and mj . We define matrix Ψ = (ij) as follows:

 ij =

⎧

⎪

⎨

⎪

⎩

0 if i = j
∞ if mi and mj aren’t linked
1
bij

otherwise
(1)

Considering matrix Ψ is because we are interested in the transfer time, which is proportional to the volume of the dataset
and 1

bij
(it is the product of both). Thus, the cost of transfering a dataset of volume v from mi to mj is given by:

t(v, i, j) = v × ij . (2)

2. Definition of the tasks: We assume a fixed number of tasks to be sumitted, each of which provided with its workload
(not considered here) and the required datasets for its execution. As indicated in Table 1 , we denote the group of task as
T = {t1, t2,… , tn}, where n is the number of tasks. An allocation of the tasks to the data center is provided (as input)
through vector � = {�1, �2,… , �n}, i.e. ti is executed on data center m�i . The tasks can be executed in parallel, but each
one is processed in only one data center (no task migration and no preemption).

3. Datasets to tasks assignment: The set of datasets is D = {d1, d2,… , dm}, and dataset di has volume vi. A task might
require one or several datasets and a single dataset may be consumed by several different tasks. This led us to a m × n

6 BOUHOUCH ET AL

matrix F to model the assignment of the datasets and the tasks:

fij =

{

1 if di is required by tj
0 otherwise

(3)

4. Constraints: The only constraint that is considered in this paper is related to the data center storage capacity. The total
volume of the datasets stored in a given data center should be lower than its capacity.

5. Data placement solution: This the (initial) datasets to data centers assignment that is provided as the result of a given
strategy. We use vector Φ ∈ N |D| where �i is the index of the data center that should house di, i ∈ 1,… , m. Thus

di is stored in data center m�i (4)
Our data placement algorithm is executed first to provide a datasets to data centers assignment (i.e. before the execution
of the tasks) and the objective is to minimize the cost of data migrations (i.e. moving datasets from one data center to
another) while considering the storage capacity constraint.

6. Data replication: We consider that a given dataset might be replicated in order to create several source alternatives. We
consider a m × p matrix E to indicate the data centers that hold a copy (replica) of a dataset:

eij =

{

1 if di has a replica in mj
0 otherwise

(5)

Our data replication strategy aims to complete the data placement solution by taking profit of the datasets movements
during the runtime. The idea is to create copies on-the-fly of the datasets so as to be able to chose the best source for any
given dataset required, by a task, at a given data center. Next section explains more clearly both strategies and illustrates
the benefit of combining the two approaches.

3.3 Problem formulation
Considering a workflow W and a Cloud system C, the workflow communication cost WCC is the total data transfer cost for
executing all the tasks of the workflow W in the Cloud C. WCC can be estimated using formulas 6 and 7.

WCC(W ,C) =
|T |
∑

j=1

|D|

∑

i=1
fij × � (i)(s

(j)
i , �j) (6)

where

� (i)(s(j)i , �j) =

⎧

⎪

⎨

⎪

⎩

(1
r
s(j)i

+ 1
w�j

+ 1
b
s(j)i �j

) × vi if s(j)i ≠ �j

0 otherwise
(7)

The transfer cost of task tj , 1 ≤ j ≤ |T |, is computed by considering all involved datasets (i.e. datasets i, 1 ≤ i ≤ |D|, such
that fij ≠ 0). Equation 7 sums up this cost for all the tasks. Regarding Equation 7, two cases should be considered:

• If dataset di is not locally avalaible, thus it should be migrated from its source data center ms(j)i to the target data center
m�j (where task tj is assigned to). The transfer cost is calculated considering the read/transfer/write sequence as follows:(1) di is read from ms(j)i for a duration given by vi

r
s(j)i

; (2) di is migrated (through the network) at a cost given by vi
b
s(j)i �j

; (3)
finally di is written in m�j (to be locally avalaible for tj) at a cost given by vi

w�i
. The main constraint related to storage is

that the aggregated volume of the datasets stored within a given data center should not exceeds its capacity. In contrast,
when data replication occurs, the storage capacity constraint is handled by selecting the right dataset(s) to be delete as we
will explain in Section 4.2 through our proposed strategy.

• Otherwise, since di is stored in the same data center which runs task tj , no transfer is needed.

BOUHOUCH ET AL 7

The mathematical programming formulation of our problem could be written as follows:

min
s

|T |
∑

j=1

|D|

∑

i=1
fij × � (i)(s

(j)
i , �j)

subject to
|D|

∑

j=1
vj�is(i)j ≤ ci, i = 1,⋯ , |M|

(8)

where � is the Kronecker symbol (i.e. �ij = 1 if i = j and 0 otherwise). This is what we intend to solve by a heuristic approach.

3.4 Financial cost model
Unlike traditional models or federated systems such as a data grid, the Cloud systems is essentially based on the pay-as-you-go
model26. To really benefit from this flexibility, a cost-efficient management by the provider is necessary, as well as by the user.

3.4.1 Provider’s revenue
A provider’s income is essentially the amount received from the Cloud users32. The user typically pays a fee that is associated
with the delivered services. The exact amount to be paid is determined based on defined service parameters during a billing
period. Both the provider and the user agree on the suitable services for a given working session. In our data replication strategy,
we assume that the service level agreement is satisfied. The user is not charged for the number of maintained replicas. It is the
responsibility of the provider to store the replicas in the Cloud. The user only pays for the used services and does not care about
how many replicas the provider create.

3.4.2 Provider’s expenses
The Cloud service provider has a certain number of expenses33. For every task execution, three types of cost are resulting when
required datasets are migrated from remote data centers:

• P = (pi): is the cost of the network usage related to task ti for the involved datasets migrations and replications.
• Q = (qi): is the cost of the storage space for the replicas created when executing ti.
• Penalty = (penaltyi): is the penalty paid by the provider to the user when there is a violation of the response time delay.

The data replication strategy aims to contribute in reducing this penalty by providing several potential sources for a specific
data request so as to allow for a better choice.

Our goal is to propose a replication strategy that carefully balances themonetary cost and performance improvment.With respect
to the types of cost previously described, we estimate an economic cost, denoted by FinancialCost, using equation 9:

F inancialCost = Q + P + Penalty (9)

4 PROPOSED APPROACH

In this section, we explain the main stages of our suggested approach that integrates two techniques in order to reduce the
communication cost while migrating datasets among data centers. The first technique is a data placement strategy that is executed
in the build-time phase and the second technique is a data replication strategy that is executed during the runtime phase.

4.1 Data placement strategy
Our proposed data placement algorithm is executed in the build-time before starting the execution of the tasks. It seeks an
optimal initial placement for the datasets. The procedure has mainly two steps presented in Algorithms 1 & 2 and explained in
next sections 4.1.1 & 4.1.2. In the first step, the total transfer time of the datasets between the data centers is computed based on

8 BOUHOUCH ET AL

the volume of the datasets, the read/write speeds of the disks and the network bandwidth. In the second step, a greedy algorithm
is applied based on the previously calculated transfer time to assign each dataset to the optimal data center. Our algorithm is a
heuristic, thus it should provide a good solution (not necessarily optimal) in an affordable time overhead. Even if we are aware
of the internal replication made by the Cloud system, we do not consider it explicitly in our placement algorithm.
As we know, a given dataset may be either stored in the same data center where its consumer(s) task(s) is/are executed, in

that case no migration is needed, or stored in a distant data center and thus an explicit transfer is needed.
If dataset di is stored in data center mj and is required by a task assigned to data center mk (j ≠ k). The time to transfer di

from its source mj to the target mk, 1 ≤ j, k ≤ p and 1 ≤ i ≤ m, is given by equation 10:
� (i)jk = vi × (

1
rj
+ 1
wk

+ 1
bjk
) (10)

Since dataset di could be used by many tasks, its total migration time from mj , taking into account all the tasks during the
whole execution, is given by:

�ij =
|T |
∑

k=1
fik × �

(i)
j�k
=

|T |
∑

k=1
fik(

1
rj
+ 1
w�k

+ 1
bj�k

) × vi (11)
where (reminder):

fik =

{

1 if di ∈ is used by tk
0 otherwise

Using equation (11), the aggregated transfer time matrix � = (�ij), where 1 ≤ i ≤ m and 1 ≤ j ≤ p, is thereby calculated.

4.1.1 Compute transfer time matrix

Algorithm 1 Calculate data transfer time matrix
Input:
1: M = (m1, m2,… , mp) : Set of data centers
2: T = (t1, t2,… , tn) : Set of tasks
3: D = (d1, d2,… , dm) : Set of datasets
4: C = (c1, c2,… , cp) : Capacities of the data centers
5: V = (v1, v2,… , vm) : Volumes of the datasets
6: F = (fij) : Matrix of relationship between datasets and tasks

Output:
7: � = (�ij) : Matrix of datasets transfer time from a fixed source to all target data centers
8: � = (�ij) : Matrix � sorted row by row (the aim to facilitate the selection of the best values at the row level)

// Computation of � matrix
9: for i ∈ D do
10: for j ∈M do
11: �(i, j)← 0
12: for k ∈ T do
13: if f (i, k) == 1 then
14: if j ≠ �k then
15: �(i, j)← �(i, j) + (1

rj
+ 1

w�k
+ 1

bj�k
) × vi

16: end if // Otherwise the dataset and the task are within the same data center
17: end if
18: end for
19: end for

// Sort elements of each row �(i, ∶) in ascending order
20: [�(i, ∶)]← sort(�(i, ∶)) // �i(j) = k, the ktℎ element of �(i, ∶)
21: end for

BOUHOUCH ET AL 9

Algorithm 1 calculates the data transfer timematrix asmentioned in the previous section. The algorithm complexity is depicted
as follows: (I × J × K), where I = card(M), the number of data centers, J = card(T), the number of tasks and K = card(D),
the number of datasets.
For every data di, we run through each data center mj to estimate the needed time �ij of moving di from the data center mj to

every other location m�k where one of its consumer tasks tk is assigned to (line 9 to 19). �ij in line 15 is measured using:
• Data size vi
• Read speed rj of data center mj , which is initially designed as the potential location of di
• Write speed w�k of data center m�k where di should be migrated to for the execution of task tk
• Bandwidth bj�k between the two data centers mj and m�k (task tk is executed on data center m�k)
Once the matrix � is calculated, each of its rows (line 20) is sorted in ascending order and the corresponding permutation is

provided by the array �i. More precisely, �i(j) is the index of the data center corresponding to the jtℎ migration time cost of
di in the ascending order. The goal is to get a better data center for each dataset, starting with the one that yields the smallest
transfer time, otherwise the second one, and so one. We would also like to point out that the data transfer matrix is computed
only once during our simulation and then used each time it is needed.
As an example, we consider:

• 3 data centers {m1, m2, m3}
with (c1, c2, c3) = (80, 40, 120), (r1, r2, r3) = (1, 2, 3), (w1, w2, w3) = (1.5, 2, 1) and (b12, b13, b23) = (5, 4, 6).

• 3 tasks {t1, t2, t3} with � = (1, 3, 2).

• 4 datasets {d1, d2, d3, d4} with (v1, v2, v3, v4) = (45, 20, 25, 50).
Matrix F is given by:

F =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1
1 0 1
1 0 1
0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

(12)

The matrix F shows that d1 is used by t2 and t3 (first line), d2 by t1 and t3 (second line), and so on. The corresponding graph of
the relationship between the datasets and the tasks is depicted in Figure 1 :

d
4

d
3

d
2

t
2

d
1

t
1

t
3

FIGURE 1 Relationship between datasets and tasks

10 BOUHOUCH ET AL

Then matrix � is computed by Algorithm1-line 15:

� =

⎛

⎜

⎜

⎜

⎜

⎝

177.75 75 45
34 27.33 45
42.5 34.17 56.25
112.5 83.33 0

⎞

⎟

⎟

⎟

⎟

⎠

(13)

�(1, 1) indicates global expected time to migrate d1 from m1 to m�2 and m�3 , where the consumer tasks t2 and t3 are respectively
assigned. Eventually, we sort � matrix row by row as shown in line 20 of Algorithm 1 and get new matrix � below:

� =

⎛

⎜

⎜

⎜

⎜

⎝

3 2 1
2 1 3
2 1 3
3 2 1

⎞

⎟

⎟

⎟

⎟

⎠

(14)

�(1, 1) = 3, means that the smallest transfer time of d1 in comparison to other data centers is obtained with data center m3 and
the corresponding cost is �(1, 3) = 45 units of time. In contrast, the last column of the same row (thus the same dataset) yields
the highest migration time of 177.75 (i.e. �(1, 1) and �(1, 3) = 1) obtained with data center m1.

4.1.2 Algorithm for an efficient placement
To obtain an efficient datasets placement, we implement Algorithm 2, which is the refinement of the results from Algorithm 1.
For this purpose, a greedy algorithm is applied and iteratively assigns datasets to the appropriate data centers so as to reduce
the total transfer time. After calculating the complexity of the Algorithm 2, we have the following result: (K2), where K =
card(D), the number of datasets.
We consider a variable c as an index indicating the current column within related to transfer matrix �, a variable s to present

the number of placed datasets and a binary variable placed that indicates if a dataset is placed or not.
As long as s is less than the overall number of datasets and c doesn’t exceed the total number of data centers in the system

(Algorithm 2-line 9), the following steps are done:
• We initialize max and k to -1 (line 10-11). k is the index of the most costly choice, this will be use for a relocation in case

of storage space saturation.
• We individually examine the datasets and for each one:

1. We check if the dataset is already stored (line 13). If so we check the next one. Otherwise, we select the column c
(current) of �(i) that returns index l (line 14) and is supposed to be a good initial placement for now. Next, we check
(line 15) if the transfer time is greater than the current maximum (max) and if the remaining capacity storage (cl)
allows to store the corresponding volume vi.
If the two conditions are satisfied, then we update max with the current transfer time and k with the index of the
current dataset.
Otherwise, we keep the previous values of max and k.

2. The main goal of the bloc from line 12 to line 20 is to go over all unplaced datasets and choose the one with the
biggest transfer time that can be stored in the selected data center. Thereby, the transition to the following position
�(i + 1) is avoided. The latter certainly cost more, considering that we are dealing with an ascending order.
The idea is, for a specific data center (column c), we search for the eligible dataset with the highest migration time
if placed in data center number c without violating the capacity storage constraint. Since the rows of matrix � are
sorted in an ascending order, mc gives the lowest transfer time. This is a max/min procedure and it places earlier the
dataset with the highest potential transfer cost.

• At the end of the iteration on the current column, either we selected one dataset (i.e. k ≠ 1) or we couldn’t mainly because
of the capacity storage constraint that was always blocking:
1. In the first case (line 21 to 26), dk will be stored in data center number c (considering the sorting, we consider �[k, c]

instead of c). Then we set �k = l (line 24), where l = �[k, c] specifies that dk is already stored (line 23). Next, we
refresh the storage capacity of the selected data center (line 25). Finally, we increment s to move to the next dataset.

BOUHOUCH ET AL 11

Algorithm 2 Algorithm for an efficient datasets placement
Input: /* Refinement of the datasets placement following a greedy approach */
1: c: index of the current column in the transfer cost matrix
2: s: number of already placed datasets
3: placed: binary array indicating the selection status

4: c ← 1
5: s← 0
6: for (i← 1 to m) do
7: placed[i]← 0
8: end for
9: while (s < m && c ≤ p) do
10: max ← −1
11: k← −1
12: for i← 1 to m do
13: if (placed[i] ≠ 1) then
14: l ← �[i, c] // id of our ctℎ acceptable data center choice for dataset di
15: if ((�(i,l) > max) && (cl − vi > 0)) then
16: max← �(i,l)
17: k ← i // if needed because of space constraint, we will relocate dk
18: end if
19: end if
20: end for
21: if (k ≠ −1) then
22: l ← �[k, c] // id of the acceptable data center for dataset dk
23: placed[k]← 1
24: �[k]← l // dk will be stored in data center ml

25: cl ← cl − vk // update of the capacity of data center ml as it receives dataset k
26: s++
27: else
28: c++
29: end if
30: end while
31: if (s = m) then
32: Data placed successfully !
33: else
34: Problem with data placement !
35: end if

2. In the second case, no compatible data was found, so we increase c in order to consider the next column.

• After having iterate over all the datasets and all the data centers in the system, we check if (s = m), which means that
our data placement problem was successfully resolved and that every dataset was assigned to a data center (line 31,32).
Otherwise, an issue was encountered (because of the capacity storage constraint) and some datasets couldn’t be placed
(line 34).

We apply the steps explained above to our previous illustrative example. First, we create an intermediate � ′ matrix that
corresponds to the transfer time values of � matrix (equation 14) to help us iterating over the unplaced datasets and pick the one

12 BOUHOUCH ET AL

with the greatest transfer time. � ′ matrix is given by equation 15:

� ′ =

⎛

⎜

⎜

⎜

⎜

⎝

45 75 177.75
27.33 34 45
34.17 42.5 56.25
0 83.33 112.5

⎞

⎟

⎟

⎟

⎟

⎠

(15)

� ′(1, 1) = 45 is the best transfer time for d1 and should be stored in m3 (�(1, 1) = 3); m1 (�(1, 3)) is the last location that can
store d1 with the biggest transfer time � ′(1, 3) = 177.75.
Then, we start by the first column in � matrix looking for the dataset that has the biggest time for migration. Based on the

first column of � ′ matrix, we can see that d1 (v1 = 45) has the largest transfer time (� ′(1, 1) = 45) and can be stored in m3
(�(1, 1) = 3 and c3 = 120) without violating the storage capacity constraint. Now, d1 is marked as a placed dataset and c3 the
capacity of m3 is updated to 120 − 45 = 75. We repeat the same process to place the next dataset, and this time the dataset with
the biggest transfer time 34.17 is d3. We check if m2 (�(2, 1) = 2 and c2 = 40) can store d3 (v3 = 25). Thus, d3 is saved in m2
and c2 is refreshed to 40 − 25 = 15. The next dataset to place is d2 with a transfer time of � ′(2, 1) = 27.33 and that corresponds
to m2 (�(1, 1) = 2). But since m2 (c2 = 15) has not enough space to store d2 (v2 = 20), then we skip to the next dataset which
is d4. d2 will be placed later when we move to the second column of � matrix. d4 that has a volume of 50 should be placed in
m3 (�(3, 1) = 3) since c3 = 75. By that, the new c3 is 35 and d4 is also marked as placed dataset. After going through the first
column of � matrix and since we still have d2 that is not already placed, then we need to iterate within the second column of �
matrix. Therefore, we check if m1 (�(2, 2) = 1) can store d2 with a transfer time of 34. c1 equals 80 and v2 equals 20, thus d2 is
successfully placed in data center m2 and c1 is updated to 60.
The final data placement solution is depicted in Figure 2.

m
3

t
2

d
1

d
4

120 GB

t
3

d
3

40 GB

m
2

t
1

d
2

80 GB

m
1

b
13

b
12

b

23

d
2

= 20 GB

d
3

= 25 GB

d
1

= 45 GB

d
4

= 50 GB

FIGURE 2 A sample data placement solution

4.2 Data replication placement
The proposed dynamic data replication algorithm is executed at the runtime phase and intends to manage existing and replicated
datasets while tasks are being processed. Our proposed technique is implemented following two steps as described in section
4.2.1 & 4.2.2 (Algorithm 3 & 4 successively). The first step tries to find the best data center source that owns a copy of the
required dataset for the execution of a given task. The second step aims to manage the replication of the datasets during their
transfers. It decides about the datasets to delete in case storage space saturation. The suppression process is based on the number

BOUHOUCH ET AL 13

of replicas and the dependency between datasets and tasks. It worth noting that many works deal with replication in the build-
time phase by finding a better number of replicas and a better placement before starting the execution of the tasks. Our idea in
this work is to create and reuse the replicas during the transfers of the datasets.

4.2.1 Source data center selection
The goal of this step is to find the best data center source to get the data needed in a given data center. The main idea is to choose
the data center with the smallest transfer time as done by Algorithm 3.
For each task ti, we go through all the datasets to check which ones are required for the execution of that task ti (line 18) as

follows considering a specific dataset dj :
1. If dj is available locally (i.e. the same data center m�i where ti is executed - line 19). Though, dj is either initially placedand in that case we talk about m�j (initial placement result of Algorithm 2) or already stored as a replica in m�i via a

migration process and in that case we talk about e�i,j = 1.If one of the conditions is true, then dj is indeed available locally and can be directly consumed by ti. In that case, we
increment the execution time of ti (line 20).

2. Otherwise (line 21 to line 44), dj is in different(s) source(s). For its local availability for ti, dj should be migrated from
a chosen source (if multiple ones) to m�i while considering data center’s capacity.Basically, we have two steps:
(a) Find the best distant source from where to read dj for ti. To achieve that, we go through all the data centers (line 22)

and see which ones are storing dj (original or a replica) (line 23).
For each dj found in a specificmk, we compute its migration timemt(i)(j, k) frommk (source node) tom�i (destinationnode), then save it in matrix mt(i) (line 24).
At the end, every dj will have a row j in matrix mt(i) filled with estimated time to transfer it from every distant data
center to m�i . If dj is not found in a distant source then mt(i)(j, k) is equal to∞ (line 26).
As last, we sort the row j that corresponds to dj in mt(i) matrix in ascending order and we get matrix mtS (i) where
mtS (i)(j, k) = l is the ltℎ element of mt(i)j (line 30). Then we select the first element in mtS (i)(j, 0) which gives the
best data center source msj that providing dj with the smallest transfer time mt(i)(j, sj) (line 31).
The goal of this phase is to select the best data center from where we can read our dataset, transfer it and write it
where the consumer task is executed. All the migrated datasets while executing tasks are considered as a replicas
and may be deleted if needed in case of space issue.
Now, the best source is successfully chosen.

(b) Verify m�i’s capacity where dj should be migrated to. Lines from 32 to 40 in Algorithm 3 and the function in
Algorithm 4 depict the way we deal with data centers capacities and how we manage the replicated datasets.

4.2.2 Select datasets to delete
As mentioned before while executing tasks, several datasets are moving from one location to another so as to be locally available
on the node where the consumer task is assigned to. As we create replicas on the fly, this might lead to have many replicas.
Due to storage limitation, keeping all the replicas may prevent storing new incoming useful data or creating new replicas. Thus,
we need to delete some copies whenever necessary. We propose a dynamic data replication management strategy, which is an
extension of our previous work2 about data placement. Our strategy (explained in section 4.2.2) aims to decide about which
datasets to remove or keep.
When m�i don’t have enough space available for dj (line 32 in Algorithm 3), we execute "SelectDatasetToDelete" function

(Algorithm 4), to chose which datasets to delete so as to free enough space.
In fact, the function takes two parameters: the index of the concerned data center and the arrival time arrivalT imeT ask of the
task for which we want to gather the required datasets. The steps of this function are:

1. We iteratively examine the tasks (Algorithm 4, line 2 to line 6) looking for the ones having their arrival time (wi) greater
than arrivalT imeT ask (line 3), which means they are not yet executed at that time, and add them to vector �. Then, we
compute the dependency between these tasks and the datasets as explained below.

14 BOUHOUCH ET AL

Algorithm 3 Data replication placement - Multiple sources
Input:
1: p: Number of data centers
2: M = (m1, m2,… , mp): Set of data centers
3: C = (c1, c2,… , cp): Capacities of the data centers
4: n: Number of tasks
5: T = (t1, t2,… , tn): Set of tasks
6: ! = (!1,… , !n): Arrival time of tasks for the execution
7: m: Number of datasets
8: D = (d1, d2,… , dm): Set of datasets
9: V = (v1, v2,… , vm): Volumes of the datasets

10: fij : Relationship between datasets and tasks (fij = 1 if tj needs di)
11: � = (�1,… , �n): Array of tasks assignment
12: wcc = (wcc1,… , wccn): Workflow communication cost, where wcci is the execution time of ti
13: � : Index of optimal placement of datasets
14: E: Matrix to specify if dj is a replica in mi so eij = 1
Output: S = (s(i)j): Index of chosen data center as source to migrate dj when executing ti

// Migrate data
15: for i← 1 to n do
16: wcci ← 0 // Execution time of ti
17: for j ← 1 to m do
18: if (fj,i ≠ 0) then
19: if ((m�i = m�j) or (e�i,j = 1)) then // Verify if dj is stored in local (as original or replica)
20: wcci ← wcci + 0 // No data migration is needed
21: else // dj isn’t stored in local and should be migrated to m�i
22: for k← 1 to p do
23: if ((mk = m�j) or (ek,j = 1)) then // Verify if dj is available in distant sources
24: mt(i)(j, k)← (1

rk
+ 1

w�i
+ 1

bk�i
)×vj // Compute time to migrate dj (as original or replica) from the

distant source mk to local source m�i for ti execution
25: else
26: mt(i)(j, k)←∞
27: end if
28: end for
29: //Sort row ’j’ of migration time matrix corresponding to dj , in ascending order
30: [mtS (i)(j, ∶)]← sort(mt(i)(j, ∶)) // mtS (i)(j, k) = l, the ltℎ element of mt(i)(j, ∶)
31: s(i)j ← mtS(i)(j, 0) // Select placement with the smallest transfer cost as a source
32: while ((c�i − vj) < 0) do // m�i’s capacity is not enough to store dj
33: selectedData ← SELECTDATASETTODELETE(�i, !i) // Decide which dataset to remove from m�i to

free up space and store the migrated dj , !i is the arrival time of ti
34: if (selectedData ← null) then
35: break; // PB : No replicated dataset was found to be deleted.
36: else
37: m�i .delete(selectedData)
38: c�i ← c�i + vselectedData
39: end if
40: end while
41: wcci ← wcci + fij × (

1
r
s(i)j

+ 1
w�i

+ 1
b
s(i)j �i

) × vj // Update execution time of ti that consumes dj
42: e�i,j ← 1
43: c�i ← c�i − vj
44: end if
45: end if
46: end for
47: wcc ← wcc +wcci // Compute global workflow communication cost
48: end for

BOUHOUCH ET AL 15

2. We browse over the datasets in m�i denoted by mindexDC . We only consider the replicas (Algorithm 4, line 12) and select
which one to delete. The deletion process is based on:

(a) Dependency between tasks and datasets (Algorithm 4, line 13 to line 17): this factor aims to specify how many
unexecuted tasks require each replicated dataset. So, for each tk in �, we verify which task requires the replica dj
(when fkj is equal to 1 - line 14). Then, we increment the value of depCj , which corresponds to how many tasks are
using dj .

(b) Number of existing replicas of the dataset (Algorithm 4, line 18 to line 22): this factor aims to specify the number
of existing replicas for each dataset. So, for each data center mi (line 18) we verify if it stores dj as a replica copy
(line 19). Whenever a replica is found, the value of repCj is increased by one. (repCj corresponds to existing number
of replicas of dj)
Since a dataset might be replicated many times, only those having more that maxRep replicas (here equals 2) are
eligible for deletion. Another step is added (Algorithm 4, line 24 to line 26) to present what we have previously
explained by adding each resulting dataset to the tempList list.

3. Once we establish our factors, now we can apply our strategy in Algorithm 4 (line 30 to line 39) to store the migrated
dataset locally. The approach we proposed in our work considers a lexicographic sorting to take the decision. The goal of
this sorting algorithm is to pick di that has the lowest depCounti (the least used di from the tasks not executed yet). In case
we have many datasets with the same depCount, we consider the one having the greatest repCount (the most duplicated
dataset across the other data centers).

4. As result to the lexicographic sorting, a new list sortList is created, then we choose the first element on it, which is denoted
by selectedData in Algorithm 4, line 40. selectedData shows the index of the best dataset to remove. Finally, the result
is returned to the main Algorithm 3 in line 33.

An exception is thrown if no selectedData is found (Algorithm 3, line 35), in that case the system has faced an issue and
therefore stops. Otherwise (line 37 & 38), dselectedData is deleted from m�i and its capacity is henceforth incremented.
In some cases, removing dselectedData does not free enough space for dataset dj that we want to migrate. To fix this problem we
keep processing the SelectDatasetT oDelete function until we get the a sufficient amount of available space to transfer dataset
dj (loop in Algorithm 3, line 32).
Once out of the loop, data center m�i can finally receive dj . The migration process is started and the task ti can eventually
consume dj ; the execution time of the task is updated (line 41); we indicate that dj is stored in m�i (line 41) and update the
capacity of m�i (line 43).

N.B. : The whole process as described above is repeated for each required dataset for task ti, and the execution time is updated
accordingly (line 20 or 31) to give the workflow communication cost wcci suitable for ti.
Moreover, the estimated complexity of Algorithms 3 & 4 is depicted in Table 2, where I = card(M), the number of data centers,
J = card(T), the number of tasks and I = card(D), the number of datasets.

TABLE 2 Algorithms Complexity

Algorithm Asymptotic complexity
Algorithm 3 (K4 × J × I +K3 × I2 × J +K3 × J 2 × I +K2 × J 2 × I + J ×K × I)
Algorithm 4 (K2 +K × I +K × J)

To evaluate our algorithm, we sum the wcci of every task to get the global communication cost wcc (Algorithm 3, line 47)
that will be used in the experiments described in section 5.

16 BOUHOUCH ET AL

Algorithm 4 Data replication placement - Datasets to delete from the destination node
1: function SELECTDATASETTODELETE(indexDC, arrivalT imeT ask)
2: for i← 1 to n do
3: if (!i > arrivalT imeT ask) then
4: �.add(i)
5: end if
6: end for
7: tempList← null
8: maxRep← 2 // threshold of the number of replicas for deletion consideration
9: for j ← 1 to m do
10: depCj ← 0 // dependency counter
11: repCj ← 0 // replica counter
12: if ((eindexDC,j = 1)) then // Verify if dj is a replica in mindexDC
13: for k ← 1 to �.lengtℎ do
14: if (fkj = 1) then
15: depCj ← depCj + 1
16: end if
17: end for
18: for i← 1 to p-1 do // (p-1) is the number of data centers except mindexDC
19: if (eij = 1) then
20: repCj ← repCj + 1
21: end if
22: end for
23: end if
24: if (repCj > maxRep) then
25: tempList.add(dj) // This array wil be eventually sorted
26: end if
27: end for
28: sortList← null
29: lengtℎ← tempList.lengtℎ
30: for i← 1 to m do // Lexicographic sorting
31: bestDataset ← i
32: for j ← 1 to length do
33: if (depCj ≠ depCi && depCj ≥ depCi) or (depCj = depCi && repCj ≥ repCi) then
34: bestDataset← j
35: end if
36: end for
37: sortList.add(bestDataset)
38: tempList.remove(bestDataset)
39: end for
40: selectedData ← sortList(0) // The first dataset in sortList is the best choice for deletion
41: end function

5 EXPERIMENTS AND DISCUSSION

5.1 Simulation set-up
In order to inspect the behavior of our algorithms and evaluate their impacts, we compare the following strategies:

1. Build-time strategy2: the datasets are (efficiently) stored before runtime and immediately deleted once consumed (this
was the focus of our previous work).

BOUHOUCH ET AL 17

2. Kouidri’s strategy30: he suggests to keep the most used replicas, storing them where there is enough space.
3. Combination of data placement and replication strategies: describes our two-steps approach.
For our experiments, we consider 1000 tasks, assuming that each task is assigned to one data center (no task migration). The

number of data centers is 5, 10, 15 and 25, with a uniform distribution within the range [1PB, 25PB] for the storage capacities.
In addition, for each task, we randomly assign atb most five different datasets. We limit the number of datasets to 5, 10, 25,
50, 75, 100 and 200. The sizes of the datasets are uniformly distributed within the range [1TB, 100TB]. Overall description is
shown in Table 3.
We generate different scenarios of workloads and for each, we consider 100 executions and take the mean value as the final

result. We use an extended version1 of Cloudsim34 framework, which is a well-known simulator for single and multi-Cloud
scenarios. However, it lacks handling and evaluating data migration issues, as well as providing the execution time of the tasks.
For this reason, our extension (1) proposes a module to simulate data migration; (2) implements and tests its own data migration
strategy; (3) describes data movements across geo-distributed data centers; and (4) estimates the overall time to transfer datasets.

TABLE 3 Default setting for our experiment

Components Values
of datasets [5, 10, 25, 50, 75, 100]
Dataset size [1TB - 100TB]
of data centers [5, 10, 15, 20, 25]
data center capacity [1PB - 25PB]
Storage cost $0.1 per GB
Transfer cost $0.05 per GB
Penalty cost $0.01 per violation

We would like to mention that the proposed approaches (including the greedy algorithm) can run on a real Cloud by construc-
tion, but this will require extra efforts and the results might be different from that of the simulations. Running on a real cloud,
especially with applications managing a huge volume of data, might be costly and source of several technical issues that are not
relevant for our consideration in this work. However, we consider this transition in our perspectives.

5.2 Simulation results
In our experiments, we evaluate our proposed two-steps strategy and compare the performances with the build-time phase
(without replication) and Kouidri’s approach. We mainly consider the workflow communication cost (WCC) as described in
section 3.3.
Using our extended simulation tool1, we simulate each workflow 100 times and consider the average value of the WCC.
In the first experiment, we set the number of geographically distributed data centers to 5, 10, 15, 20 and 25, and for each case

we vary the number of datasets from 5 to 200 while estimating WCC as shown in Figure 3. We can notice that in all cases, WCC
continuously increases with the growth of the number of datasets. Despite this, our results show that our combined strategy
outperforms the build-time approach (data placement without replication) and the kouidri’s work (i.e. lower global transfer time).
For example, in the case of 20 data centers, owe get a reduction of 75.31% and 48.02% respectively. Moreover, for the same
case, our strategy yields a variance of 3.67 hours for the timings with 5 to 200 datasets, while the no-replication and Kouidri
give 13.92 hours and 6.8 hours respectively. Thereby, we can say that our proposed algorithm is always better regarding the
reduction of communication cost and running time fluctuation.

18 BOUHOUCH ET AL

0

2

4

6

8

10

12

5 10 25 50 75 100 200

W
o

rk
fl

o
w

 c
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

h
o

u
r)

Number of datasets

5 datacenters

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

0

2

4

6

8

10

12

14

5 10 25 50 75 100 200

W
o

rk
fl

o
w

 c
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

h
o

u
r)

Number of datasets

10 datacenters

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

0

2

4

6

8

10

12

14

5 10 25 50 75 100 200

W
o

rk
fl

o
w

 c
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

h
o

u
r)

Number of datasets

15 datacenters

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

0

2

4

6

8

10

12

14

16

5 10 25 50 75 100 200

W
o

rk
fl

o
w

 c
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

h
o

u
r)

Number of datasets

20 datacenters

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

0

2

4

6

8

10

12

14

5 10 25 50 75 100 200

W
o

rk
fl

o
w

 c
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

h
o

u
r)

Number of datasets

25 datacenters

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

FIGURE 3 Communication cost with different number of datasets and a fixed number of data centers

BOUHOUCH ET AL 19

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h
o
u
r)

Number of datacenters

5 datasets

DataPlacement (Build-time)
 DP+ReplicationPlacement (Runtime)
Kouidiri (2018)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h
o
u
r)

Number of datacenters

5 datasets

DataPlacement (Build-time)
 DP+ReplicationPlacement (Runtime)
Kouidiri (2018)

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h
o
u
r)

Number of datacenters

25 datasets

DataPlacement (Build-time)
 DP+ReplicationPlacement (Runtime)
Kouidiri (2018)

0

0.5

1

1.5

2

2.5

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h
o
u
r)

Number of datacenters

50 datasets

DataPlacement (Build-time)
 DP+ReplicationPlacement (Runtime)
Kouidiri (2018)

0

1

2

3

4

5

6

7

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h

o
u
r)

Number of datacenters

75 datasets

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

0

1

2

3

4

5

6

7

8

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h
o
u
r)

Number of datacenters

100 datasets

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

0

2

4

6

8

10

12

14

16

5 10 15 20 25

W
o
rk

fl
o
w

 c
o
m

m
u
n
ic

at
io

n
 c

o
st

 (
h
o
u
r)

Number of datacenters

200 datasets

DataPlacement (Build-time)

 DP+ReplicationPlacement (Runtime)

Kouidiri (2018)

FIGURE 4 Communication cost with different number of data centers and a fixed number of datasets

20 BOUHOUCH ET AL

In the second experiment, as shown in Figure 4, we set the number of datasets to 5, 10, 25, 50, 75, 100 and 200 and vary the
number of geographically distributed data centers within the range [5, 25]. We observe that by increasing the number of data
centers, the WCC for the no-replication appraoch increases. In contrast, WCC seems to decrease with our approach as well as
with Kouidri.
In the case with 50 datasets, our approach gives 1.05 hours on average, next to 3.23 and 1.7 hours on average for the no-

replication and Koudiri’s algorithm respectively. Thus, our proposed approach reduces effectively the cost of data movement by
67.51% and 37.82%, respectively. The results show an increasing improvment with more and more data centers.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

DataPlacement (Build-time) DP+ReplicationPlacement

(Runtime)

Kouidiri (2018)

T
o
ta

l
co

st
 (

1
K

$
)

1000 tasks - 10 datacenters - 100 datasets - 5 datasets/task

Storage cost Network cost Penalty cost

FIGURE 5 Total monetary cost

Figure 5 shows the total monetary cost of each strategy over the simulated billing period. All strategies are evaluated from
the case of 15 data centers and varying datasets within the range [5, 200]. About the storage cost, the value looks huge with the
no-replication approach. With the other two strategies, a high number replicated datasets is produced. However, our proposed
startegy reduces the storage cost by 45% compared to the Kouidri’s strategy. In terms of network cost, the build-time strategy
generates a very high cost. Our proposed approach does have a little more network cost compared to Kouidri’s approach, but this
can be considered as a compromise to save on the storage cost. In addition, with no-replication appraoch, the high number of SLA
violations results in a high penalty. Whereas apprshow a low number of SLA violations. Based on total costs, data placement
and replication strategy reduce the total financial costs by 81.33% and 36.5% compared to the build-time and Kouidri’s strategy
respectively. This cost reduction shows the efficiency of our work in improving the performance of the Cloud system.

6 CONCLUSION AND FUTUREWORK

This paper proposes a combination of data placement and data replication to address the problem of data movements across
geographically distributed data centers in the Cloud Computing environment. Our aim is to reduce the total transfer cost of
moving the datasets between data centers when executing a given workflow. Our data placement approach is a static algorithm
that begins with creating a matrix of data migration costs followed by a greedy algorithm to get the final placement of the
datasets over the data centers. Our data replication approach is a dynamic procedure that is considered during the runtime phase.
While tasks are running, our algorithm searches for the best sources from where to get required datasets. A conjunction of
both strategies lead to noticeable improvment compare to a naive management and a selected contribution from the litterature.
Indeed, using the extension of Cloudsim framework, we compared our work with other studies in the literature and see that we
perform better regarding the minimization of time consumption for moving datasets as well as in reducing the monetary cost

BOUHOUCH ET AL 21

by re-using the replicas. As a future work, we intend to simulate our exprimental study considering Peagsus generator for more
consistency in the measurements and to implement our solution in a real platform for realistic results. Another possible future
direction to reduce the overall execution time is to propose (1) a migration strategy that considers a routing procedure for data
migration and (2) a dynamic tasks allocation in conjunction with our data management strategies.

References

1. Bouhouch L, Zbakh M, Tadonki C. Data Migration: Cloudsim Extension. In: Proceedings of the 2019
3rd International Conference on Big Data Research (ICBDR 2019); ACM International Symposium;
DOI:https://doi.org/10.1145/3372454.3372472.

2. Bouhouch L, ZbakhM, Tadonki C. A Big Data Placement Strategy in Geographically Distributed data centers. In: IEEE 5th
International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech20);
Marrakesh, Morocco; 2020.

3. I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid com- puting 360-degree compared,” in 2008 Grid
Computing Environments Workshop. IEEE, Nov. 2008, pp. 1–10.

4. M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, and A.
Rabkin, “A view of Cloud computing,” Commun. ACM, vol. 53, no. 4, p. 50, 2010.

5. Berriman G. B, Juve G, Deelman E, Regelson M, Plavchan P. The Application of Cloud Computing to Astronomy: A Study
of Cost and Performance. In: 6th IEEE International Conference on e-Science Workshops; Brisbane, QLD; 2010:1-7; doi:
10.1109/eScienceW.2010.10.

6. Coutinho E, Rego P, Gomes D, Souza J N. Physics and microeconomics-based metrics for evaluating Cloud Com-
puting elasticity. In: Journal of Network and Computer Applications; 2016:Volume 63; 159-172; ISSN 1084-8045;
https://doi.org/10.1016/j.jnca.2016.01.015.

7. Navale V, Bourne PE. Cloud Computing applications for biomedical science: A perspective. In: PLoS Comput Biol 14(6):
e1006144. 2018; https://doi.org/10.1371/journal.pcbi.1006144.

8. Sadiku M, Musa S, Momoh O. Cloud Computing: Opportunities and Challenges. In: IEEE Potentials; Volume 33, no. 1,
34-36, Jan.-Feb; 2014; doi: 10.1109/MPOT.2013.2279684.

9. Furht B, Villanustre F. Introduction to Big Data. In: Big Data Technologies and Applications. Springer, Cham; 2016;
https://doi.org/10.1007/978-3-319-44550-2_1.

10. XiaoW, BaoW, Zhu X, Liu L. Cost-Aware Big Data Processing Across Geo-Distributed data centers. In: IEEE Transactions
on Parallel and Distributed Systems; 2017:Volume 28, no. 11, 3114-3127, 1 Nov; doi: 10.1109/TPDS.2017.2708120.

11. Chaowei Y, Qunying H, Zhenlong L, Kai L Fei H. Big Data and Cloud Computing: innovation opportunities and challenges.
In: International Journal of Digital Earth; 2017; 10:1, 13-53; DOI: 10.1080/17538947.2016.1239771.

12. Long S, ZhaoY, ChenW.MORM:AMulti-objective Optimized ReplicationManagement strategy for Cloud storage cluster.
In: J Syst Arch; 2014; 60 (2):234–44.

13. Shvachko K, Hairong K, Radia S, Chansler R. The Hadoop distributed file system. In: Proceedings of the 26th Symposium
on Mass Storage Systems and Technologies; 2010:1–10.

14. Zeng Z, Veeravalli B. Optimal metadata replications and request balancing strategy on Cloud data centers. In : J Parallel
Distrib Comput; 2014; 74 (10):2934–40.

15. Rahman RM, Barker K, Alhajj R. Replica placement design with static optimality and dynamic maintainability. In:
Proceedings of the 6th IEEE International Symposium on Cluster Computing and the Grid; 2006:434–437.

22 BOUHOUCH ET AL

16. Subia S, Samar W. Performance Analysis of Big Data and Cloud Computing Techniques: A Survey. In: Procedia Computer
Science; 2018: Volume 132, 118-127; ISSN 1877-0509, https://doi.org/10.1016/j.procs.2018.05.172.

17. Nayak J, Naik B, Jena A, Barik R, Das H. Nature Inspired Optimizations in Cloud Computing: Applications and Challenges.
In: Cloud Computing for Optimization: Foundations, Applications, and Challenges. Studies in Big Data; 2018:Volume 39.
Springer, Cham. https://doi.org/10.1007/978-3-319-73676-1_1.

18. Arunarani AR, Manjula D, Sugumaran V. Task scheduling techniques in Cloud Computing: A literature survey. In: Future
Generation Computer Systems; 2019:Volume 91, 407-415; ISSN 0167-739X; https://doi.org/10.1016/j.future.2018.09.014.

19. Mazumdar S, Seybold D, Kritikos K. et al. A survey on data storage and placement methodologies for Cloud-Big Data
ecosystem. In: J Big Data 6, 15; 2019; https://doi.org/10.1186/s40537-019-0178-3.

20. Bahareh A M, Navimipour N J. A Systematic Literature Review of the Data Replication Techniques in the Cloud
Environments. In: Big Data Research; 2017:Volume 10, 1-7; ISSN 2214-5796; https://doi.org/10.1016/j.bdr.2017.06.003.

21. Yuan D, Yang Y, Liu X, Chen J. A data placement strategy in scientific Cloud workflows. In: Future Generation Computer
Systems; 2010:Volume 26, Issue 8, 1200–1214, https://doi.org/10.1016/j.future.2010.02.004.

22. Qiang X, Zhengquan X, Tao W. A Data-Placement Strategy Based on Genetic Algorithm in Cloud Computing. In:
International Journal of Intelligence Science; 2015:05. 145-157; https://doi.org/10.4236/ijis.2015.53013.

23. Er-Dun Z, Yong-Qiang Q, Xing-Xing X, Yi C. A Data Placement Strategy Based on Genetic Algorithm for Scientific
Workflows. In; 8th International Conference on Computational Intelligence and Security, Guangzhou; 2012:146–149,
https://doi.org/10.1109/CIS.2012.40.

24. Zhao Q, Xiong C, Zhao X, Yu C, Xiao J. A Data Placement Strategy for Data-Intensive Scientific Workflows in
Cloud. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing; Shenzhen; 2015:928–934;
https://doi.org/10.1109/CCGrid.2015.72

25. Ebrahimi M, Mohan A, Kashlev A, Lu S. BDAP: A Big Data Placement Strategy for Cloud-Based Scientific Workflows. In:
IEEE 1st International Conference on Big Data Computing Service and Applications; Redwood City, CA; 2015:105–114,
https://doi.org/10.1109/BigDataService.2015.70

26. Tos U,Mokadem R, Hameurlain A, Ayav T, Bora S. A Performance and Profit Oriented Data Replication Strategy for Cloud
System. In: 2nd IEEE International Conference on Cloud and Big Data Computing (CBDCom 2016); Toulouse, France;
2016:780-787. hal-01690142

27. Lihui L, Junping S, Haibo W, Pin L. BRPS: A Big Data Placement Strategy for Data Intensive Applications; 2016:813-820.
10.1109/ICDMW.2016.0120.

28. Najme M. Adaptive data replication strategy in Cloud Computing for performance improvement. In: Frontiers of Computer
Science. 10; 2016; 10.1007/s11704-016-5182-6.

29. Xie F, Yan J, Shen J. Towards Cost Reduction in Cloud-Based Workflow Management through Data Replication. In : 5th
International Conference on Advanced Cloud and Big Data (CBD); Shanghai; 2017:94-99, doi: 10.1109/CBD.2017.24.

30. Kouidri S, Yagoubi B. Dynamic Data Replication Based on Tasks scheduling for Cloud Computing Environment. In:
International Journal of Strategic Information Technology and Applications. 8. 2017:40-51. 10.4018/IJSITA.2017100104.

31. Amadeo A. Optimising Data Access with an Adaptive Geo–Replication Strategy. In: International Journal of Swarm
Intelligence and Evolutionary Computation. 07; 2018; 10.4172/2090-4908.1000171.

32. Badshah, Afzal; Ghani, Anwar; Shamshirband, Shahaboddin; Aceto, Giuseppe; Pescapè, Antonio: ’Performance-based
service-level agreement in cloud computing to optimise penalties and revenue’, IETCommunications, 2020, 14, (7), p. 1102-
1112, DOI: 10.1049/iet-com.2019.0855 IET Digital Library, https://digital-library.theiet.org/content/journals/10.1049/iet-
com.2019.0855.

BOUHOUCH ET AL 23

33. Tos, Uras &Mokadem, Riad & Hameurlain, Abdelkader & Ayav, Tolga. (2021). Achieving query performance in the cloud
via a cost-effective data replication strategy. Soft Computing. 25. 10.1007/s00500-020-05544-w.

34. Calheiros R N, Ranjan R, Beloglazov A, Buyya, R. CloudSim: a toolkit for modeling and simulation of Cloud Com-
puting environments and evaluation of resource provisioning algorithms. In: Softw: Pract. Exper.; 2011; 41: 23-50.
https://doi.org/10.1002/spe.995.

	Dynamic Data Replication and Placement Strategy in Geographically Distributed data centers
	Abstract
	Introduction
	Related Work
	System model
	Symbols and notations
	Description of the model
	Problem formulation
	Financial cost model
	Provider's revenue
	Provider's expenses

	Proposed approach
	Data placement strategy
	Compute transfer time matrix
	Algorithm for an efficient placement

	Data replication placement
	Source data center selection
	Select datasets to delete

	Experiments and discussion
	Simulation set-up
	Simulation results

	Conclusion and future work
	References

