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Abstract. Within software applications, user experience is greatly improved when user interface (UI) personalisation is possible,
and even more so when recommender systems can help users find the set of settings best suited for their skills and goals. In this
paper, we suggest that such recommender systems should be based on ontologies dedicated to describing both software traits
and user preferences, an example of which is the Ontology-based Web Application Generation ontology (OWAO) that specifies
what web applications and their UI are. The key scientific contribution of our approach is ontowalk2vec, an algorithm that maps
instances of ontologies to feature vectors (embeddings) that can be later on used for classification purposes, a process inherent
to recommender systems. In addition to OWAO, we validate ontowalk2vec on two other significant ontologies, namely MUTAG
and DBpedia, where we demonstrate it outperforms existing techniques. We finally discuss how using ontowalk2vec on OWAO
can form the basis of personalised Ul recommender systems, stressing, in particular, the importance of properly setting the many
hyperparameters that typically characterise embedding-generation algorithms.

Keywords: Web Semantics, ontology, embeddings, user interface, personalisation

1. Introduction

User experience is an important aspect to consider
when aiming to provide intuitive and user-friendly user
interfaces (UI) for software applications. Since ontolo-
gies can be used to provide formal and standard defini-
tions of concepts pertaining to any domain of knowl-
edge, they can, in particular, be used for the precise
description of the UI components that form the fabrics
of the vast majority of Uls. The literature reports on
several attempts to specify (part of) this kind of knowl-
edge [1+4]. These Ul ontologies generally fulfil spe-
cific requirements and describe certain parts of a Ul
or web application. For example, the Semantic UI on-
tology includes concepts related to the interface ele-
ments of its own UI framework [1]. Another example

*Corresponding author. E-mail: blerina.gkotse @cern.ch

is GenAppi, a methodology for generating web appli-
cations based on a web application ontology [3].

UI personalisation has been shown to be a key in-
gredient of positive user experience for complex soft-
ware [6]. Such a service can be even more valuable
to both advanced and not-so-advanced users when rec-
ommender systems can help them find the set of set-
tings best suited for their current skills and goals. In
addition to providing finely tuned UI parameters for
each user, recommender systems for UI personalisa-
tion can keep track of user activities as their skills
evolve over time, and thus suggest Ul adaptations
along the way, leading to a sustainable increase of their
productivity [7].

In addition to the many existing approaches used to
design recommender systems (see for instance [8]]), we
suggest in this paper that the design and implementa-
tion of Ul recommender systems should be based on
ontologies dedicated to describing both software traits
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and user preferences. We present here a case study
about this approach using an Ontology-based Web Ap-
plication Generation ontology (OWAO) developed to
specify web applications and their UI [5].

Since recommender systems rely heavily on Ma-
chine Learning classification techniques to map any
user to the set of users that have similar preferences, an
important issue is the extraction of classification fea-
tures from ontologies and their instances. Natural Lan-
guage Processing (NLP) models, such as word2vec,
have shown consistent results on predicting the con-
texts of a text fragment or a word by representing
them as feature vectors (also named, in such a set-
ting, embeddings) [9]. Providing some prior knowl-
edge to these models by the introduction of ontologies
or knowledge graphs has been shown to help improve
their accuracy [10].

In this paper, we introduce ontowalk2vec, a new
model for generating ontology embeddings that can be
used for classification purposes and recommender sys-
tems. We test our model using two benchmark ontolo-
gies (MUTAG and DBpedia) and OWAOQO, and we ob-
tain results suggesting that our approach improves the
current state of the art. We finally focus on how to
best configure the ontowalk2vec hyperparameters for
OWAQO in order to provide the best embeddings for
proper UI personalisation.

The main contributions of this paper are therefore:

— ontowalk2vec, a NLP-based model that maps on-
tologies to textual feature vectors;

— the validation of ontowalk2vec on three ontolo-
gies, namely MUTAG, DBpedia and OWAO;

— an OWAO-based use case to illustrate how on-
towalk2vec can be efficiently used as the basis of
a personalised UI recommender system.

The structure of the paper is as follows. After this
introduction, Section describes some state-of-the-art
NLP models for specifying ontology embeddings. In
Section (3| we present the metrics generally used for
the performance assessment of embedding-generation
algorithms. In Section 4| ontowalk2vec is described,
providing a pseudo-code of the algorithm. Section
details the experimental evaluation of ontowalk2vec by
the use of three baseline ontologies. In Section@ we
focus on the application of the ontowalk2vec model
for UI personalisation, in particular discussing optimi-
sation techniques and the final results. We conclude
in Section |7| summarising our contributions and dis-
cussing possible future work.
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Fig. 1. word2vec architectures. The CBOW architecture predicts the
current word based on the context; the Skip-gram mode predicts sur-
rounding words, given a current word [9].

2. Related Work

Ontology-based recommender systems rely on the
inferences they can make from the knowledge present
in ontologies and knowledge graphs (i.e., ontologies
and their instances). In a Machine Learning setting, on-
tology embedding-generation algorithms (or models)
such as ontowalk2vec are used to represent this infor-
mation as feature vectors, usually based on NLP tech-
niques.

2.1. word2vec

One of the most influential works concerning em-
beddings in the recent years is the NLP model called
word2vec [9]. This model takes as input sentences,
seen as sequences of words, and computes a vector for
each word. In word2vec, two different architectures are
proposed: the Continuous Bag of Words (CBOW) and
Skip-gram (see Figure . Provided a set of words as
context, CBOW predicts a word that could fit next in
that context. In the Skip-gram approach, when a word
is provided, its fitting in a specific classification is used
to predict the context.

2.2. node2vec

The word2vec model is efficient for extracting word
features in text, for example from a newspaper. How-
ever, it is not sufficient when the input is a structured
object such as a graph. As an ontology can be assim-
ilated to a directed graph, one needs to extract em-
beddings from graphs. For such graph embeddings, a
reference model is node2vec [11]. This model uses
two classic traversal strategies in graphs: Breadth-first
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Fig. 2. Starting from node u, a Breadth-First Search (BFS) traversal
is depicted using red arrows, while a Depth-First Search (DFS) path
is depicted by blue arrows (from [11]).

Search (BFS) and Depth-first Search (DFS). These two
algorithms provide two different ways of visiting the
nodes of a graph. In BFS, starting from a specific node
u, all the nearest neighbouring nodes s; are visited first,
as depicted by red arrows in Figure [2| in contrast to
BFS, DFS visits the nodes in depth, as depicted there
by blue arrows. These traversal algorithms are then
used to extract random walks from any graph in order
to build node sequences that can then be considered as
artificial "sentences" and, as such, input to word2vec.

2.3. RDF2Vec

Resource Description Framework (RDF) is a com-
mon format for encoding ontologies. Therefore, RDF2-
Vec has been introduced for extracting embeddings
from RDF graphs [10]. In order to generate adequate
random walks, RDF2Vec uses a BFS approach up to a
certain depth, as in node2vec; the length of the paths
generated by these random walks is fixed. In addition,
RDF2Vec also relies upon the Weisfeiler-Lehman al-
gorithm, which computes sub-tree kernels for graph
comparison [12]. RDF2Vec plays an important role
in the generation of random walks for ontologies and
is thus, as node2vec, integrated in our ontowalk2vec
model, described below.

2.4. Hyperparameters

All these models rely on several “hyperparameters”
for fine tuning. For instance, the node2vec algorithm
relies on two hyperparameters: p, which is the proba-
bility that a node in a walk is revisited, and g, which
specifies whether a BFS or DFS approach should be
employed. All hyperparameters (e.g., iteration number,
learning rate, window size, etc.) need to be initialised
before starting training the model and providing em-
beddings. Even though in many works these hyperpa-
rameters are initialised with their default values, stud-

ies have shown that the best values for them strongly
depend on the type of data the models are trained on.
These parameters should thus be chosen with caution;
otherwise they may affect the final accuracy of the
modelling [13}[14]. For these reasons and in order to
provide a fair assessment of our proposed methodol-
ogy, an experimental investigation about the choice of
their initial values is presented in Section@

3. Classification Evaluation Metrics

To formally assess the accuracy of embeddings,
classification tasks are often used (see, for instance,
[LO]). Yielding a high-quality classification model is
important to ensure that our new model ontowalk2vec
is robust; in our case, this would ensure that we man-
aged to encode high-dimensional ontology instances
as representative, yet automatically generated, feature
vectors of lower dimension.

In this paper, two classical methodologies, namely
Support Vector Machine (SVM) and Random For-
est (RF), implemented in a Scikit-learn python mod-
ule [15], were used for classification. Provided that
some labelled training data are available, SVM outputs
the hyperplaneﬂ that best classifies its training set and,
likely, any new samples [17]. A Random Forest classi-
fier uses instead a number of decision trees on smaller
groups of data contained in its input data set and aver-
ages the results in order to improve accuracy [18].

Common evaluation metrics for classifiers are the
accuracy score, confusion matrix and t-distributed
Stochastic Neighbor Embedding (t-SNE) plot, briefly
summarised in the following subsections.

3.1. Accuracy Score

For a given classification technique, its accuracy
score over a labelled test data set of N samples, also
implemented in the Scikit-learn module [15], is the ra-
tio of correctly predicted labels over N. If y; is the pre-
dicted value for the i-th sample and y; the actual value,
then accuracy(y, ) is the fraction of correct predic-
tions over N, defined as:

N—1

1

accuracy(y,y) = v 1 = yi), (D

! A hyperplane is any co-dimension-1 vector subspace of a vector
space |16]. Models compute multidimensional vectors, and therefore
a hyperplane can be used to try to separate these for classification
purposes.
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Actual Positive

Co,1 (False Neg.)

Model Actual Negative

Predicted Negative

Predicted Positive C1 o (False Pos.)

Table 1
Confusion matrix for binary classification.

where, as usual, 1(y; = y;) is equal to 1 if its argument
is true, and O otherwise.

According to Equation [1} a high accuracy, i.e., a
large number of correct predictions, is such that the
value of the accuracy score should approach 1. On
the contrary, low accuracy means that the value ap-
proaches O (note that a random predictor has an accu-
racy of 0.5).

3.2. Confusion Matrix

Another metric to evaluate classification perfor-
mance is the confusion matrix. By definition, the el-
ement C; ; of a confusion matrix C is the number of
observations known to be in group i and predicted to
be in group j. We focus here on binary classification; a
confusion matrix then includes the count of true nega-
tives Cy g, false negatives Cy 1, false positives C; ¢ and
true positives C1 1.

According to this definition, the quality of a model is
considered to be high when the numbers Co and C ;
of true negatives and positives are high (approaching
the number of actual negative and positive data points,
respectively, and depicted in Table [T]in green), while
the numbers C; g and C; (depicted in Tablein red)
of false positives and negatives should be as low as
possible, approaching a value of 0.

3.3. t-distributed Stochastic Neighbor Embedding

In order to provide a visual evaluation for high-
dimensional data classification, the notion of t-distribu-
ted Stochastic Neighbor Embedding (t-SNE) is often
used [19]. It converts similarities between data points
to joint probabilities and minimises the Kullback-
Leibler divergenceﬂ between the joint probabilities of
the low-dimensional embedding results and the high-
dimensional data [20]. A classifier is considered as
providing accurate results when the points of a t-SNE
diagram corresponding to the same class (in this case,
same label) are grouped together.

2The Kullback-Leibler divergence, also known as relative entropy,
denotes the "distance" between the probability distributions being
compared.

Instance2
Xz

Instancel

X
Fig. 3. Cosine similarity.

3.3.1. Cosine Similarity

By comparing feature vectors using the cosine sim-
ilarity metric, one can get an approximation of the
proximity and relatedness of the corresponding data
instances. Assuming that an ontology instance is rep-
resented by the embedding as vector A and a second
instance, as vector B, the cosine similarity is cos(),
where 6 is the angle between the two vectors, defined
as

A.B

6) =
<os(6) = AT B

@

where A.B denotes the scalar product of the two vec-
tors A and B, and ||x|| is the norm of vector x.

According to Equation the closer the vectors are,
the more the similarity value approaches 1, and the
more similar the instances should be. When the cosine
similarity value approaches O, the two instances are
considered less similar.

3.3.2. FI Score

The most pertinent metrics for evaluating recom-
mender systems are used here |21]. The first metric is
precision, p, defined as:

|[true positives||

p 3)

- \|true positives|| + || false positives|

where ||L|| denotes the number of elements in set L.
The second evaluation metric is recall, r, defined as:

i ||true positives|| @

 ||true positives|| + || false negatives||’

A good model is one for which both precision and
recall values are high (approaching 1). For this reason,
a combined metric is commonly used for globally eval-
uating recommender systems, namely the F1 score F1,
providing a normalised average and defined as:

p>(<r
p+r

Fp=2% (5)



B. Gkotse et al. / Ontology Embeddings with ontowalk2vec: an Application to Ul Personalisation 5

4. ontowalk2vec

To perform UI personalisation for ontology-based
web applications, we introduce ontowalk2vec, a new
technique for computing ontology embeddings.

4.1. Presentation

The ontology embedding model ontowalk2vec is in-
spired by the two main models detailed in the sections
above, i.e., RDF2Vec [10] and node2vec [11]. Both
models focus on creating different random walks on an
ontology or a graph, utilising them as input sentences
to word2vec [9]. These two methodologies are consid-
ered complementary within our method. The node2vec
model focuses on the structural part of the ontology by
treating it as a directed graph and extracting random
walks - sentences of different lengths - from it, includ-
ing the taxonomy and inheritance properties of the on-
tology classes. On the other hand, RDF2Vec focuses
on the RDF triples, which include the instances and
their relations in a subject-predicate-object format; this
method also relies on word2vec, used for generating
the final feature vectors.

As previously described, word2vec supports two
specific training architectures: CBOW and Skip-gram.
In the CBOW architecture, the order of the word in-
stances does not influence the result. However, in on-
tologies and knowledge graphs, the structure and order
of the instances is intrinsically linked to their semantic
meaning, and therefore CBOW is not suitable for our
purpose. For example, in a RDF triple, the subject and
object components are strictly non-interchangeable,
otherwise the whole semantic meaning changes. In
contrast to CBOW, the Skip-gram architecture focuses
on the context of instances and provides better seman-
tic relevance in comparison to CBOW [9]. For these
reasons, Skip-gram has been selected as our training
architecture of choice.

As displayed in Figure in ontowalk2vec, random
walks are extracted from the input ontology and its in-
stances using both the node2vec and RDF2Vec mod-
els and fed to word2vec. After training word2vec with
specific random walks, the feature vectors are gener-
ated and can be then used in a recommender system.

4.2. Algorithm
The pseudo-code for the ontowalk2vec model is

given as Algorithm 1. Note that this is a simplified
version of the actual code, intended to provide here a

mostly high-level understanding of ontowalk2vec. The
full code as well as the data used for the experiments
detailed in the following sections can be found in the
accompanying online resource

Once started, the algorithm reads the file of the on-
tology for which the embedding generation will be
performed. In Line 3, the ontology is translated as a
directed node2vec graph object, using the parameter
directed, which specifies that the graph is directed,
and the two hyperparameters p and g. The latter are
used for pre-processing the transition probabilities that
guide the computation of the random walks, as indi-
cated in Line 4. Based on these probabilities, random
walks on the graph are gathered in node2vec_walks.

Subsequently, random walks using the Breadth-
First Search (BFS) method are generated by RDF2Vec
(bfs_walks). The ontowalk2vec embedding algorithm
is thus assumed here to have access to a data set
data that includes data points (ontology instances)
on which random walks can be performed. Both
node2vec_walks and bfs_walks are used as input sen-
tences of word2vec, which produces one set of final
embeddings (bfs_embeddings). The same process is
performed for the Weisfeiler-Lehman (WL) method,
used as an alternative to BFS in RDF2Vec for gen-
erating random walks. Finally, the generated embed-
dings are stored in wl_embeddings. Both embeddings
are then returned as result of Algorithm 1.

4.3. Classification

The accuracy of both types of embeddings is eval-
uated in Algorithm 2, based on the evaluation process
of pyRDF2Vec [22], by the use of the two classifiers
Random Forest and SVM, detailed in Section They
rely on the same data set data and their associated clas-
sification labels. These data points and labels are split
into different subsets (training_data and test_data for
the data points, and training_labels and test_labels for
the labels), to be used for the training process. After
the training, the classifiers are expected to predict ac-
curately the labels of the test_data. The accuracy score
and confusion matrix are computed, while a t-SNE plot
is also generated.

Given a pair of instances (instancey, instances), the
similarity value is computed (in Line 15) in order to
evaluate how similar these two instances are. The moti-
vation for such a test is that, for providing embedding-

3https://gitlab.cern.ch/irrad/ontowalk2vec
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Feature Vectors

Algorithm 1 ontowalk2vec model
Input: ontology file, p and g hyperparameters, ontology instances data
Output: ontology-based feature vectors

1:

R A T o e

Read ontology

graph + ontology_to_graph_conversion(ontology)
node2vec_graph < node2vec.graph(graph, directed, p, q)
node2vec_graph.preprocess_transition_probabilities(p, q)
node2vec_walks < node2vec_graph.simulate_walks()
bfs_walks + RDF2VecBFS (graph, data)

bfs_embeddings < word2vec(bfs_walks U node2vec_walks)
wl_walks < RDF2VecWL(graph, data)

wl_embedding < word2vec(wl_walks U node2vec_walks)

,_.
4

Return (bfs_embeddings, wl_embeddings)

based recommendations, given an ontology instance
instance;, the instances exhibiting the highest similar-
ity value with instance, will be selected.

5. Experimental Evaluation

In this section, we apply Algorithms 1 and 2 to
evaluate ontowalk2vec with two reference ontologies,
namely MUTAG and DBpedia, and OWAO. For each
ontology, after the training phase, the RF and SVM
classifiers are used to predict the labels of the test
data. The prediction quality is measured by accuracy
scores and confusion matrices, while a classification
in two categories is visualised through t-SNE plots,
as detailed in Section |3| These results suggest that
ontowalk2vec outperforms the current state of the art
models, node2vec and RDF2Vec.

5.1. MUTAG

The MUTAG ontology is part of DL-Learner, a
framework for supervised machine learning based
on the OWL language, RDF and Description Log-
ics [23]. MUTAG contains information about 340
complex molecules that could be carcinogenic or, as
it is called in the ontology, "MUTAGenic". An in-
stance of such a molecule (here, in this specific ex-
ample, the molecule d30) and its structured composi-
tion is shown in Figure [5| The classification of these
molecules is here relative to the boolean data property
mutag:isMutagenic present in MUTAG. Classi-
fication is based on labels, 0 or 1, set according to the
value of the data property mutag:isMutagenic.
This value is removed from the data set so that the clas-
sification is only performed through the embedding of
the molecules’ instances.
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Algorithm 2 ontowalk2vec evaluation by classification
Input: ontology, p and g, training_data, test_data, training_labels, test_labels, instance, instances
Output: classification analysis data

1: (bfs_embeddings, wl_embeddings) < ontowalk2vec(ontology, p, q, training_data U test_data)
2: rf < RandomForestClassifier()

3 svm <+ SVM()

4: for e in [bfs_embeddings, wl_embeddings] do

5: Separate e to training_e and test_e

6: for c in [rf, svm] do

7: c.fit(training_e, training_labels)

8: c.predictions <+ c.predict(test_e)

9: c.accuracy < c.accuracy_score(test_labels, c.predictions)
10: c.confusion_matrix < confusion_matrix(test_labels, c.predictions)
11: end for
12: tsne < TSNE().fit_transform(e)
13: Plot tsne
14 top_similarities < e.most_similar(instance, )
15: similarity_value < e.similarity(instancey, instances)
16: end for

[Non_ar_sc_ring] [Six_ring] [amino-3161] [amine2102] [Ar_naiide] [bonas33a] [Chiorine-93

-
| T o

S s s s bond6337
—_— \\J\\
—
e
—

— D —
— - ———
—_—— ———————
— —

Fig. 5. Excerpt from MUTAG depicting the instance d30 of the Compound class.
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Model Random Forest SVM
node2vec 0.69 (£0.03) 0.71 (£0.02)
RDF2vec BFS 0.69 (£0.03) 0.71 (£0.02)
RDF2vec WL 0.71 (£0.01) 0.72 (£0.02)
ontowalk2vec BFS 0.74 (£0.02) 0.76 (£0.02)
ontowalk2vec WL 0.74 (£0.02) 0.74 (£0.01)
Table 2

Models’ accuracy scores using the MUTAG data set.

For this experiment, a dedicated data set was used,
containing the 340 molecules with their labels. The
data set was divided in 80% training data and 20%
test data, before running Algorithms 1 and 2. We
performed embeddings using node2vec, RDF2Vec
Breadth-First Search (BFS), RDF2Vec Weisfeiler-
Lehman (WL), ontowalk2vec BFS and ontowalk2vec
WL. In order to obtain statistically significant results,
according to standard techniques in Machine Learning
(extracting random walks is a stochastic process), the
same experiments were run 10 times [24].

The accuracy scores for the RF and SVM classifica-
tion methods are summarised, via their average value
and standard deviation, graphically in Figure[6] while
the exact values are also provided in Table [2] Both
ontowalk2vec BFS and WL provide, for the MUTAG
ontology, on average, higher accuracy, in both clas-
sification problems, RF and SVM. More specifically,
one can observe in Figure[6]and Table [2|that the ac-
curacy using RF classification for both ontowalk2vec
BFS and WL is 0.74, and the same value is output by
the ontowalk2vec WL with SVM classification. The
best result in this experiment (0.76) is provided by on-
towalk2vec BFS with SVM classification.

For a more exhaustive comparison, we also present
the confusion matrices for understanding which pre-
dictions are affecting positively or negatively the re-
sults. According to Table ontowalk2vec appears to
have high prediction scores, on average, for predicting
the negative data points, which are actually the non-
mutagenic molecules. This is outlined in Tablefor
the RF classification with BFS (41.1) and with WL
(41.2), while using the SVM classification, one gets
41.2 and 43.1 for BFS and WL, respectively. Further-

more, the false positives are low, as depicted in Table

for RF classification with BFS (4) and with WL (3.8),
while using the SVM classification, one gets 3.8 and
1.9 for BFS and WL, respectively. However, the re-
sults are in line with the other tested models for pre-
dicting the molecules that are considered mutagenic.
This is probably due to the fact the MUTAG ontol-

ogy contains less data points representing mutagenic
molecules; thus the model does not get well trained to
learn with high accuracy to predict the positive labels.

Our generated embedded vectors for all the given
data points are also visualised using t-SNE plots.
In Figures [7} [8] and [9] the red points represent the
molecules of the test data that were classified as non-
mutagenic while the green points show the molecules
that were classified as mutagenic. With a successful
classification, t-SNE should be able to separate the
points of different colours in different colour groups,
and there should be some significant distance among
the colour groups.

Figure is the t-SNE visualisation produced when
using node2vec. As can be observed from the fig-
ure, the classified data points appear quite mixed, and
there is no clear distinction between the colour groups.
This means that the vectors representing mutagenic
and non-mutagenic molecules do not have high simi-
larity distance. The same observation can be made for
Figure (8] where the results from RDF2Vec BFS are
shown. The t-SNE suggests that the RDF2Vec-based
embedding-generation model does not seem to provide
any clear classification of the two vector categories.

Figure@] depicts the t-SNE plot of the ontowalk2vec
BFS method. Looking at it, there seems to exist some
similarity among the embedded vectors; the non-
mutagenic molecules tend to be more numerous in the
lower part of the plot, while the mutagenic ones appear
more often in the top part.

Overall, this analysis seems to suggest that on-
towalk2vec is a better model for classifying the MU-
TAG data than node2vec and RDF2Vec. Admittedly,
this improvement is somewhat limited, around 5 %,
based on our classification analysis of the MUTAG
data.

5.2. DBpedia

In order to further challenge our hypothesis that on-
towalk2vec provides better feature vectors than cur-
rent approaches as well as to also check that it can
tackle larger ontologies, a second experiment is set up
with DBpedia [25] as input. DBpedia stores triples of
general-purpose knowledge extracted from Wikipedia.
As in the RDF2Vec experimental setup [10], a data set
of cities is used for performing classification on their
quality of lif According to the provided ranking,

4https://mobilityexchange.mercer.com/insights/
quality-of-living-rankings
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Fig. 6. Accuracy plots for classification based on the various models.

Actual Value Negative Negative Positive Positive

Predicted Value Negative Positive Negative Positive
node2vec - RF 354 (£2) 9.6 (£2) 11.4(£0.5) 11.6 ((£2))
node2vec BES - SVM 40.7 (£2.3) 43(£2.3) 148(+19) 82(£1.9)
RDF2vec BFS - RF 359(£2.2) 9.1(£2.2) 104 (£19) 12.6(£1.9)
RDF2vec BES - SVM 40.7 (£1.8) 43 (£1.8) 145(£1.3) 85(£1.3)
RDF2vec WL - RF 36.8 (£2.1) 82(£2.1) 132(£1.5) 9.8(%£1.5)
RDF2vec WL - SVM 37.7(£3.1)  73(£3.1) 14.1(£1.9) 89 (£1.9)

ontowalk2vec BFS - RF 41.1 (£1.1) 4(£1.1) 14 (£1.1) 9 (%1.1)
ontowalk2vec BFS - SVM || 41.2 (+£2.1) 3.8(4+2.1) 12.8(£2.3) 10.2(£2.3)
ontowalk2vec WL - RF 41.2 (£1.7) 38(£l.7) 147(£1.1) 83(£1l.1)
ontowalk2vec WL - SVM 431 (£1.4) 19(£14) 164(£0.8) 6.6(£0.8)

Table 3

Models’ confusion matrices for the MUTAG ontology.

the cities are separated into three categories (excellent,
good and bad) depending on their position in the rank-
ing. As in the MUTAG experiment above, we perform
tests with RDF2vec, node2vec and ontowalk2vec and
repeat the experiments 10 times.

In the pyRDF2Vec python implementation of RDF2-
Vec [22], SPARQL queries are used for extracting data
from DBpedia where the subject of the RDF triple is
the instance for which a feature vector is sought. Af-
ter some preliminary experiments, it was observed that
node2vec is not able to compute meaningful vectors
from such data, since the random walks are too short.
To benefit from the full capabilities of node2vec, we
included in our experimentation not only the DBpe-
dia triples that have the required instances as subject,
but also the triples that have these instances as object.
Moreover, we also included the DBpedia ontology it-

Model Random Forest SVM
node2vec 0.46 (£0.06) 0.55 (£0.01)
RDF2vec BFS 0.55 (£0.03) 0.57 (£0.03)
RDF2vec WL 0.56 (£0.06) 0.55 (£0.04)
ontowalk2vec BFS 0.62 (£0.05) 0.62(£0.05)
ontowalk2vec WL 0.63 (+0.03) 0.6 (+0.04)
Table 4

Accuracy scores using DBpedia.

self in the training phase. This allows for longer ran-
dom walks and enables ontowalk2vec to take full ad-
vantage of both node2vec and RDF2Vec approaches.
The accuracy scores provided in Table [4] for both
ontowalk2vec BFS (RF - 0.62, SVM - 0.62) and on-
towalk2vec WL (RF - 0.63, SVM - 0.6) and the con-
fusion matrix in Table [3] suggest that ontowalk2vec
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Fig. 7. node2Vec t-SNE. Fig. 8. RDF2Vec t-SNE. Fig. 9. ontowalk2vec t-SNE.
Actual Excellent Good Bad Excellent Good Bad Excellent Good Bad
Predicted Excellent Excellent Excellent Good Good Good Bad Bad Bad
node2vec
RF 0.8(£1.4) 39(£1.5) 1.3(£1.2) 0.9(£1.1) 14.8 (£2.2) 6.3(£2.4) 0.3(£0.4) 8.9 (£1.9) 2.8 (£1.9)
SVM 0 (£0) 5.7(£0.9) 0.3 (£0.9) 0 (£0) 21.7(£0.9) 0.3 (£0.9) 0 (£+0) 11.6 (£1.2) 0.4 (£1.2)
RDF2Vec BFS
RF 2 (£1) 33(£0.8) 0.7(£0.4) 2.3(40.8) 13.7 (£2.9) 6 (£2.6) 0.1 (£0.3) 5.3 (£2) 6.6 (£1.8)
SVM 0.5(£0.9) 5.5(£0.9) 0 (£+0) 0.3(£0.4) 20.5(£2.1) 1.2(£1.9) 0.1(£0.3) 9.4 (£3.3) 2.5(£3.2)
RDF2Vec WL
RF 0.4 (£0.6) 4.8(£0.4) 0.8(£0.4) 0.9 (£0.7) 16.6 (£2.2) 4.5(£2.2) 0(+2.2) 6.3 (£2.1) 5.7 (£2.1)
SVM 0.4 (£0.6) 5.6 (£0.6) 0 (£+0) 1.1 (£1.5) 17.6 (£2.2) 3.3 (£1.5) 0 (£+0) 7.2 (£3.3) 4.8 (£3.3)
ontowalk2vec BFS
RF 3.1 (£1) 1.8 (£1) 1(0) 2.4 (£1.8) 12.9(£1.9) 6.7(+0.7) 0(£0) 3(+1.9) 8.8(+1.9)
SVM 0(+0) 5.7(£0.4) 0.3(+0.4) 0(+0) 15 (£2.5) 7(£2.5) 0(£0) 2.4(4+2.9) 9.6(£2.9)
ontowalk2vec WL
RF 0.7 (£0.6) 4.3 (40.6) 1(+0) 1.6 (£0.8) 14.8 (£1.0) 5.6(x1.5) 0.1(£0.3) 2.5 (£0.7) 9.4 (£0.5)
SVM 1.3(£1.2) 4.2(£1.6) 0.5(+£0.7)  2.8(£2.25) 15.3(+3.4) 3.9(+1.7) 0.8(+1) 3.7(4£3.8) 7.5(£3.3)

Table 5

Models’ confusion matrices for DBpedia.

is again a more accurate model than node2vec and 5.3. OWAO
RDF2Vec, this time using DBpedia. These results also
confirm our result of 5% for the quantitative improve-
ment brought by ontowalk2vec over state-of-the-art
techniques. A visual proof is also provided in Fig-
ure where we can observe a better distinction
among the three classes (one colour per class) with on- domain covered by the ontology [5]. We briefly de-
towalk2vec in comparison to node2vec in Figure @ scribe OWAOQ and its data in the following paragraphs,
and RDF2Vec in Figure[TT] before using it to further evaluate ontowalk2vec.

OWADO is the basis of the GenAppi framework,
used for generating, from any domain ontology, a full-
fledged web application to manage data relevant to the
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Fig. 10. node2Vec t-SNE for DBpedia cities

classification. classification.

5.3.1. Definition

OWAO provides means to formally describe the
relationships between web application entities and
their corresponding UI fragments, to be displayed by
GenAppi-generated front-end clients. To make the au-
tomatically generated UI more customisable and ap-
pealing to final users, concepts and relations represent-
ing some key Ul preference concepts are introduced in
the OWAO ontology.

For example, Figurefocuses on the owao:Form
UI fragment (we omit the owao prefix in this section).
A specific instance of Form, generated by GenAppi,
will have a specific UIStyle element, composed of
instances of the UIStyleComponent class. Some
subclasses of UIStyleComponent are Colour
and FontSize. A UIStyle adopted by a user
is seen as a user preference, of the class UIPre—
ference, that corresponds to a specific UI fragment,
such as the Form in this case. Each User is linked to
a set of elements of UIPreference.

In the GenAppi-based approach to UI personalisa-
tion, for any domain ontology structure and instances,
the corresponding OWAO-related instances will form
an input data set from which recommendations will be
provided to users (see Figure . In particular, note
that from all the UI choices made by the users, dif-
ferent statistical values can be gathered to help the
recommendation process; they are instances of the
UIPreferenceStatistic class.

5.3.2. Data

Since OWAO provides no class instances, we use
automatic synthesis to populate it, using current re-
search findings related to UI preferences to cre-
ate artificially relevant data. More specifically, we fo-

Fig. 11. RDF2Vec t-SNE for DBpedia cities

Fig. 12. ontowalk2vec t-SNE for DBpedia
cities classification.

hasUIStyle
Component

UlStyle

e Component

isPreferenceOf

ToUIStyle

correspondsTo UlPreference

hasUser

isPreferedBy
Preference

hasPreference
Statistic

UlPreference

Statistic

Fig. 13. OWAO excerpt for describing Ul user preferences.

cus on four Ul components: background colour, font
colour, font size and text alignment. Since GenAppi
interfaces are built using the Semantic Ul framework
[27]], the discrete values of the previously mentioned
UI style components are those defined via the Seman-
tic UI classes. For instance, for the font size, the dis-
crete defined values can be: tiny, small, medium, large,
etc. In order to build instances of the class UIStyle,
all the combinations of font size, text alignment, back-
ground and font colour are generated. However, only
the combinations that, according to state-of-the-art UL
research, are generally more appealing to users are,
logically, assumed to be preferred by them.

For example, Figure|16[shows a simplified excerpt
of OWAO instances related to UI preferences. The fig-
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feedback l
\ RECOMMENDER /
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® .
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Different Ul styles

Fig. 14. Recommender model. The user is shown different UI styles
for a specific UI and chooses his/her preference, which is provided
as a feedback to OWAO.

Random Forest SVM
BFS 1.00 (+0.00) 1.00 (£0.00)
WL 1.00 (£0.00) 0.99 (£0.01)

Table 6
Accuracy for OWAO preferences.

ure shows the instance User1 of the User class, as-
sociated to an instance of UIPreference named
white_black_center_Forml_pref_1 corre-
sponding to an instance of Form class named Form1.
This preference corresponds to the UT sty le instance
ui_style_white_ black_mini_center.

5.3.3. Evaluation

Following the same experimental setup as above, a
simple binary classification problem is addressed. In-
stead of the data property mutag:isMutagenic,in
OWADO, a boolean data property preferred is intro-
duced and associated to a UIStyle in order to de-
note if the Ul style composed from specific Ul compo-
nents is preferred by users or not. This means that if at
least one user prefers the specific UIStyle instance,
the pre ferred data property is true, otherwise false.
The ontowalk2vec model should predict, by exploiting
the OWAO ontology data, whether a specific UI style
is preferred by the users.

Actual Value Negative ~ Negative | Positive  Positive
Predicted Value Negative Positive | Negative  Positive
BFS - RF 343 (+0) 0 (£0) 0 (£0) 57 (£0)
BFS - SVM 343 (£0) 0 (£0) 0 (£0) 57 (£0)
WL - RF 343 (+0) 0(£0) 0(£0) 57 (£0)
WL - SVM 343 (+0) 0 (+0) 2(£2) 55 (£2)

Table 7

Confusion matrix for OWAO preferences.

Walk Embeddings Weisfeiler-Lehman Embeddings

-60 -40 -20 0 20 40 60

Fig. 15. t-SNE visualisation for OWAO preferences.

Table@ shows the accuracy score based on the bi-
nary classification using as label the data property
preferred in order to evaluate the ontowalk2vec
model on whether a Ul style is preferred by any user or
not. As in the MUTAG experiment, also in this one, the
algorithm is run 10 times, and values presented are the
mean values while the errors shown are the standard
deviation. According to the table, for both methods
BFES and Weisfeiler-Lehman (WL) and with both clas-
sifiers, Random Forest and SVM, the accuracy value
is 1 or approaching 1. This means that the model is
almost always accurate on the predictions, except for
the case of the WL method for the SVM classification
where the value is 0.99, being still quite high. Given
such high accuracy provided by ontowalk2vec, perfor-
mance data for node2vec and RDF2Vec on OWAO are
omitted here.

An analysis of the predictions presented by Table
depicting the confusion matrix of the model, shows
that the false positives and false negatives are, as ex-
pected, in most of the cases equal to 0. Moreover, the
t-SNE plots show a clear classification of the two cate-
gories, preferred and not preferred. The points of pre-
ferred values (in green) are well separated from the
not-preferred ones (in red), and no mixture of the two
categories is observed. Thus, according to the metrics
previously defined, the ontowalk2vec model, when ap-
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plied to both actual MUTAG, DBpedia) and synthetic
(OWAO) data, provides good classification results.

6. Hyperparameter Settings for UI Personalisation

In the previous section, data suggested that on-
towalk2vec provides, on average, better classification
results and thus better ontology embeddings than cur-
rent models. Yet, one key metric that remains to be
assessed is the sensitivity of ontowalk2vec to hyper-
parameters’ selection (all models studied in Section
were run using the default hyperparameter settings).
Since, as all other models, ontowalk2vec depends on
many adjustable variables, most of which are imported
from the models upon which ontowalk2vec is built,
the proper choice of these settings and its impact are
addressed in this section, where we focus only on
OWADO, our ontology of interest for UI personalisation.

6.1. Selection

The word2vec model integrated in ontowalk2vec for
generating the embedded vectors, but also RDF2Vec
and node2vec used for generating random walks, con-
tain several hyperparameters that need to be tuned be-
fore efficiently training these models. These hyperpa-
rameters depend on the type and volume of data and
can provide higher accuracy results once they are prop-
erly initialised [13}14].

Not all the hyperparameters are useful for get-
ting better results. For example a hyperparameter of
word2vec is workers, which denotes the number of
computer threads needed to train the model, obvi-
ously aiming for faster training with multi-core ma-
chines. Another hyperparameter defines whether the
model will use the Skip-gram or the Continuous Bag
of Words (CBOW) technique, but as already explained
in Section for ontology problems such as ours, it is
more suitable to use Skip-gram, since with the CBOW,
the order of the entities appearing in a walk would be
lost.

In the literature, the most common hyperparameters
that are targeted for optimisation are: negative sam-
pling, iterations and window size (described below)
[13]. In this work, a larger set of hyperparameters is
taken into account in order to seek even better per-
formance. The fine tuning of these hyperparameters is
presented below, and illustrated by the use of these op-
timisation techniques for finding the best combination
of hyperparameters for OWAQO. More specifically, the

hyperparameters that are being optimised here are the
following.

— learning rate (alpha). This hyperparameter con-
trols the amount of change of the weights of the
model in each iteration needed for reaching con-
vergence. In word2vec, this hyperparameter de-
notes the initial value for the training phase, and
after each iteration this value changes to a smaller
one until reaching the minimum value 0.0001.

— iterations. This is the number of iterations (epochs)
of training over the corpus of data.

— vector size. This denotes the dimensionality of
the vector space used to represent the data.

— window size. This is the maximum distance al-
lowed between the current and predicted words
within a sentence.

— minimum counts. The words with a total fre-
quency lower than min_count are ignored by
the model.

— hierarchical softmax. Softmax is a normalised
exponential function used as the last layer of a
neural network to normalise the output. Hierar-
chical softmax is an optimised softmax function
representing the words as the leaves of a binary
tree. The hierarchical softmax hyperparameter is
a boolean parameter specifying whether hierar-
chical softmax is used or not.

— negative. An alternative to hierarchical softmax
is the negative sampling approach. The idea be-
hind negative sampling is to separate the words
that do not contribute in the output (noise) and the
useful data. This word2vec hyperparameter indi-
cates whether negative sampling is used or not. If
the value is more than O, negative sampling will
be used, while the specified integer is the number
of noisy words that should be drawn. If it is set to
0, no negative sampling is used.

— depth. This is the maximum level to be reached
when traversing the ontology-derived graph.

6.2. Evaluation

In order to evaluate how the values assigned to
the hyperparameters affect ontowalk2vec and which
ones should be used, an exhaustive grid search, de-
tailed in [26], was performed using hyperparameter
combinations uniformly sampled from the range of
hyperparameter values shown in Table While it is
difficult to conclude in a single rule taking into ac-
count all the hyperparameters, by running the on-
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Fig. 16. Excerpt from OWAO depicting a User instance (User1) and his/her preferences for a given UI component.

Hyperparameter Range Default Value
learning rate (Ir) [0.1, 0.05,0.025,0.01] 0.025
iterations (iter) [1,5,20,50] 5
vector size (vs) [20,100, 200, 500] 100
window (win) [3,5,7] 5
min_count (mc) [0,1] 5
negative (neg) [0,1,5,10] 5
hierarchical softmax (hs) [0,1] 0
depth (dep) [1,2,3] 1
Table 8

Hyperparameter and their range, used to form combinations.

towalk2vec experiments with each of the combina-
tions of Table and calculating the F1 score, a spe-
cific combination of hyperparameters appeared to
provide the best F1 score for the recommendation
results for both ontowalk2vec BFS and WL. This
combination is given by the following hyperparame-
ter setting: window size = 7,vector size =
500, learning rate = 0.0025, iteration
= 1, min count 1,depth = 2, negative
= 10 and thus hierarchical softmax = 0.
The standard deviation of the F1 score recommenda-
tion results over the all grid is 0.27, which shows that
about 1/4 of the performance of an embedding-based
recommender system built on top of ontowalk2vec can
be attributed to proper hyperparameter setting.

Using these best hyperparameters on a particu-
lar synthetic Ul-preferences database (see for
a precise description of how this data set was ob-
tained), TableElillustrates what would be the top rec-
ommendations (i.e., the top similarity-based predic-
tions) for the Ul style instance ui_style_light_-
grey_black_medium_center, when using the
ontowalk2vec BFS method. One can easily check that
the instances recommended by ontowalk2vec, i.e., that
have high similarity values with this particular in-
stance, do indeed have common UI style elements such
as the same font size, similar background colour or
font colour and text alignment.

7. Conclusion

In this paper, we introduced the ontowalk2vec
model for computing ontology embeddings and ex-
perimentally assessed its capabilities for classification
purposes, in particular for Ul preference recommen-
dation. Several classification methods and evaluation
metrics have been, first discussed, and then used for
evaluating its performance on the MUTAG, DBpedia
and OWAO ontologies. Our preliminary results sug-
gest that, overall, ontowalk2vec performs on average
5% better than state-of-the-art techniques, although the
selection of good hyperparameters has a significant
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Instances Cosine Similarity
owao:ui_style_white_black_medium_center 0.956
owao:ui_style_light_grey_black_medium_left 0.955
owao:ui_style_light_grey_black_large_left 0.941
owao:ui_style_white_black_large_left 0.931
owao:ui_style_light_grey_black_medium_center 0.924

Top cosine similarities for ui_style_white_black_medium_left using BFS.

impact on its performance. We assessed this last is-
sue by performing a grid search for the optimal values
using the OWAO use case.

Using a high-accuracy vector embedding model
such as ontowalk2vec should allow for building a
solid recommender system that can suggest to users
UI styles similar to their current preferences or to
those of users who have similar Ul preferences or fea-
tures. More generally, this means that our approach can
be used for both content- and collaborative-filtering-
based recommender systems, if there is enough data.
Finally, though more software development work
would be needed, these embeddings could be directly
integrated in GenAppi-generated web applications,
thus improving automatically user experience when
using such systems.

The source code of ontowalk2vec containing all the
ontologies used and techniques for hyperparameter op-

timisation can be found in the accompanying online
resources’|
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