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Abstract

Recent road crack detection methods obtain appealing scores but typically allow

a few pixel tolerance margin. This is acceptable for locating cracks, but not for

measuring their width (indicator of the cracks’ severity). Our baseline model,

U-VGG19, obtains an F-score of 71.77% on CrackForest, which is superior to

other approaches when no tolerance is admitted. However, increasing the scores

without tolerance is difficult due to inaccurate annotations.

We propose a novel synthetic dataset, Syncrack, as a benchmark for the

evaluation of training with inaccurate annotations. Our results show that in-

accurate annotations have a detrimental impact on the F-measure, decreasing

it by up to 20%. To overcome this, we study label noise correction techniques

using weakly supervised learning. Training U-VGG19 with these corrected la-

bels improves the results on Syncrack by up to 12%. Obtained results on the

CrackForest and Aigle-RN datasets support that these approaches are useful for

real-life data too.
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1. Introduction

When monitoring road condition, it is crucial to inspect the cracks [1], one

of the many roads’ distress signs. By counting the cracks and determining

their orientation, it is possible to determine the origin and mechanism of the

damage (road aging, excessive traffic, climate, etc.). In addition to that, there5

is an interest to measure the cracks width, which is one of the indicators of

the severity of the damage and future durability of many constructions, such

as concrete structures [2]. Measuring the width requires a pixel-accurate crack

detection, which is still a challenging task [3].

The major difficulties in road inspection are: 1) the boundary between crack10

and background is often fuzzy; 2) the background is composed of diverse tex-

tures; and 3) the cracks have complex geometric shapes. The problem becomes

harder under uncontrolled acquisition conditions: irregular and variable illumi-

nation; the image resolution on the limit of thin cracks width; intrusive back-

ground textures due to external surface conditions (humidity, dirt, sand, oil15

spots) and objects (lane signs, manhole covers, leaves); etc.

All these constraints cause errors when it comes to manual annotation, which

is a tedious and highly time-consuming task. There are annotation errors on

two levels (see Fig. 1): a) on the level of objects (a missing label for a crack, or

a label for a non-existent crack), and b) on the level of pixels (labels are either20

too wide, too thin or inaccurately placed).

Because of inaccurate labeling, particularly on the level of pixels, search-

ing for a perfect match of the detected cracks and the annotation is pointless.

This motivated fundamental works such as CrackTree [4] to propose tolerance

margins for evaluation: “a detected crack pixel is still considered to be a true25

positive if it is located no more than 2 pixels away from human annotated crack

curves”. Since then, many authors have opted to use this kind of tolerance

margins for evaluation [4–13]. Nowadays, state-of-the-art methods using these

tolerance margins exhibit the highest scores – overwhelming F-scores as high

as 95% using Deep Learning [5, 14]. The works cited in this paragraph are30
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(a) (b)

Figure 1: Examples of inaccurate annotations (from the CrackForest dataset). (a) Incongruent

or fuzzy manual annotations. (b) A zoom to an example shows evidence of lack of accuracy

(here, the manual crack mask is wider than the crack).

discussed in detail in section 2. While this tolerant approach is sufficient for

counting and locating cracks, it is not for measuring their width – an indicator

of the cracks’ age and severity [3].

Tolerance margins are lax and tolerant to errors on the pixel level, providing

too optimistic scores. These margins have shown to create huge score gaps:35

from F-score=56.7% (0-pixels tolerance) to 80.0% (1-pixel tolerance). The typ-

ical 2-pixels margin increased the score even more: up to 87.0% [8]. Table 1

shows preliminary results with different tolerance margins, training the model

proposed in this paper on public data. We can observe that increasing the toler-

ance margin increases the precision drastically. It has been shown that training40

with dilated annotations allows increasing the recall when evaluating on raw an-

notations. This increase in recall, however, comes with a decrease of precision
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Table 1: Crack detection scores using different tolerance margins.

Metric
Tolerance margin

0px 1px 2px 5px

Precision 72.04 88.19 93.10 95.15

Recall 74.45 78.10 79.02 79.37

F-measure 73.23 82.84 85.48 86.55

(a) Crack (b) 0px (c) 1px (d) 2px (e) 5px

Figure 2: Evaluation with tolerance margins. Color code: (Black/White) Crack/No crack;

(Grey) Ground truth for evaluation with tolerance margins. (a) A crack. (b) Perfect predic-

tion. (c-e) Predictions inside their corresponding tolerance margin; all black pixels are true

positives, but the geometry of the real crack is not respected.

[15] (because the predictions are wider than the original annotations). Thus,

tolerance allows predicted cracks to be wider than reality, artificially preserving

high precision scores.45

Evaluating without tolerance will provide a higher degree of confidence in the

geometric properties obtained from detected cracks e.g. shape, length and width

(see Fig. 2). However, increasing the scores without tolerance is difficult due

to the inaccuracy of manual annotations. From a machine learning perspective,

these inaccurate labels are a particular case of noisy data at the pixel level.50

Although some efforts have been made to learn in the presence of noise with

some class imbalance [16], no strategy is usable on heavily class-imbalanced data.

Indeed, cracks typically represent less than 1% of the pixels from road images.

Such a rate of imbalance represents a considerable challenge to effectively train
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a model with inaccurate human labels.55

In this paper, we explore the limitations of pixel-accurate crack segmentation

methods based on fully convolutional neural networks (FCNN). Particularly, the

limitations caused by the negative impact of inaccurate labels. Our contribu-

tions can be summarized as:

1. An extension of VGG19. We propose to use – as encoder – the convolu-60

tional layers from VGG19 i.e. the 19-layers version of the network orig-

inally proposed by the Visual Geometry Group at Oxford. Inspired by

U-net, we build a novel symmetrical, u-shaped encoder-decoder network

(referred to as U-VGG19) for supervised road pavement crack detection.

We use transfer learning to reduce training costs and deal with few real-life65

annotated data.

2. A novel synthetic dataset, Syncrack. We develop this dataset and propose

it to quantitatively measure the detrimental impact of inaccurate labels

when having an accurate ground truth for evaluation. We are the first to

provide this kind of analysis for road crack detection. From this we prove70

that training with inaccurate labels deteriorates the accuracy of the width

of detected cracks.

3. A study of label correction methods. Previous works on road crack de-

tection approach the problem of inaccurate annotations using tolerance

margins for evaluation. Unlike them, we prove that correction approaches75

traditionally used in weakly supervised classification provide a significant

improvement with respect to inaccurate annotations. Using these meth-

ods, we increase scores up to 12% in pixel-accurate evaluation (when no

tolerance margins are allowed).

Our quantitative results on Syncrack show how pixel-accurate crack segmen-80

tation can greatly benefit from weakly supervised learning approaches. This is

mainly reflected in an increased precision score, which is related to more accu-

rate crack width prediction. Furthermore, our results on public datasets support

that these approaches are useful for real-life data too.
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The rest of the paper is organized as follows. In section 2, we provide a review85

of the literature on crack detection, and on learning from inaccurate labels. The

model proposed as baseline (U-VGG19), and the explored methods to correct

labels, are introduced in section 3. The experiment setup used for training the

baseline model, and label correction, is described in section 4. This section

also brings a description of the proposed synthetic dataset, Syncrack. Then, we90

analyse the potential of using U-VGG19 as a baseline model in section 5, and

we compare it with the state of the art on public datasets, with pixel-accurate

evaluation. In section 6, we quantify the impact of inaccurate labels and the

efficiency of different label correction methods on Syncrack and real-life data.

The section 7 concludes the paper and suggests some future improvements.95

2. Related Work

Automatic crack detection has been a topic of interest for many years. Ta-

ble 2 summarizes some representative approaches based on traditional image

processing and machine learning. However, this kind of approaches has been

greatly surpassed by Deep Learning (DL).100

2.1. Crack Detection Using Deep Learning

In 2016 and 2017, [19] and [20] respectively cropped high-resolution pave-

ment images into patches, annotated binary as containing or not a crack, to

train a CNN. Both networks beat conventional computer vision approaches.

Later works such as [21] aimed for multi-class classification. This allowed not105

only identifying patches with cracks but identifying the type of crack inside the

patch. In 2018, [20] fine-tuned AlexNet for concrete structures. To achieve

more precise detections, they get crack-probability maps based on the average

predicted probability of overlapping sliding windows. Similarly, [9] proposed a

structured prediction approach by representing each pixel with a patch. Per110

input patch, a smaller patch was predicted and the output patches were used

to build probability maps. For simultaneous distress segmentation, [22] used

6



Table 2: Summary of methods proposed before Deep Learning.

Method Approach Main weakness

Minimal Path Selec-

tion [6]

Image processing and graph

representation

Non-robust to

intrusive objects and

overall noisy imagesCrackTree [4] Image processing, graph

representation and tree gen-

eration

Perception law [17] Image processing, probabil-

ity

CrackIt [18] Block intensity statistics,

supervised machine learning

Dependent on

handcrafted features

for supervised

training

CrackForest [7] Random structured forests,

SVM

YOLOv2; this provided a set of bounding boxes, avoiding patches but lacking

accurate location.

In 2019, [5] moved to FCNNs: U-net based networks allowed pixel-accurate115

segmentation. The same year, U-net was also introduced for concrete crack

detection [23]. Independent U-net variants were used as generative models by

[24] for generative adversarial networks (GANs). In 2020, [25] again combined a

U-net with adversarial learning, replacing the last block of convolutional layers

in the decoder by a discriminator. This network aimed to classify patches in a120

binary way.

A U-net variant inspired by PSPNet was proposed by [26]. This architecture

replaces the blocks of convolutional layers in the encoder by multi-scale blocks,

and the bottleneck by residual blocks. A similar network was proposed by [11],

but adding attention gates between the encoder and the decoder before concate-125

nating to only propagate relevant activations further. In [15], a self-attention

layer is added on top of the last bottle-neck layer of a U-net. This network is one

of the method’s three components: image preprocessing, deep neural network
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Table 3: Comparison of deep-learning-based results using different scope evaluations on pave-

ment images.

Evaluation

strategy

Bounding

box [22]

Patch

[25, 29]

Tolerance

margin [5, 14]

Pixel-accurate

[24, 26, 28]

F-measure >85 % >90 % >95 % >70 %

Geometric accuracy

(location/width)

Evaluation

precision

Crack-box

size

dependent

Patch size

dependent

Tolerance

margin

dependent

Pixel-

accurate

and data augmentation (dilating the annotations used for training).

With a multi-scale approach too, [27] used an encoding FCNN to obtain130

different resolution feature maps. These maps are deconvoluted to calculate the

loss during training and to fuse them together. The final fusion is post-processed

to obtain refined predictions. A boosting method based on a U-net architec-

ture was proposed by [28], assembling feature maps with different resolutions

from the decoder, sharing a single fusion-loss function. The presence of a de-135

coder avoids the need for post-processing. A similar approach was presented by

[10], but using SegNet as a basis. This provided SegNet with the ability to de-

code using information from the encoder, similarly to U-net’s skip connections.

The architecture discussed in [28] was extended by [12] adding a multi-dilation

module at the bottleneck. This module allows to obtain multiple context sizes’140

features by using dilation convolutions with different dilation rates. Another

ensemble approach was proposed in [14], weighting multiple independent CNNs

for the final ensemble. These CNNs return (0, 1)n×n vectors from n×n patches.

Table 3 compares the top scores from DL methods presented in this section.

As discussed before, scores based on tolerance margins are lax and tolerant to145

errors on the pixel level.
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2.2. Weakly Supervised Learning

Weakly supervised learning is an intensively studied topic [30, 31]. It can

be categorized into three main groups: noise-robust algorithm design, noise

filtering, and noise-tolerant methods [30]. We will focus on the first two.150

Robust algorithms like SVM or k-NN can reduce the negative impact of noisy

labels, as long as the number of training samples is big enough [16]. Further-

more, combining SVM with techniques such as active learning provides a way

to train with semi-supervision. This reduces the labeling process to annotate

a set of -greedily chosen- relevant samples [32]. However, traditional machine155

learning algorithms using handcrafted features have been overpassed by DL for

crack detection.

Classifier ensembles (e.g. voting strategies [33, 34]) have shown an ability to

improve the performance of models trained on inaccurate data. These ensemble

outputs can be used further to post-process the predictions. On the other hand,160

single-classifier-based filters have been used successfully too [33, 35]. Using

single-classifier outputs recursively is called self-training: each new model takes

the output of the previous one as input, and it produces new (cleaner) labels.

This strategy has been used to segment images using image-level labels [36].

Other approaches have been proposed to study the influence of single data165

pairs (input/label) during training to identify outliers (i.e. potential mislabels)

[37, 38]. Nonetheless, influence functions require expensive second derivative

calculations and assume model differentiability and convexity. Recent efforts

[39, 40] have proposed to approximate these functions using second-order opti-

mization techniques. This allows integrating influence scores for outlier detec-170

tion when training CNNs. However, the detection of influential observations is

complex. In addition, Lagrangian [41] and Sobolev gradient based optimizers

[42] have been applied to solve different image segmentation problems with high

performance. However, they generally cause high computational costs too.

Alternatively, efforts have been made towards building loss functions able175

to deal with outliers. For example, [43] proposes a framework with a noise-

robust loss that allows updating the parameters of the network and correcting
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the inaccurate labels simultaneously. However, this kind of approaches, as well

as influence-based ones, is typically used for image classification. For segmen-

tation, we have a more complex problem. Instead of classifying images, we are180

classifying pixels: we make tens of thousands of predictions per image instead

of one.

Some alternatives to this kind of problem have been proposed based on

per-pixel difficulty. For example, for vessel segmentation from weak automatic

annotations [44]. First, the loss focuses on easy-to-classify pixels. However, this185

has the potential risk of ignoring systematic biases in noisy labels (losing crucial

pixels). Thus, an online active component is used to refine updated labels: a

small number of valuable pixels with potentially incorrect labels are annotated

and then manually refined in each iteration during training.

For vessel segmentation, choosing these valuable pixels is challenging because190

of the highly imbalanced foreground and background. Similarly, crack detection

has an inherent severe class imbalance. Training in presence of class imbalance

is difficult by itself; it is commonly done by oversampling the minority class.

However, doing this in presence presence of label noise is still a challenging

problem [45]. Particularly, severe class imbalance represents an open challenge195

also for all the weakly supervised learning approaches discussed so far.

After identifying the mislabeled samples, filtering is done by correcting those

samples. This correction consists of relabeling or removing the identified misla-

beled examples [31].

3. Proposed Approach200

3.1. U-VGG19

U-net [46], a symmetrical auto-encoder, has seen success in pavement distress

segmentation. Unlike a typical auto-encoder, it adds some skip connections to

feed the decoder with the feature maps generated by the encoder at different

resolutions.205
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On the other side, VGG has been an attractive feature extractor, also used

to detect cracks. For example, [5] used the pre-trained VGG16 by substitut-

ing its dense layers with deconvolutional ones. For black box images, [47] built

a generic decoder able to be concatenated with different encoders. Using a

pre-trained VGG16 encoder allowed the model to surpass even a model based210

on ResNet152 (without using pre-trained ResNet weights). Similarly, [13] pro-

posed an improved U-net by testing different depth encoders inspired by the

VGG19 architecture. Furthermore, loss functions based on VGG-extracted fea-

ture maps have been used for texture generation. Particularly, to reduce the

impact of limited amounts of available annotated data, [48] used a semantic215

texture generation approach for data augmentation. This improved the model’s

performance in real images.

Based on these reasons, we built a U-net-like network using the pre-trained

VGG19 [49] as a basis. We use its convolutional layers as encoder (Fig. 3.A),

and we replace the dense layers with a decoder (symmetrical to the encoder,220

Fig. 3.B) for segmentation. Like the original U-net, we add a skip connection

between the encoder and the decoder at each available resolution (see Fig. 3.C).

Figure 3: U-VGG19 architecture.

This network, referred to as U-VGG19, is used as baseline model for the

experiments in this paper. All the convolutional layers use kernel size 3, stride

1, and a ReLu activation. Activation functions have a critical role in deep neural225

networks [50]. Even though different types of functions have been used in recent

works [51], we employed ReLU in our work because of its efficiency and results.

The only exception is the final layer (Fig. 3.D), using kernel size 1 with a

sigmoid activation to obtain a single channel image with values in the range (0,

11



1) – crack probability. The downsampling uses max pooling; the upsampling230

uses nearest-neighbor interpolation. Since we do not use any dense layer, any

input size can be used without resizing. The number of trainable parameters is

39,236,101.

3.2. Learning in Presence of Noise

Manual annotations are prone to many errors, especially at the pixel level.235

Training with these inaccurate annotations is a case of inaccurate supervision,

a sub-case of weakly supervised learning [31]. In this paper, we explore noise-

robust algorithms and noise filtering strategies for label correction [30]. Partic-

ularly, we look to improve crack prediction in terms of the cracks’ real width.

The core idea is 1) to get a set of new pseudo-labels from the original data and240

2) to train a model with the help of these pseudo-labels.

From robust algorithms, k-NN has shown to reduce the negative impact of

noisy labels, as long as the number of samples is big enough [16]. In this paper,

we use U-VGG19 as a feature extractor: we use the feature maps from the

second to last convolutional layer (Fig. 3.D) to represent each pixel as a 2D245

vector. Then, a k-NN algorithm with k=5 is used to assign new pseudo-labels

per pixel. The algorithm is applied to each image individually, because of its

scalability with respect to the number of pixels. A typical image for pavement

crack detection contains≈150k pixels, which fulfill the “big enough” requirement

[16]. Increasing the number of images to be used simultaneously would increase250

drastically the processing time per image. We refer to this approach as 5-nn

voting.

It is also possible to use the predictions of the model for self-training. This

means to train models recursively: each new model takes the output of the

previous one as training input, and the new model predicts new pseudo-labels255

[39]. In this paper, we train U-VGG19 with manual labels and we use the trained

model to predict new pseudo-labels per image. We refer to this approach as self-

training.

Ensemble voting strategies have shown to improve the performance of models
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trained with noisy data too [33, 34]. Similarly to [52], we use a bagging strategy260

with a k-folds approach. Specifically, we train 10 different models with 10

different subsets (composed of 9 folds each). Once the 10 voters are trained,

they are used to predict all the available images. Unlike [52], we get pseudo-

labels per image using all the trained models simultaneously before training the

final model. To do this, two ensemble strategies are used: majority voting and265

consensus voting.

The computational complexity of the four methods depends on the baseline

model used. In this paper, our baseline model is U-VGG19, but any segmenta-

tion network could be used. We assume its complexity constant per pixel, and

linear with the size of the image, denoted by O(n) with n being the number of270

pixels. The four methods can be repeated more than once, but there is no guar-

antee of improvement by increasing the number of iterations. Here we discuss

the computational complexity of performing 1 iteration per method.

In the case of self-training, the method requires one full training of the base-

line model and one prediction of the full dataset; no further operations are275

needed. For the voting methods, M instances of the baseline model (considered

as weak learners) are each trained using M−1
M of the dataset. With the predic-

tions of the weak learners, the final pseudo-labels are obtained through voting.

Each voting strategy can be solved in O(M) per pixel [53]. Therefore, the com-

plexity of voting is O(Mn) per image. In the case of 5-nn voting, the final280

pseudo-labels are obtained using a k-NN algorithm on a d-dimensional space as

projected by the baseline model. The projection is done in O(n). Then, when

using an efficient tree structure for the k-NN algorithm [54, 55] (available in

[56]), the complexity of the tree construction is O(dn log(n)). The k-NN pre-

diction per pixel is performed in O(k log(n)). Finally, the pseudo-labels for all285

the pixels are obtained in O(kn log(n)) per image.

The pseudo-labels generated by the methods described before (see summary

in Table 4) are used to filter (i.e. to correct) the original labels. This consists

of removing or relabeling samples [31]. Evidence suggests that removing the

identified mislabeled samples reduces the error in clean data with respect to290
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Table 4: Comprehensive comparison of the proposed pseudo-label generation methods. The

number of pixels per image is denoted by n.

Method Basis Advantages Disadvantages Computational

complexity

Self-

training

Single-model

prediction

Easy to im-

plement, no

hyperparame-

ter selection

Amplification

of the baseline

model’s bias

Cost of the

baseline model –

O(n)

Majority

voting

Ensemble

of M classi-

fiers using

bagging

A balanced

probability

of discarding

good data and

retaining bad

data [33]

Empirical selec-

tion of M

O(Mn)

Consensus

voting

Ensemble

of M classi-

fiers using

bagging

Conservative in

discarding good

data [33]

Empirical selec-

tion of M

O(Mn)

5-nn vot-

ing

k-NN algo-

rithm on

projected d-

dimensional

space

Robust to de-

cision boundary

overfitting

Empirical selec-

tion of k

- Pixel projection

O(n)

- Tree creation

O(dn log(n))

- Pseudo-label

generation O(kn

log(n))
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relabeling them. Nevertheless, compared with removal methods, relabeling ones

have their accuracy fall off much more slowly when increasing the label noise

[35]. This may be explained by the limited number of remaining training samples

after removal. In our context, with few labeled images and a very low rate of

positive-class instances, the impact of removing data points could be worse.295

Thus we study both approaches.

To relabel, we simply replace the original labels by the new pseudo-labels.

To remove, we use the pseudo-labels to weight pixels at loss calculation during

training: we assign a weight of 1 to the pixels where both the raw and the

pseudo-label agree, and 0 to all others.300

4. Experimental Setup

4.1. Fully-convolutional Neural Network

The proposed architecture was implemented using Tensorflow 2.1.0 and a

4GB Nvidia GTX 1050. During training, input images are cropped to 256×256

patches and fed as 4-patch batches. This setup is used to deal with datasets305

containing multiple-size images without resizing. Each model is trained using

the Adam optimizer with a 10−4 learning rate and default parameters. The

initial weights from the encoder are the weights from VGG19 pre-trained on

ImageNet; from this starting point, the whole U-VGG19 is trained together.

For each dataset, available images are randomly split into 80% training and310

20% validation using a fixed seed. Then, a model per dataset is trained. To

refine the results at late epochs, we reduce the learning rate on validation loss

plateau (by 2, with 5 epochs tolerance). To avoid overfitting, we add an early

stop if the validation loss does not increase during 20 consecutive epochs. We

report the scores calculated on the the validation split at the epoch with the315

minimum validation loss (validation images are fed without cropping using batch

size 1).
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4.2. Datasets

CrackForest Dataset (CFD): This public dataset contains 118 images

collected from urban roads containing perturbations such as shadows, oil spots,320

and water stains in Beijing, China [7]. The original image size is 480×320. Two

independent annotations are provided: borders and segmentation. As suggested

by [26], we removed some images with clear annotation errors; we preserved a

total of 108 images.

Aigle-RN : A subset from a bigger database presented in [6]. Unlike the325

other subsets (collected by laser), Aigle-RN is captured using cameras. It con-

tains 38 annotated images collected at traffic speed for periodically monitoring

the French pavement surface condition. They have been pre-processed to miti-

gate the influence of non-uniform lighting conditions.

Syncrack : This dataset (available at: https://github.com/Sutadasuto/330

syncrack generator/tree/demo) provides synthetic RGB images of crack-like

structures over pavement-like textures. Both the crack shapes and the pavement

textures are generated randomly based on Perlin noise. To make crack detection

challenging, the contrast of cracks is low and randomly variable along the crack.

Furthermore, transition zones between cracks and background are added to335

emulate the boundary fuzziness of real-life pictures. Finally, small crack-like

artifacts are added to avoid models to learn only from pixel intensities ignoring

the spatial properties of actual cracks. To make this dataset more similar to a

real-life one, the image size is 480×320 and the crack width is randomly chosen to

be around 1-3 pixels (similarly to CFD). The dataset contains 500 images with340

their corresponding pixel-accurate annotations. Additionally, a noisy version

(emulating real-life inaccurate annotations) is provided.

4.3. Label correction

For the generation of pseudo-labels, we first train U-VGG19 under the same

setup described at subsection 4.1. The model obtained with the training split345

of a given dataset is used to get pseudo-labels for both the training and the

validation splits of the very same dataset. The newly labeled training and

16



validation splits are then used to train a new model. Finally, this model is used

to predict the images from the validation split using the original raw labels for

evaluation.350

In the case of Syncrack, the training split is 20% and 80% for validation. This

is meant 1) to have a number of training images similar to real-life datasets and

2) to have a larger number of validation images such that the confidence in

the obtained results is higher. To have objective baselines about the effects of

inaccurate annotations on crack detection, we use the noisy version of Syncrack.355

To introduce the noise, the ground truth images were divided into patches.

Per patch, an erosion or a dilation is randomly performed, using a disk with

random radius. With this approach, some crack annotation segments become

wider, others thinner, some remain untouched and some even disappear com-

pletely. Syncrack contains 0.46% crack pixels and 99.54% background pixels.360

After introducing noise, with “crack” as the positive class, the labels are com-

posed of: 0.31% true positives, 0.25% false positives, 99.30% true negatives, and

0.14% false negatives. Thus, the dataset has a quasi symmetrical label noise

(false positives and false negatives), and a severely imbalanced class represen-

tation, likewise in real road images.365

4.4. Training Loss

In segmentation tasks, the binary cross-entropy (BCE) loss is typically used

for training. However, this function exhibits a severe problem on highly imbal-

anced data like ours. As pointed out by [25], a naive FCNN approach will lead

to the “all black” problem: the network will simply converge to treating the370

entire input image as background.

To solve this, classical approaches like class weighting have been used [28].

However, by overweighting the under-represented class (cracks), the model will

have a bias towards false positives such as wider cracks and isolated noise.

This behavior is contradictory with the pixel-accurate segmentation goal, so375

we adopted the approach proposed by [26]: a hybrid loss function using the

Dice Score Coefficient (DSC). This score, used for segmentation evaluation,
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represents the ratio of the area of intersection of two objects to the total area.

DSC ranges from 0 to 1 (the greater, the better), but it has a singularity

when both ground truth and prediction have no crack pixels. To deal with this,380

and to use the score as a loss function to minimize, the Dice loss (DICE) is

defined as follows:

DICE = 1− 2 ∗GT ∗ Pred+ 1

GT + Pred+ 1
(1)

DICE ranges from 0 (perfect prediction) to 1 (Pred and GT don’t intersect

at all). However, this function has convergence problems, sometimes falling into

local optimum. To deal with this, our final loss introduces BCE as proposed by385

[26]:

Loss = BCE + α ∗DICE (2)

The constant weight α is a hyperparameter; after some preliminary exper-

iments, we set α to 3. By minimizing this function, BCE helps to achieve

convergence while DICE punishes the model for “all black” outputs.

4.5. Evaluation Scores390

The first approaches to crack detection using DL performed patch classifica-

tion. Given the inherent class imbalance, Precision, Recall and F-measure were

often used as metric scores. These scores were extended to evaluations with

tolerance margins, as well as to recent pixel-accurate works evaluating without

tolerance, so we do as well. Similarly to [26], we report the DSC as a metric395

score more suited for binary segmentation.

We calculate the DSC per image, and we report the average over all the

validation images. Precision and recall are calculated over all the validation

pixels. To calculate the scores, the network’s predictions are binarized using a

threshold of 0.5.400

5. Baseline Model Analysis and Comparison

To explore our label correction approaches, first it was necessary to test our

baseline model. To do this, we trained U-VGG19 on public real-life datasets
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and compared our scores with state-of-the-art methods (when no tolerance is

allowed).405

Fig. 4 shows an example of U-VGG19 predictions in validation images from

both CFD and Aigle-RN. Table 5 shows the scores obtained on the validation

sets of both datasets, when training U-VGG19 on each one of them individually.

Additionally, to analyze the ability of U-VGG19 to learn simultaneously from

different information sources (cross-dataset generalization), we report the results410

obtained by using CFD and Aigle-RN as a single dataset.

Figure 4: Qualitative performance on CFD and Aigle-RN. Comparison color code: (Green)

True positives; (Blue) False negatives; (Red) False positives.

Table 5: Results on public pixel-accurate datasets using U-VGG19.

Dataset Metrics Score

CFD Pr, Re (F) 72.23%, 71.31% (71.77%)

DSC 70.80%

Aigle-RN Pr, Re (F) 56.33%, 81.25% (66.53%)

DSC 65.66%

CFD+Aigle-RN Pr, Re (F) 72.04%, 74.45% (73.23%)

DSC 72.01%

It is important to highlight that the highest score is obtained in the CFD+Aigle-

RN dataset. This suggests that our network benefits from the diversity of the

images contained in both datasets. This boost can be also explained by the

increased number of training images. The number of training images could also415
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Table 6: Comparison of pixel-accurate F-scores on CFD.

Method F-score

U-net [24] 60.48%

GANs [24] 64.13%

Multi-scale Convolutional Blocks [26]a 74.19%

Feature Pyramid Hierarchical Boosting [28]b 70.50%

Distribution equalization learning [15] 54.55%

– U-VGG19 (ours) – 71.77%

a Training and evaluation are done with a CFD+Aigle-RN

dataset.

b GT and Pred are thinned to 1-pixel edges for evaluation.

explain why the performance of U-VGG19 is lower in Aigle-RN compared to

CFD (38 vs 108 labeled images).

Table 6 compares U-VGG19 with other pixel-accurate methods evaluated

without tolerance. These state-of-the-art methods, similarly to ours, are based

on U-net. We chose CrackForest as a reference dataset and F-measure as the420

score since they are the most popular in literature.

Our method is just below a U-net with multi-scale convolutional blocks [26].

However, those results were obtained by using a CFD+Aigle-RN dataset. By

comparing them to our results using the same dataset fusion approach, we

are below by less than 1% – see Table 5 (CFD+Aigle-RN F-score) and Table425

6 (Multi-scale Convolutional Blocks). Nonetheless, their architecture is much

more complex than ours; moreover, our training converged around the same

number of epochs reported by them (∼90), implying an advantage in terms of

hardware requirements and time. Furthermore, the transfer learning strategy

of U-VGG19 outperforms other, more complex, approaches (GANs [24], multi-430

scale hierarchical boosting [28], distribution equalization learning [15]).

When we analyzed U-VGG19 predictions qualitatively, we observed two rel-

evant types of error: 1) missing low-contrast thin cracks and 2) questionable
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cracks that could be or not annotated as cracks depending on the observer.

As suggested by [26], we extended our method by introducing data augmen-435

tation. Particularly, we aimed to improve the recall by solving the problem of

missing thin cracks. Our data augmentation consisted of randomly transform-

ing an image (and its corresponding annotation) immediately before feeding it

to the neural network for training. To do this, a random value for each of the

6 following operations is chosen: adding noise, changing illumination, flipping,440

zooming, rotating and shearing. Every image undergoes the 6 operations in the

given order.

In Table 7, we can see that the data augmentation approach actually reduced

our DSC. Even more, contrary to the expected outcome, the most affected score

was the recall. When we analyzed the predictions of this new model, the score445

reduction seemed to be caused by questionable cracks.

Table 7: Results on CFD+Aigle-RN.

Method Metric Score

Multi-scale Precision 72.44%

Convolutional Recall 76.02%

Blocks [26] DSC 72.09%

U-VGG19

Precision 72.04%

Recall 74.45%

DSC 72.01%

U-VGG19 Precision 75.62%

with data Recall 66.62%

augmentation DSC 69.60%

These cracks are questionable both on the level of objects, and on the level

of pixels: in Fig. 5, according to the manual annotation, the recall decreased;

but, by looking at the false negatives (in blue), it is clear that the predicted

crack is closer to the real width and shape.450

To conclude, without accurate ground truth annotations, it is hard to objec-
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(a) Input (b) Manual ground truth

(c) U-VGG19 prediction (training with data

augmentation)

(d) Ground truth vs Prediction comparison

Figure 5: Comparison of manual (noisy) annotation and a prediction (more accurate in terms

of width). The color code in (d) is the same as in Fig. 4.

tively quantify the ability of the model to deal with noisy annotations. In the

next section, we use Syncrack, a synthetic dataset with clean accurate annota-

tions. By introducing noise to the labels, we quantify the effects of inaccurate

annotations and label correction approaches.455

6. Results and Analysis

In this section, we first quantify the detrimental impact of training with noisy

annotations in the final prediction. To do this, we train U-VGG19 with the

noisy version of Syncrack (inaccurate labels) and evaluate on the clean version

(accurate labels). Afterwards, we train independent models using the pseudo-460

labels generated by each weakly supervised method (see summary in Table 4);

we evaluate each of them using the clean version of Syncrack. This allows us to

measure the improvement with respect to training with raw, inaccurate labels.
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Finally, from this analysis, we choose the best performing methods and test

them on CFD.465

To show that the scores obtained by training with pseudo-labels are stable,

the results presented in this section are the average scores of 3 models trained

independently per dataset. To begin, we trained U-VGG19 using Syncrack

with clean (accurate) annotations as a baseline. Then, as a second baseline,

we trained a fresh version of U-VGG19 with the noisy version of Syncrack and470

tested the model on clean data.

In Table 8, we can observe that training with noisy labels reduces drasti-

cally the performance of U-VGG19 on clean data: from DSC=82.58% down to

61.30%. To ensure that this behavior is not caused only by our architecture, we

train two other publicly available networks on Syncrack: U-net-B, one of the475

approaches with the highest scores (F-score>95% [5]) in our literature review;

and MultiResUnet [57], which has an architecture very similar to the one pro-

posed by [26]. Both, U-Net-B and MultiResUnet, show again a severe drop of

DSC when training with noisy data.

Table 8: Baselines on Syncrack using different networks.

Labels Metric
U-VGG19

(ours)

U-Net-B

[5]

MultiRes

UNet [57]

Clean

DSC 82.58 75.36 63.23

Pr 85.07 81.89 61.00

Re 81.30 73.15 64.29

Noisy

DSC 61.30 57.11 51.23

Pr 49.81 62.65 54.25

Re 85.68 58.59 53.60

Noisy

(with Data

Augmentation)

DSC 66.47 53.48 60.63

Pr 54.98 66.74 52.85

Re 88.63 50.88 80.17

This implies that it is important to deal with inaccurate labels in order to480
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take full advantage of the models’ learning capacity.

The first tested approach was motivated by the observation made with re-

spect to Fig. 5: it is possible that the expected generalization improvement

caused by data augmentation is actually helpful to deal with inaccurate labels.

Training U-VGG19 and MultiResUnet with noisy labels, but using data aug-485

mentation, actually improved the baseline of training with noisy data, as seen

in Table 8. Since data augmentation is a common practice in DL, we use this

score as a third baseline.

Given that U-VGG19 obtained the highest scores for all the baselines, we

use it to test 4 label correction approaches:490

1. Self-training : we use U-VGG19 trained with noisy labels (with data aug-

mentation) to predict pseudo-labels.

2. Majority voting : we train 10 instances of U-VGG19 using subsets of the

training split with noisy labels (without data augmentation). Pseudo-

labels are generated by majority voting, using the 10 models as voters.495

3. Consensus voting : we used the same 10 (previously trained) models, but

generating the pseudo-labels with a consensus voting approach.

4. 5-nn voting : we use U-VGG191 trained with noisy data (without data

augmentation) as a feature extractor. Per image, we obtain pseudo-labels

using a k-NN algorithm.500

The pseudo-labels generated by these methods are used to correct labels:

relabeling the noisy annotations, and removing (ignoring) the pixels with a

disagreement between noisy and pseudo labels. We show the results of both

approaches in Table 9. In Fig. 6, it is easy to notice that both strategies have a

very similar performance. Removing tends to be better most of the time, with505

5-nn voting being the only exception.

This is particularly interesting since 5-nn voting is the best among the four

proposed approaches. The DSC improved from 61.30% (training with noisy

1Both for self-training and 5-nn voting, we chose the model with the highest validation

score during training with noisy labels.
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Table 9: Results on Syncrack’s clean validation data training U-VGG19 with corrected labels.

The best score per metric is highlighted in bold.

Correction method Metric Removing Relabeling

Self-training

DSC 68.60 67.44

Pr 58.38 55.90

Re 87.05 88.83

Majority voting

DSC 63.69 63.41

Pr 53.36 52.36

Re 84.74 86.17

Consensus voting

DSC 64.34 64.24

Pr 61.41 60.81

Re 73.58 74.01

5-nn voting

DSC 71.57 73.37

Pr 71.94 72.53

Re 76.02 78.30

labels) to 73.37% (training with pseudo-labels): more than half the decrease

caused by noisy labels. Comparing this with training using noisy labels with510

data augmentation (called data augmentation from now on), we see an increase

from 66.47% to 73.37%.

The only other approach that surpassed the data augmentation baseline was

self-training. This supports that, indeed, U-VGG19 is able to improve itself

by training with its own predictions. Regarding the voting ensembles, both are515

below data augmentation but they surpass the noisy-label baseline. Particularly,

consensus voting exhibits a slightly better score than majority voting (either by

relabeling or removing).

In Tables 8 and 9, we highlight some behaviors:

1. Training with noisy labels may increase the recall but it decreases the520

precision with respect to training with clean data.

2. Using data augmentation tends to increase both precision and recall with
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Figure 6: DSC on Syncrack’s clean validation data using corrected labels.

respect to training with noisy labels.

3. Removing labels tends to increase the precision whereas relabeling the

recall.525

4. The behavior in 3 is analogous to the one expected from majority and

consensus voting: consensus increases the precision and majority the re-

call.

5. All the explored methods improve the precision with respect to training

with noisy data.530

Behavior 1 suggests that introducing noisy labels during training makes the

predicted cracks wider (precision decreases). On the other side, behavior 5

suggests that using weak supervision approaches deals with this problem (pre-

cision increases). Particularly, the method that obtained the highest DSC (5-nn

voting, relabeling) achieved the highest precision.535

Fig. 7 illustrates this. U-VGG19 is able to properly detect cracks as thin

as 1 pixel, when trained with clean (accurate) labels. However, by training the

same architecture with noisy (inaccurate) labels, the predicted crack is much

wider than reality (3 times wider). After training the network with the pseudo-
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labels generated by 5-nn voting, most of the crack is detected with its original540

width.

Figure 7: Prediction comparison of U-VGG19 on Syncrack. In the last three rows, black-lines

show predictions and colored lines show the comparison with the clean label (the color code

is the same as in Fig. 4).

The weak supervision approaches that provide the best scores on Syncrack

(self-training and 5-nn voting) will now be tested on real data (CFD+Aigle-

RN). For simplicity, we used only a relabeling strategy for training. This time,

our only baselines are training with manual annotations and training with data545

augmentation. Table 10 shows the scores of the baselines and the two weak su-

pervision approaches, using the original manual annotations as ground truth for

evaluation. Contrarily to the intuition, the DSC training with data augmenta-

tion was lower than when training without it. Furthermore, the DSC obtained

by training with pseudo-labels is also lower than the raw manual labels baseline.550

Nonetheless, under the context of noisy labels, this is not a surprise. As

expected from the results obtained on Syncrack, the decrease of DSC is explained
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Table 10: Results on CFD+Aigle-RN using label correction techniques.

Method Metric Score

Precision 72.04%

U-VGG19 Recall 74.45%

DSC 72.01%

U-VGG19 Precision 75.62%

(using data Recall 66.62%

augmentation) DSC 69.60%

U-VGG19 Precision 74.54%

(using self-training Recall 61.99%

correction) DSC 66.70%

U-VGG19 Precision 74.23%

(using 5-nn Recall 71.73%

correction) DSC 71.53%

Calculated with respect to manual annotations.
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by a reduced recall in all the cases. Furthermore, in the three cases, the precision

improves with respect to training with manual annotations. Manual annotations

have a bias towards labeling cracks wider than reality. Learning this bias will555

improve the scores evaluating with those inaccurate annotations. A better crack

width prediction, however, will decrease the recall score.

Unlike with Syncrack, we don’t have accurate ground truth annotations to

measure if our correction approaches are actually improving the prediction.

To indirectly measure if the decrease of recall is due to refining the predicted560

cracks width, we analyzed the grayscale intensity of pixels labeled as crack.

Dark pixels are more likely to be part of a crack; therefore, a more accurate

crack segmentation should exhibit a lower average intensity. Furthermore, a

wider segmentation should exhibit a higher standard deviation since it includes

a variety of pixels from healthy pavement.565

First, raw images were converted to grayscale –[0, 1]– without standardiza-

tion. Then, we calculated the average and the standard deviation of the set of

crack-labeled pixel intensities per image. Table 11 shows the average from this

analysis in all the validation images. With respect to manual annotations, both

average intensity and standard deviation are slightly lower in the U-VGG19570

predictions. Furthermore, both average and standard deviation decrease even

more in the predictions of U-VGG19 trained with data augmentation: the seg-

mentation seems to improve despite achieving a slightly lower DSC.

For weak supervision approaches, we can observe the same behavior: the

recall decreases, but the average intensity and standard deviation decreased575

too. Particularly, the average and standard deviation of self-training are lower

than the ones of data augmentation. This is congruent with the results obtained

from Syncrack, where self-training improved the baseline of data augmentation.

However, the decrease of recall could be caused merely by missing entire cracks

or crack segments. Therefore, a qualitative analysis is needed.580

A comparison of the predictions obtained by the methods from Table 11 is

shown in Fig. 8. We focus on self-training since it was the method with the lower

average and standard deviation. Arrow A points a dark structure not labeled
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Table 11: Analysis of pixels predicted as cracks on the validation split of CFD+Aigle-RN.

Method
Average

intensity

Intensity

standard deviation

Manual annotations 0.3839 0.0811

U-VGG19 0.3791 0.0814

U-VGG19 with

Data Augmentation
0.3673 0.0757

U-VGG19 with

self-training correction
0.3595 0.0714

U-VGG19 with

5-nn correction
0.3760 0.0803

as crack by the original manual annotation but identified as a crack by the

model trained with self-training. This ambiguity is shared with the structure585

pointed by arrow B. It looks similar (albeit a bit lighter) but the structure was

manually annotated as crack, while not predicted as crack by U-VGG19. Both

cases are examples of fuzziness caused by low-resolution images; correction of

this kind of potential errors remains a challenge. However, arrows C and D

point to zones where our label correction approach shows promising results.590

In case C, the manual annotation is much wider than the actual crack. As

we advance along the columns, the prediction gets thinner without missing the

visible crack, thus improving the predicted crack width. In case D, the manual

annotation is slightly offset with respect to the given visible crack. As we move

along the columns, both the shape and the location of the crack improve in our595

predictions.

Inaccurate annotations are a key element limiting supervised crack detection:

1) the resulting models are inherently biased, and the scores hit a ceiling because

of the noise in the ground truth; 2) if we remove the bias from the training data,

the discrepancy with the inaccurate ground truth annotations will increase and600

the scores will decrease. However, methods derived from the field of weakly
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Figure 8: Prediction comparison training with manual annotations, data augmentation and

corrected annotations. The color code is the same as in Fig. 4.

supervised learning show themselves as very promising options to deal with

this. Particularly, these approaches can help to relabel manual annotations into

a more accurate ground truth in terms of crack width.

7. Conclusions and Future Work605

In this paper, we approached the problem of inaccurate manual annotations

under the scope of weakly supervised learning. This is possible because mislabels

at pixel level (caused by inaccurate annotations) are a case of noisy labels.

First, to approach the crack detection task, we introduced U-VGG19 (a U-

net with VGG19 as backbone). U-VGG19 obtained an F-score of 71.77% on610

the CrackForest dataset. This is competitive and often better than other, more

complex, approaches when evaluating without tolerance margins.

Then, to evaluate the impact of inaccurate annotations, we introduced a

novel synthetic dataset (Syncrack). This dataset contains pixel-accurate crack

annotations, used as a training baseline for U-VGG19. After that, we introduced615

noise to the annotations to emulate real-life inaccurate annotations. Train-

ing with these noisy labels exhibited a very negative impact: a decrease from

DSC=83% to 61% on accurate annotations.
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To fill this gap, we tested label correction methods inspired by the field of

weakly supervised learning. The most successful ones were self-training and620

5-nn voting, improving the noisy-label results by up to 12% (from DSC=61%

to 73%): more than half the decrease caused by inaccurate annotations. Self-

training consists of using U-VGG19 trained with noisy labels to predict new

pseudo-labels per image. 5-nn voting, instead, uses the same trained U-VGG19

to project the pixels from an image into a new 2D space; new pseudo-labels625

per pixel are then obtained using a k-NN algorithm. From both methods, 5-nn

voting obtained the best result. 5-nn voting allows avoiding overfitted decision

boundaries. However, the number of neighbors is a manual hyperparameter to

tune. Increasing this value will increase the complexity without a guarantee

of improving the expected results. On the other hand, self-training does not630

require parameter tuning, being the simplest method to implement. However,

it is prone to overfit to its own biases.

We extended these methods to real road images (CrackForest + Aigle-RN).

Since no accurate ground truth exists in this case, we provided indirect measure-

ments intended to evaluate the quality of the predicted cracks width. All the635

provided results showed the promising performance of weak supervision methods

to improve crack detection. Particularly, in terms of crack width.

Learning in the presence of noise is an extensively studied field. However,

there are no strategies suitably studied for severely imbalanced classes such as

in crack detection (with ratios as aggressive as 1/100). Based on the results640

presented in this paper, improving weak supervision approaches oriented to

heavily imbalanced classes can work hand-to-hand with DL strategies, towards

improving crack detection.

The code to reproduce our results is available at: https://github.com/S

utadasuto/weak supervision crack detection645
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