N
N

N

HAL

open science

LEARNING FROM DEMONSTRATIONS WITH
SACR2: SOFT ACTOR-CRITIC WITH REWARD
RELABELING

Jesus Bujalance, Raphael Chekroun, Fabien Moutarde

» To cite this version:

Jesus Bujalance, Raphael Chekroun, Fabien Moutarde. LEARNING FROM DEMONSTRATIONS
WITH SACR2: SOFT ACTOR-CRITIC WITH REWARD RELABELING. ’Deep Reinforcement
Learning’ workshop of the 35th Conference on Neural Information Processing Systems (NeurIPS’2021),
Dec 2021, Virtual, United States. hal-03519790

HAL Id: hal-03519790
https://minesparis-psl.hal.science/hal-03519790

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://minesparis-psl.hal.science/hal-03519790
https://hal.archives-ouvertes.fr

arXiv:2110.14464v2 [cs.LG] 3 Dec 2021

Presented at Deep RL Workshop, NeurIPS 2021

LEARNING FROM DEMONSTRATIONS WITH SACR2:
SOFT ACTOR-CRITIC WITH REWARD RELABELING

Jesus Bujalance Martin Raphael Chekroun
MINES ParisTech, PSL University, Center for robotics MINES ParisTech, Valeo DAR
60 Bd. Saint Michel 75006 Paris, France name.surname@mines—-paristech. fr

name.surnamel_surname2@mines-paristech.fr name.surname@valeo.com

Fabien Moutarde
MINES ParisTech, PSL University, Center for robotics
name.surname@mines—-paristech.fr

ABSTRACT

During recent years, deep reinforcement learning (DRL) has made successful in-
cursions into complex decision-making applications such as robotics, autonomous
driving or video games. Off-policy algorithms tend to be more sample-efficient
than their on-policy counterparts, and can additionally benefit from any off-policy
data stored in the replay buffer. Expert demonstrations are a popular source for
such data: the agent is exposed to successful states and actions early on, which
can accelerate the learning process and improve performance. In the past, mul-
tiple ideas have been proposed to make good use of the demonstrations in the
buffer, such as pretraining on demonstrations only or minimizing additional cost
functions. We carry on a study to evaluate several of these ideas in isolation,
to see which of them have the most significant impact. We also present a new
method for sparse-reward tasks, based on a reward bonus given to demonstrations
and successful episodes. First, we give a reward bonus to the transitions coming
from demonstrations to encourage the agent to match the demonstrated behaviour.
Then, upon collecting a successful episode, we relabel its transitions with the
same bonus before adding them to the replay buffer, encouraging the agent to also
match its previous successes. The base algorithm for our experiments is the popu-
lar Soft Actor-Critic (SAC), a state-of-the-art off-policy algorithm for continuous
action spaces. Our experiments focus on manipulation robotics, specifically on
a 3D reaching task for a robotic arm in simulation. We show that our method
SACR2 based on reward relabeling improves the performance on this task, even
in the absence of demonstrations.

1 INTRODUCTION

Despite having known great success, reinforcement learning algorithms have yet to prove that they
can consistently produce good results across different domains. Works like [Engstrom et al.| (2020)
show that we still don’t know with certainty what are the things that matter the most in current
algorithms. Other challenges such as reproducibility issues have brought some scepticism to the
field.

Two of the main challenges in reinforcement learning are reward shaping and sample efficiency.
Reward shaping makes it very difficult to translate results from one task to another, and often relies
on the intuition of the designer rather than a robust methodology. Sample efficient algorithms are
required to obtain faster and more reliable results, particularly in robotics where it is much harder
to deploy an algorithm outside of simulation. Recent progress has enabled some deployment to real
robots, but there are still issues to consider such as safety or human intervention (Gupta et al., 2021)).
The recent trend towards more data-driven algorithms could be a solution to both of these problems.
Indeed, additional data can alleviate the need for online data collection, and demonstration data can
guide the agent to good behaviours with a simple task-agnostic reward function.

Presented at Deep RL Workshop, NeurIPS 2021

In this work, we focus on a reaching task with sparse rewards, and aim to identify what are the best
methods that leverage expert demonstrations to improve sample efficiency. We focus on generic
task-agnostic methods that can be applied to any off-policy algorithm with some minor modifica-
tions. We also present a new such method, which is based on the observation that, in hindsight, a
successful episode of collected experience is in fact a demonstration, so it should receive the same
treatment. In particular, we propose to add a reward bonus to all transitions coming from both
demonstrations and succesful episodes. We instantiate our approach with Soft Actor-Critic (SAC)
(Haarnoja et al., 2018)), and compare it to two other algorithms, SACfD (Vecerik et al., 2017) and
SACBC (Nair et al.} 2018), presented in detail in section @

The contributions of this paper are the following:

* We present an ablation study of existing methods that improve sample efficiency by lever-
aging demonstrations in off-policy reinforcement learning algorithms.

* We introduce a new such method that consists on giving a reward bonus to demonstra-
tions and relabeling successful episodes as demonstrations. Our approach is among the
methods with the highest performance increase, and is a component of the final algorithm
that achieves the best results. It also consistently solves the task without demonstrations,
whereas SAC often fails.

2 RELATED WORK

Reinforcement Learning (RL) and Imitation Learning (IL) are the two most popular paradigms to
solve decision-making tasks within machine learning. In classical RL, the data is collected during
training by interacting with the environment, which provides a reward signal that we try to maxi-
mize. In IL, the data is generally collected before training, and it consists of expert trajectories of a
behaviour that we wish to copy or imitate.

Learning for robotics.

In this paper, we focus on general-purpose RL algorithms that can be applied to any problem out
of the box. However, roboticists have for a long time pursued more sample-efficient algorithms
that could be deployed in the real world. Outside of RL, Transporters Networks (Zeng et al., [2020)
exploit spatial symmetries and RGB-D sensors to solve a variety of tasks from just a few samples,
and NTP (Xu et al., 2017) and the more recent NTG (Huang et al., [2019) use clever representations
to execute a hierarchy of movement primitives that solve complex sequential tasks from demonstra-
tions. The recent C2F-ARM from James et al.|(2021) relies on RL, point cloud inputs, and a clever
pre-processing pipeline to achieve impressive results from just a handful of demonstrations. Many
successful algorithms for robotics have come from model-based RL, since they can learn from task-
agnostic data. Earlier works proposed dynamics models over latent representation spaces, which
could be learnt from a reconstruction objective (Finn et al., 2016b), or directly from their ability to
produce models that accurately explain the observed data (Zhang et al.L[2019). More recently, works
such as|Finn & Levine|(2017) or|Schmeckpeper et al.|(2020) successfully learnt a model directly in
image space. More generally, the recent trend of offline RL has brought algorithms able to leverage
huge amounts of data, expert or not, such as QT-Opt (Kalashnikov et al., 2018)) or the most recent
multi-task version MT-Opt (Kalashnikov et al., 2021).

Relabeling past experience.

Since off-policy RL algorithms can theoretically use data coming from any policy, a natural idea
was to share data between tasks in a multi-task setting. An even better idea came in Hindsight
Experience Replay (HER) (Andrychowicz et al.l [2017), where the authors pointed out that if we
accidentally solve one task when trying to perform another task, that experience is still optimal if
we relabel the goal that was initially intended. Similar and more general works followed, such as
GCSL (Ghosh et al.l 2019), Generalized Hindsight (Li et al., 2020), and HIPI (Eysenbach et al.,
2020), which reframes the relabeling problem as inverse RL. RCP (Kumar et al.|[2019) extended the
idea to the single-task setting, by learning a policy conditioned on the trajectory return: trajectories
collected from sub-optimal policies can be viewed as optimal supervision for matching the reward
of the given trajectory.

Learning from demonstrations.

Presented at Deep RL Workshop, NeurIPS 2021

The most straight-forward variant of IL is behaviour cloning (BC), where we directly look for a
policy that acts like the expert by solving a supervised learning problem. This approach suffers
from a series of issues, namely compounding errors that can put the agent into states where it can no
longer recover, because they lie outside the training state distribution. However, BC has seen success
in a variety of complex applications such as autonomous driving (Bojarski et al., 2016)). More robust
algorithms have been proposed, like Dagger from Ross et al.| (2011), which does however require
that the expert is available during training. Another variant of IL which has known great success is
inverse RL (IRL), where we try to infer the reward function that the expert was most likely trying
to maximize, while optionally jointly learning a policy. IRL algorithms benefit from online data
collection, but assume that the reward signal from the environment is unknown. The most recent
IRL algorithms that can handle complex behaviours are based on adversarial optimization, such as
GCL from [Finn et al.| (2016a), which presents a similar idea to the well-known GAIL from Ho &
Ermon| (2016).

Learning from both demonstrations and reinforcement learning.

Demonstrations can be used to design the reward, guide exploration, augment the training data,
initialize policies, etc. In NAC (Gao et al., |2018)), the demonstrations, which can be sub-optimal,
are used as the only training data during the first iterations. InZhu et al.[(2018]) the demonstrations
are used to augment the manually designed task reward with an imitation-based reward. In DAPG
(Rajeswaran et al.,[2017) the demonstrations are used twice: to pretrain with behavior cloning, and
to augment the policy gradient equation. In DAC (Liu et al., |2020), they introduce a novel objective
based on an augmented reward, the larger the closer the policy to the expert policy.

We will focus on three algorithms that can be applied to any continous-action off-policy algorithm
with very minor modifications.

SACTD (Vecerik et al., |2017) (originally DDPGfD based on DDPG) introduces three main ideas:
transitions from demonstrations are added to the replay buffer, prioritized replay is used for sampling
transitions (demonstration data is given a bonus to be sampled more often), and a mix of 1-step and
n-step return losses are used.

SACBC (Nair et al.,[2018) (has no name and originally based on DDPG) also introduces three main
ideas: transitions from demonstrations are added to a separate additional replay buffer, an auxiliary
behaviour cloning loss is applied to samples from this buffer, and some episodes are reset to a state
sampled uniformly from a demonstration. The authors additionally present other ideas regarding the
multi-goal setting which we won’t cover in this work.

SQIL (Reddy et al., [2020) is actually a pure IL algorithm, since the reward signal is supposed
unknown, but we present it here since it also incorporates demonstration data into the replay buffer.
The replay buffer is initially filled with demonstrations where the rewards are always » = 1, and
new experiences collected by the agent are added with reward r» = 0.

3 BACKGROUND

Reinforcement learning.

In reinforcement learning, an agent interacts with an environment by performing an action and
observing a feedback signal (reward r) and the new state of the environment. The goal is to find the
policy (function mapping states s to actions @) that maximizes the discounted cumulative reward:

T
" = arg m7§XET~p,r(T) [Z W’kT(SHk,aHk)] (D
k=0

T !

We define the Q-function Q™ (s¢,a) = Y E,_ {vt “r(sy, ap)|st, at] as the reward-to-go from
t'=t

the state s; if we pick the action a; and then follow 7.

Soft Actor-Critic.

In reinforcement learning, the optimal policy is always deterministic under full observability, but
stochastic policies have interesting properties: better exploration and robustness (due to wider cover-

Presented at Deep RL Workshop, NeurIPS 2021

age of states), and multi-modality. We need an objective that promotes stochasticity by maximizing
the entropy H of the policy (we omit « here for simplicity):

T
™ = arg mEXZE(St:at)NPW [r(st,ae) + aH(w(:|s¢))] 2)
t=1

We can define a new Q-function (slightly different to accommodate the entropy term) which follows
the soft Bellman equation:

Q" (s,a) =7+ VEg wp(|s,a),a’ ~m(-|s) [Q™(s',a’) — alogm(a'|s")] 3)

To train the critic, we can approximate the right-hand expectation with samples, set it equal to y,
and minimize the MSBE loss on a parameterized () (in practice, two approximators (04, and @4,

are trained):
Li(Qe)= E [(Qy(s,0)—)’])
(s,a,r,s’,d)~D
To train the actor 7y, the actor loss is derived from the reparameterization trick to compute samples
ag(s,€) = po(s) + og(s)e, where € is some random noise:

L(mg) = *SNDEENN]IEHQ Qo (5,a0(s,€)) — alogmg(as(s,e)|s) &)

4 METHOD

We propose SACR2, Soft Actor-Critic with Reward Relabeling, a straight-forward method that can
be implemented to any off-policy reinforcement learning algorithm with sparse rewards. First, we
add demonstration data to the buffer. The last transition of each expert trajectory is given the sparse
reward from the environment. The other transitions are given a reward equal to b, typically smaller
than the sparse reward. Then, every time we collect a successful episode, we relabel the last N — 1
transitions leading to the sparse reward, where N is the average length of the demonstrations, by
assigning to them a reward equal to b.

The first part of our algorithm is most similar to SQIL. Intuitively, it gives the agent an incentive
to imitate the expert. Their paper shows theoretical connections between SQIL and regularized
behaviour cloning. One important difference is that SQIL is a pure imitation learning algorithm,
while our method learns from both the reward bonuses and the reward from the environment. This
also means that our reward bonus b should be carefully tuned so that it has an im}gact without
completely swallowing the environment reward. Empirically we found that b ~ <=5, where R
is the value of the sparse reward, provided good results (see section [6), meaning that an expert
demonstration has on average a return twice as big as a successful episode. Intuitively, SQIL also
gives an incentive to avoid states that weren’t in the demonstration data, which could potentially be
harmful if those states led to successful behaviour.

The relabeling part of our algorithm tries to mitigate this issue and is most similar to Self-Imitation
Learning (SIL) from [Oh et al.| (2018). In SIL, the self-imitation is achieved by an additional loss
function that pushes the agent to imitate its own decisions in the past only when they resulted in
larger returns than expected. In our method, the self-imitation is achieved by effectively treating
successful episodes as if they were demonstrations. In order to avoid rewarding poor trajectories
that solve the task by chance, we only reward the last N — 1 transitions leading to the sparse reward,
where NV is the average length of the demonstrations.

5 EXPERIMENTAL SETUP

We evaluate our method in a simulated reaching task for a 6 degrees-of-freedom robot manipulator.
The goal is to reach a target ball that appears randomly in the 3D space within the reach of the robot.
The initial position of the target changes after each episode, but it doesn’t move during an episode.
The initial state of the robot is always the same, close to an upright position. An episode ends once
the robot has reached the ball, or after 100 time-steps. The reward is fully sparse, and is equal to
4100 if the robot reaches the ball and 0 otherwise. The state has 22 dimensions, 19 from the robot

Presented at Deep RL Workshop, NeurIPS 2021

Algorithm 1: SACR2: Soft Actor-Critic with Reward Relabeling

Require: b reward bonus, N average length of demonstrations;
Initialize buffer with demonstrations, set reward r = b for all non-final transitions;
Initialize empty episode;
while not converged do
do a SAC update;
if len(episode) == 0 then

collect one episode;

if episode is successful then

\ set » = b for the last N — 1 non-final transitions;

end
end
pop a transition (s, a, s’,) from the episode and add it to the buffer;
end

Figure 1: Two snapshots from two different episodes of the reaching task on RLBench. The target
ball appears at the beginning of a new episode somewhere within the delimited box.

proprioceptive state (joint angles, joint speeds, gripper pose) and 3 from the task-related information
(3D coordinates of the ball).

Simulator and demonstration data collection.

The reaching task is part of the benchmark and learning environment RLBench from James et al.
(2020), which is built around CoppeliaSim (Rohmer et al.,|2013)). The backend physics engine is the
Bullet physics library (Coumans, [2015)), and the expert demonstrations are provided by RLBench
and rely on OMPL (Sucan et al.|[2012) for motion planning.

Experiments.

The basic SAC algorithm without demonstrations is able to solve this task (with close to 100%
accuracy) on some runs, so our goal is to reduce the amount of training steps required to get there.
Each experiment is averaged over 4 runs. We want to answer four questions: Which of the ideas
presented in SACBC and SACD have the most significant impact ? How does SACR2 perform
? What is the configuration that achieves the best performance ? Does SACR2 make a difference
when no demonstrations are available ?

In order to answer the first two questions, we test each method in isolation on top of a baseline
SAC+Demo, which we define as SAC with demonstrations in the buffer. We apply the following
modifications to both SAC+Demo and SACR2:

Presented at Deep RL Workshop, NeurIPS 2021

Single buffer initially filled with 200 demonstrations, and kept thereafter at a ratio of 10%
demonstration data. After 130000 training iterations, around 800 more demonstrations
have been added to the buffer.

We additionally add 1000 random interactions to the buffer before training, and we pre-
train during 3000 iterations before collecting any data.

The data is sampled from the buffer according to prioritized experience replay (PER)
(Schaul et al., [2016).

The replay ratio on the collected data is set to 32. Since the batch size is set to 64, the agent
takes two environment steps per training step.

As suggested in both SACfD and SACBC, we use L2 regularization losses on the weights
of the critic and the actor.

We evaluate SACR?2, four loss functions, two buffer configurations, pre-training on demonstrations,
resetting some episodes to a demonstration state, and modifying the sampling probabilities of the
replay buffer.

6 RESULTS

Average episode success

Average episode success

Average episode success

10

Comparison of one vs two buffers
—— SAC+Demo
SAC+Demo with two buffers

Comparison with vs without bonus to demos in PER
ey
K7
,\Vr/“"

P

Average episode success

SAC+Demo
SAC+Demo with bonus to demos in PER

20000

o 100000

60000 o0 120000 o 20000 60000 80000 100000 120000
Training steps Training steps

Comparison with vs without reset to demonstrations

Comparison with vs without pre-training on demo data
SAC+Demo

10

T ‘ » L]
AN SAC+Demo with no pretraining /\[M«NW
o8 SAC+Demo with extra pretraining ,-Jv/
o P
g o,
s v
306 N
E » -
J B /
| o |
/ e /
Wi o ol
o ™ Zoz o W
" e A SAC+Demo \os /,{\,M«f,”
0 SAC+Demo with reset to demos o0 SRR
20000 40000 50000 800 100000 120000 0 20000 40000 60000 80000 100000 120000
Training steps Training steps
Comparison of different loss functions Comparison with vs without SACR2 (ours)
e = 10 A e NS ATER,
T T AR P RNET
AN
/ -
wos _—
r g fv
a - A
/ ;:"“ /u' d
/ / 2 /
/ / /
i (g 04 ;
/ SAC+Demo g /
wf
e SAC+Demo with BC loss 202 SAC+Demo
g T SAC+Demo with n-step loss SACR2 (b=5, no relabeling)
Lt Sac+Demo with n-step and BC loss o SACR2 (b=5)

0000 100000 120000 o

20000

0000 100000 120000

o o
Training steps Training steps

Figure 2: Ablation results on our baseline SAC+Demo. The results are smoothed with a rolling
window of 100 episodes, and the standard error is computed on four random seeds. The n-step
loss from SACED, our approach SACR2, and the behaviour cloning loss from SACBC, are the three
methods with the greatest impact on performance (in that order).

Loss function.

Following SAC{D, we try a n-step return loss L,, to train the critic. This loss is a modified version of
the loss £; (see[d) with n-step returns replacing the immediate reward. Using a larger lookahead can

Presented at Deep RL Workshop, NeurIPS 2021

be particularly useful for tasks with sparse rewards, since it increases the chances of encountering a
reward. We set \,, = 1 and n = 5.

Lcriie(Qg) = L1(Qg) + M Ln(Qop) (6)

Following SACBC, we try a behaviour cloning loss Lgc to train the actor. The loss prevents the
policy from deviating too much from the demonstrations, and accounts for sub-optimimality of
the demonstrations by filtering out updates where the critic under-performs. However, since our
demonstrations come from an expert motion planner, we decide to not include the filtering term (we
ran some experiments with it and it performed significantly worse). We set Agc = 2.

Loc =Y |Imo(s:) = ail[310, (51,00 >Qu(s0mo (1)) ()

Lacor(m0) = L(mg) + ApcLpc (o))

The results (Figure [2 bottom-left) show a significant increase in performance for both methods, and
an even bigger increase when combined.

One vs two buffers.

Both SQIL and SACBC use a separate buffer to store the demonstrations, while SACfD stores them
in the same buffer as the collected data. The main difference between these two approaches is the
ratio of demonstrations in the sampled batches. With two buffers, this ratio can be fixed (SQIL
uses 50% and SACBC roughly 10%). With one buffer, the ratio varies from batch to batch and is
on average equal to the ratio of demonstration data in the buffer if the sampling is uniform. Since
we sample according to PER, the ratio is actually slightly higher, but the results (Figure 2] top-left)
show that two buffers perform better, albeit by a small margin. One practical advantage of using two
buffers over one is that we can add as many demonstrations as we wish to the demonstration buffer
in order to have a different replay ratio, but we introduced an equivalent amount of demonstrations
to keep things fair.

Reset to demonstrations.

Following SACBC, we try to reset some episodes (10%) to a demonstration: the position of the target
ball is the same as in the demonstration, and the initial state of the robot is randomly chosen from
the demonstration. This should act as a form of curriculum learning and lead to more successful
episodes early on. The results (Figure 2] middle-left) do show an initial boost in the learning process,
but the improvement isn’t too significant.

Pre-training on demonstrations.

Pre-training on demonstrations is one of the most common approaches to leverage demonstrations
in the literature, and does seem like a good idea according to the results (Figure [2] middle-right).
However, too much pre-training (10000 iterations on 800 demonstrations rather than 3000 iterations
on 200 demonstrations) also decreases performance. Intuitively, the agents winds up forgetting
what it initially learnt from the demonstrations when it first encounters subpar trajectories from its
collected experience. This is much more clear in Figure [5] of the appendix where we do an even
more drastic pre-training (20000 iterations on 2000 demonstrations).

Prioritized replay.

Following SACSD, we try to modify the PER strategy with two additional terms: a term representing
the actor loss, and a constant bonus applied to all transitions coming from demonstrations. From our
limited experiments, this new strategy didn’t have a great impact in terms of ratio of demonstration
data in the sampled batches. With both PER and the modified PER the ratio is close to 11% (we
recall that 10% of the transitions in the buffer come from demonstrations). However, the results
(Figure [2]top-right) do show a major initial boost during training, although the overall improvement
isn’t too significant.

We recall that in PER, the probability of sampling a particular transition is proportional to its priority
pi» Which is commonly computed from the transition’s temporal difference (TD) error d;, for instance
pi = 62 + € where € is a bonus given to all transitions. SACfD adds a square term representing

Presented at Deep RL Workshop, NeurIPS 2021

the actor loss and a second bonus ep given only to the demonstrations. We use the same hyper-
parameters as in SACfD.

SACR?2 (ours).

The results (Figure 2|bottom-right) show an initial boost during training, both with and without rela-
beling, probably coming from the agent imitating the demonstrations more aggressively. However,
without relabeling, the learning process becomes unstable, probably due to the lack of consistency
on the rewards once the agent has collected enough sucessful episodes. Overall, SACR2 increases
the performance by a wide margin.

More experiments with different values are presented in Figure [3| We can see that the higher b, the
more unstable the training process without relabeling. With relabeling, there doesn’t seem to be any
significant difference between b = 5 and b = 10. We also tested b = 1 but its impact was practically
unnoticeable with respect to b = 0.

Best configuration.

Comparison with vs without SACR2 (ours)

1.0

o
©

o
o

I
~

\ SAC+Demo*
A\ SACR2* (b=5, no relabeling)
—— SACR2* (b=10, no relabeling)
—— SACR2* (b=5)
—— SACR2* (b=10)

0 10000 20000 30000 40000 50000 60000
Training steps

Average episode success
=]
0

Figure 3: Final comparison of the two more sample-efficient algorithms: SAC+Demo* and
SACR2*. The results are smoothed with a rolling window of 100 episodes, and the standard er-
ror is computed on four random seeds.

Based on our ablation results, we introduce SAC+Demo* and SACR2*, which are defined as the
previous algorithms plus the method that provided the greatest increase in performance: the addition
of the loss functions Lgc and £,,.

To answer the third question from section[5} we carry additional experiments shown in the appendix
[A] and the only method that furthers improves upon SAC+Demo* is SACR2*, as shown in Figure
However, the improvement is very minor as SACR2* seems to be the fastest method to reach an
accuracy of 90%, but both methods (SAC+Demo* and SACR2*) look pretty much equal afterwards.

Learning without demonstrations.

One final interesting experiment is to see whether SACR?2 can also improve the performance when
no demonstrations are available, by just relabeling successful episodes. Figure[d]shows that SACR2
actually solves the task consistently, while SAC only solves it on 2 out of the 4 runs. However, over
the runs where SAC solved the task, its sample efficiency was comparable to SACR2.

Presented at Deep RL Workshop, NeurIPS 2021

SACR2 without demonstrations (ours)

1.0

— SAC
SACR2 (b=5)
v 08
(%]
]
(S
o
>
(%]
@ 06
°
o
2
o
D o4
]
=)
©
—_
>
< 02
NI A Ao
0.0 A
0 20000 40000 60000 80000 100000 120000 140000

Training steps

Figure 4: Results showing that SACR2 improves upon SAC when no demonstrations are available.
The results are smoothed with a rolling window of 100 episodes, and the standard error is computed
on four random seeds.

7 DISCUSSION AND CONCLUSION

We propose SACR2, a generic method that can be applied to any off-policy reinforcement learn-
ing. It encourages two behaviours: imitate the expert demonstrations (if available), and imitate the
past successful trajectories. From our limited experiments, we identified three methods where the
results were strong enough to advocate their use on other tasks: relabeling rewards with SACR2, the
behaviour cloning loss from SACBC (Nair et al.| [2018), and the n-step loss from SACfD (Vecerik
et al., [2017). We show that these methods stack together, as the best results were obtained with
the three methods combined. Regarding SACR?2, further analysis needs to be done on the impact
of the hyper-parameters b and N across different tasks. Many improvements could be brought to
the method, such as using a more principled value rather than a constant reward bonus, or imple-
menting a decay or other strategy to switch the focus to the environment reward once it becomes
more common. The main limitation of our method is that it assumes that the expert demonstrations
are optimal. Other methods like NAC and SACBC are able to handle sub-optimal demonstrations,
which is very useful for most tasks outside of robotics, and even for more complex robotics tasks
where an optimal planner is not available. Our method also requires episodic tasks, preferably over
a short horizon, since it would be difficult to relabel a continuous flow of experiences.

Our results show that SACR2 can greatly improve performance, even when no demonstrations are
available and the only supervision comes from a sparse reward. However, these results come from a
single task, and we don’t know how they would translate to other tasks, in particular more complex
tasks where we try to increase the success rate rather than the sample efficiency. Further evaluation
is also needed to clarify the impact of some of the other methods. As shown in Figures [2] and [5}
some of them slightly improve upon our first baseline SAC+Demo, but actually hurt our second
stronger baseline SAC+Demo*, which doesn’t allow us to draw any significant conclusions. Finally,
it would be interesting to test SACR2 with another base algorithm different to SAC, for instance a
Q-learning-type algorithm on a task with discrete actions.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-

Presented at Deep RL Workshop, NeurIPS 2021

sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
453fadbd8ala3afb50a9df4df899537b5-Paper.pdf.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, pp. 1.2015.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rletN1rtPB|

Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewriting history
with inverse rl: Hindsight inference for policy improvement. arXiv preprint arXiv:2002.11089,
2020.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786-2793. IEEE, 2017.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49-58. PMLR,
2016a.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial
autoencoders for visuomotor learning. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 512-519. IEEE, 2016b.

Yang Gao, Huazhe(Harry) Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement
learning from imperfect demonstrations, 2018. URL https://openreview.net/forum?
1d=BJJ%bz-0-.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Abhishek Gupta, Justin Yu, Tony Z. Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu, Thomas
Devlin, and Sergey Levine. Reset-free reinforcement learning via multi-task learning: Learning
dexterous manipulation behaviors without human intervention. CoRR, abs/2104.11203, 2021.
URLhttps://arxiv.org/abs/2104.11203!

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//openreview.net/forum?id=HJjvx1-Cb.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29:4565-4573, 2016.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video demon-
stration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 8565-8574, 2019.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. /IEEE Robotics and Automation Letters, 5(2):3019—
3026, 2020.

Stephen James, Kentaro Wada, Tristan Laidlow, and Andrew J Davison. Coarse-to-fine g-

attention: Efficient learning for visual robotic manipulation via discretisation. arXiv preprint
arXiv:2106.12534, 2021.

10

https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=BJJ9bz-0-
https://openreview.net/forum?id=BJJ9bz-0-
https://arxiv.org/abs/2104.11203
https://openreview.net/forum?id=HJjvxl-Cb
https://openreview.net/forum?id=HJjvxl-Cb

Presented at Deep RL Workshop, NeurIPS 2021

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. = CoRR,
abs/1912.13465, 2019. URL http://arxiv.org/abs/1912.13465.

Alexander C Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
arXiv preprint arXiv:2002.11708, 2020.

Guoqing Liu, Li Zhao, Pushi Zhang, Jiang Bian, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Demon-
stration actor critic, 2020. URL https://openreview.net/forum?id=Bk1RFpVKPH.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292-6299. IEEE, 2018.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In ICML, 2018.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning
and demonstrations. CoRR, abs/1709.10087, 2017. URL http://arxiv.org/abs/1709.
10087.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. {SQIL}: Imitation learning via reinforce-
ment learning with sparse rewards. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=S1xKd24twB.

Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1321-1326. IEEE, 2013.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627-635. IMLR Workshop and Conference
Proceedings, 2011.

Tom Schaul, John Quan, loannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR (Poster),2016. URL http://arxiv.org/abs/1511.05952.

Karl Schmeckpeper, Annie Xie, Oleh Rybkin, Stephen Tian, Kostas Daniilidis, Sergey Levine, and
Chelsea Finn. Learning predictive models from observation and interaction. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XX 16, pp. 708-725. Springer, 2020.

Toan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning library. IEEE Robotics
& Automation Magazine, 19(4):72-82, 2012.

Matej Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothorl, Thomas Lampe, and Martin A. Riedmiller. Leveraging demon-
strations for deep reinforcement learning on robotics problems with sparse rewards. CoRR,
abs/1707.08817, 2017. URL http://arxiv.org/abs/1707.08817.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neural

task programming: Learning to generalize across hierarchical tasks. CoRR, abs/1710.01813,
2017. URL http://arxiv.org/abs/1710.01813.

11

http://arxiv.org/abs/1912.13465
https://openreview.net/forum?id=BklRFpVKPH
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087
https://openreview.net/forum?id=S1xKd24twB
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1710.01813

Presented at Deep RL Workshop, NeurIPS 2021

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rear-
ranging the visual world for robotic manipulation. arXiv preprint arXiv:2010.14406, 2020.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
Conference on Machine Learning, pp. 7444-7453. PMLR, 2019.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
Janos Kramar, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement and imitation
learning for diverse visuomotor skills, 2018. URL https://openreview.net/forum?
1d=HJIWGdbbCW.

12

https://openreview.net/forum?id=HJWGdbbCW
https://openreview.net/forum?id=HJWGdbbCW

Presented at Deep RL Workshop, NeurIPS 2021

A APPENDIX - ADDITIONAL EXPERIMENTS

Comparison of one vs two buffers Comparison with vs without bonus to demos in PER
10 P e e 10 i anate ot
ot

.\ oY " vl
B 8o i/
g /
0 I 0 et
i / g /
2 Y,] J
@ os 4 @ o4 e
o " /
& &
© ©
Doz Doz //
< SAC+Demo* < / SAC+Demo*

00 v SAC+Demo* with two buffers 00 ﬁﬁ/ SAC+Demo* with bonus to demos in PER

. s . s

Comparison with vs without reset to demonstrations Comparison with vs without pre-training on demo data

10 RPN 10 W/MMW‘WMM,., E—
§on g /
g v g o
006 [006 s
3 / 3 /
8 g /
Soe Soe S SAC+Demo*
Y & v SAC+Demo* with no pretraining
g 0 gm /,/ SAC+Demo* with extra pretraining
2 SAC+Demo* 2

{

A
N

SAC+Demo* with reset to demos

10000 20000 40000 50000 60000

10000 20000 40000 50000 60000

30000 30000
Training steps Training steps

Figure 5: Ablation results on our improved baseline SAC+Demo*. The results are smoothed with a
rolling window of 100 episodes, and the standard error is computed on four random seeds.

13

	1 Introduction
	2 Related work
	3 Background
	4 Method
	5 Experimental setup
	6 Results
	7 Discussion and Conclusion
	A Appendix - Additional experiments

