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We address the problem of multi-step ahead time series signal prediction in the energy industry, with the aim of improving maintenance planning and minimizing unexpected shutdowns. For this, we develop a novel method based on the combined use of Ensemble Empirical Mode Decomposition and Long Short-Term Memory neural network. Ensemble Empirical Mode Decomposition decomposes the time series into a set of Intrinsic Mode Function components which facilitate the prediction task by effectively describing the system dynamics. Then, Long Short-Term Memory neural network models perform the multi-step ahead prediction of the individual Ensemble Empirical Mode Decomposition components and the obtained predictions are aggregated to reconstruct the time series. A Tree-structured Parzen Estimator algorithm is employed for the optimization of the hyperparameters of the Long Short-Term Memory neural network. The proposed method is validated by considering various long-term prediction horizons of real time series data acquired from Reactor Coolant Pumps of Nuclear Power Plants. The results show the superior performance of the proposed method with respect to alternative state of the art methods.

Symbols

Since the early 1950s, maintenance engineering has played a fundamental role for maintaining the reliability, availability and safety of energy production plants components and systems, and reducing their life cycle costs [START_REF] Coppola | Reliability Engineering of Electronic Equipment: A Historical Perspective[END_REF]. Nowadays, the rapid growth of information technologies, along with the massive increase in information and data availability, has enabled the development and application of Prognostics and Health Management (PHM). PHM is a field of research and application, which utilizes past and present information to detect at an early stage the degradation of industrial components and systems, diagnose the fault root causes and predict the future evolution of the degradation and the Remaining Useful Life (RUL) [START_REF] Zio | Some Challenges and Opportunities in Reliability Engineering[END_REF]. Accurate and reliable predictions provided by PHM allow planning maintenance actions at the most convenient and inexpensive time, thus reducing the operation and maintenance (O&M) cost and energy production loss from unplanned downtime [START_REF] Sun | Benefits and challenges of system prognostics[END_REF]. In 2017, the International Renewable Energy Agency (IRENA) reported that the O&M cost in Germany and United Kingdom accounted for 20-25% of the levelized cost of electricity (LCOE) [START_REF]Renewable Power Generation Costs in 2017[END_REF].

The importance of PHM in the reduction of the O&M cost is witnessed by the estimation of the investments in software platforms in support of predictive maintenance within the European Union (EU) energy industry, which is estimated to reach 0.2 billion euros in 2030 [START_REF]Report from the Commission to the European Parliament and the Council: On progress of clean energy competitiveness[END_REF].

Several factors need to be accounted for when developing an effective PHM, such as the specific requirements of the application, the knowledge and data available on the components and systems degradation and failure, and the prediction horizon, i.e. how far into the future the model should predict and with what accuracy [START_REF] Taieb | A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting[END_REF]. In safety-critical applications, such as those typically encountered in the nuclear industry, components and systems are designed to guarantee very high reliability levels

given the potentially catastrophic consequences of their failures. Therefore, given the long-term horizons of the degradation processes, prognostics is called to accurately predict components and systems behaviors multi-step ahead. This is of paramount importance in the nuclear industry where maintenance interventions of some critical components should be planned well in advance given the impossibility of performing some of them during plant operation. Also, long-term predictions of the components degradation are needed to decide whether a component can safely operate until the next planned plant outage, which can involve predictions over time horizons of months [START_REF] Moshkbar-Bakhshayesh | Development of a new method for forecasting future states of NPPs parameters in transients[END_REF]. Despite its importance, multi-step ahead prediction remains a difficult task of PHM because prediction uncertainty tends to exponentially increase with the time horizon of the prediction. This is mainly caused by the intrinsic stochasticity of the degradation process, the accumulation of the prognostic model errors and the difficulty of predicting the component operating conditions, which can largely influence the degradation process [START_REF] Taieb | A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting[END_REF]. Large prediction uncertainty has limited prognostics in nuclear applications to one-step ahead predictions of the departure from nucleate boiling ratio (DNBR) distribution in a hot fuel rod [START_REF] Kim | Prediction of axial DNBR distribution in a hot fuel rod using support vector regression models[END_REF], the leak flow rate in loss-of-coolant accidents (LOCAs) [START_REF] Kim | Prediction of leak flow rate using fuzzy neural networks in severe post-loca circumstances[END_REF], the water level in steam generators [START_REF] Marseguerra | Fuzzy logic for signal prediction in nuclear systems[END_REF] and pressurizer [START_REF] Liu | Prediction of time series of NPP operating parameters using dynamic model based on BP neural network[END_REF] and Nuclear Power Plants (NPPs) parameters in abnormal conditions [START_REF] Moshkbar-Bakhshayesh | Development of a new method for forecasting future states of NPPs parameters in transients[END_REF]. In this context, this work develops a prognostic method specifically designed to deal with multi-step ahead predictions for practical O&M applications in NPPs to the benefit of energy production and economy.

In general, multi-step ahead prediction models can be classified as statistical or machine learning approaches [START_REF] Yan | Toward automatic time-series forecasting using neural networks[END_REF]. Statistical approaches, such as Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ES), attempt to model the data autocorrelation structure and make predictions assuming a linear dependence between future and past data [START_REF] De Gooijer | 25 years of time series forecasting[END_REF]. Because of this assumption, statistical approaches are not the appropriate choice for complex real-world systems, such as nuclear power plants which typically exhibit nonlinear and nonstationary behaviors.

Alternatively, machine learning approaches have been shown able to automatically learn arbitrary complex mappings between inputs and outputs directly from historical data and achieve accurate predictions without the need of prespecifying the model form [START_REF] Zhang | Forecasting with artificial neural networks: The state of the art[END_REF]. The most widely used machine learning approaches for multi-step ahead predictions are Support Vector Regression (SVR) [START_REF] Liu | SVM hyperparameters tuning for recursive multi-step-ahead prediction[END_REF],

Artificial Neural Network (ANN) [START_REF] Qu | Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network[END_REF], Neuro-Fuzzy [START_REF] Wu | Prediction of short-term wind and wave conditions for marine operations using a multi-step-ahead decomposition-ANFIS model and quantification of its uncertainty[END_REF] and Recurrent Neural Network (RNN) [START_REF] Mohajerin | Multistep Prediction of Dynamic Systems with Recurrent Neural Networks[END_REF].

Recently, the use of Long Short-Term Memory (LSTM) has been proposed to improve the performance of conventional RNN in dealing with long-term predictions [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. An LSTM is based on a series of memory cells recurrently connected through layers to capture and retain the data long-term dependencies, thus enhancing the network capability in learning and predicting multi-step ahead into the future. Successful applications of LSTM for multi-step ahead prediction have been reported in many different fields, such as the forecasting of wind speed [START_REF] Zhang | Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression[END_REF], solar energy [START_REF] Ghimire | Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms[END_REF], air quality [START_REF] Bai | An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting[END_REF],

stock market [START_REF] Baek | ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module[END_REF], electricity and gas demand [START_REF] Wang | Forecasting district-scale energy dynamics through integrating building network and long short-term memory learning algorithm[END_REF], and oil and petroleum production [START_REF] Sagheer | Time series forecasting of petroleum production using deep LSTM recurrent networks[END_REF].

A problem typically encountered in the development of multi-step ahead prediction models is the data complexity, i.e. time series collected from real-world systems contains at the same time multiple and very different dynamic trends superposed on each other. Attempting to simultaneously capture various trends in the data can lead to unsatisfactory prediction performance when the time horizon of the prediction increases [START_REF] Hajirahimi | Hybrid structures in time series modeling and forecasting: A review[END_REF]. This issue has been recently addressed by using hybrid prediction models which take advantage of the strength of ensembles of different individual models. For example, Moshkbar-Bakhshayesh and Ghofrani [START_REF] Moshkbar-Bakhshayesh | Development of a new method for forecasting future states of NPPs parameters in transients[END_REF] have presented a hybrid framework integrating ARIMA and ANN for separately dealing with linear and nonlinear components of the time series trends. Similarly, Buyuksahin and Ertekin [START_REF] Büyükşahin | Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition[END_REF] have presented a comparison among hybrid ARIMA-ANN models and individual models considering different applications. Their experimental results

show that hybrid models are much more accurate in capturing different data structures than individual models, and, thus, allow improving prediction performance. Li et al. [START_REF] Li | Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy[END_REF] have developed a decomposition-based hybrid model, which combines wavelet packet decomposition (WPD) and ANN for the prediction of wind speed data over a 9-step ahead horizon. The basic idea behind decomposition-based hybrid models is to break down time-series data into several components, which are characterized by more linear and more stationary trends, and, therefore, are easier to be individually predicted. The work demonstrates the superior performance of the decomposition-based hybrid approach with respect to conventional models in long-term horizon predictions. A comprehensive analysis on hybrid approaches for the applications concerning multi-step ahead prediction can be found in [START_REF] Qian | A review and discussion of decomposition-based hybrid models for wind energy forecasting applications[END_REF].

In this work, a hybrid model combining Ensemble Empirical Mode Decomposition (EEMD) and LSTM networks with an automatic hyperparameter optimization is proposed for multi-step ahead time series prediction for application to the energy industry. EEMD is a self-adaptive decomposition technique specifically tailored for analyzing nonlinear and nonstationary data [START_REF] Torres | A complete ensemble empirical mode decomposition with adaptive noise[END_REF]. It is employed to increase the prediction performance by decomposing original time series into features representing separate spectral components, which are easier to predict. Then, multiple LSTM models are applied to the obtained features to predict their multi-step ahead behaviors. The obtained predictions are aggregated to reconstruct the multi-step ahead prediction of the original time series. A Multi-Input Multi-Output (MIMO) strategy is employed to avoid the error accumulation problem in long-term predictions. The problem of automatic hyperparameter optimization is addressed by integrating a Tree-structured Parzen Estimator (TPE) algorithm within the LSTM models.

In summary, the main methodological contributions of this work are:

(1) The novel multi-step ahead prediction method based on the combination of the EEMD decomposition algorithm and the LSTM neural networks.

(2) The integration of an automatic hyperparameter optimization based on a TPE optimization algorithm and a k-fold cross-validation technique within the LSTM models.

A case study based on real time-series datasets acquired from NPPs is carried out to validate the proposed modeling framework. To the authors' knowledge, this is the first study using a hybrid framework combining EEMD and LSTM for addressing the multi-step ahead prediction problem of NPP signals.

The rest of the paper is organized as follows. Section II introduces the EEMD decomposition technique, the LSTM neural network and the TPE hyperparameter optimization. Section III focuses on describing the proposed method for multi-step ahead prediction. The details of the practical case study are presented in Section IV and the obtained results are discussed in Section V. Finally, Section VI concludes the work.

2 Related methodologies

Signal decomposition methods

This Section presents methods for signal decomposition based on empirical mode decomposition (EMD). Section 2.1.1 and 2.1.2 are dedicated to the original EMD and the EEMD algorithms, respectively.

Empirical Mode Decomposition (EMD)

EMD was proposed by Huang et al. [START_REF] Huang | The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] as an adaptive signal processing method for decomposing nonlinear and nonstationary time-series into separate spectral modes called Intrinsic Mode Functions (IMFs). Specifically, IMFs are Amplitude-Modulated-Frequency-Modulated (AM-FM) signals representing certain frequency bands of the original time series from high-frequency (first IMF) to low-frequency bands (last IMF) [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]. Each IMF satisfies the following properties: 1) the number of zero-crossings and local extrema differ at most by one; 2) the mean value of the upper and lower envelopes of an IMF, identified by local maxima and minima, is zero at any time. The main advantage of EMD with respect to other decomposition methods such as WPD is that the time series is decomposed into a finite set of IMFs and a monotonic residue by an adaptive decomposition process (also known as the sifting process), without any need of predefining basic functions (Algorithm 1) [START_REF] Nguyen | Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition[END_REF].

Algorithm 1. EMD decomposition pseudo code. c. Compute the envelope mean:

Input:

( ) ( ) ( ) / 2 j j j m t U t L t   = +   d. Generate the new component 1 ( ) j c t + of the next sifting iteration: 1 ( ) ( ) ( ) j j j c t c t m t + = - e.
Compute the squared difference between two consecutive siftings as follows:

2 1 2 1 ( ) ( ) ( ) ( ) t j j l j c l c l SD j c l + = - = ∑ f. If the stopping criterion ( ) SD j ε < is verified, the new 1 ( ) ( ) i j IMF t c t + = is defined
and go to Step 3; otherwise, update 1 j j = + and repeat a sifting iteration by performing Steps 2.b) -2.f).

Update the residue as follows:

( ) ( ) ( )

i i i r t r t IMF t = - 4.
If the number of extrema of ( ) i r t is less than 2 or ( ) i r t becomes monotonic, the decomposition process is terminated; otherwise, repeat Step 2 with

1 i i = + .
The sifting process decomposes the original time series t X into:

1 ( ) ( ) c c N t i N i X IMF t r t = = + ∑ (5)

Ensemble Empirical Mode Decomposition (EEMD)

Limitations of EMD are that different oscillation components may coexist in a single IMF and very similar oscillations may reside in different IMFs, which are called mode-mixing [START_REF] Wu | Ensemble empirical mode decomposition: A noise-assisted data analysis method[END_REF]. To address these problems, EEMD has been developed [START_REF] Torres | A complete ensemble empirical mode decomposition with adaptive noise[END_REF]. The key idea of EEMD is to use an ensemble of IMFs obtained by performing EMD over several different realizations of the original time series obtained by adding to it a white Gaussian noise. The effect of adding a white Gaussian noise reduces the mode-mixing problem by populating the whole time-frequency space and utilizing the dyadic filter bank behavior of EMD [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]. The EEMD algorithm is described in Algorithm 2.

Algorithm 2. EEMD decomposition pseudo code. Decomposition process:

Input:

1. Generate the noisy time series:

j j t t t X X w = + , 1, 2,..., j J =
where j t w are realizations of white Gaussian noise and J is the predefined number of noise realizations. 

Apply

j i IMF t : 1 1 ( ) ( ) J j i i j IMF t IMF t J = = ∑
The EEMD decomposes the original time series t X into Nc IMFs and a residue:

1 ( ) ( ) c c N i t N i X IMF t r t = = + ∑ (8)

Long Short-Term Memory (LSTM)

LSTM is a type of RNN which has been developed to address the problems of the vanishing or exploding gradient that are typically encountered when training traditional RNNs in case of long-term dependencies in the time series [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. An LSTM network consists of a chain of repeating memory modules (Fig. 1).

Fig. 1. Representation of a LSTM repeating memory module [START_REF] Olah | Understanding LSTM Networks[END_REF].

In 

Finally, the output of the memory block t h is generated by using the output gate and another tanh layer:

1 ( [ ,] )

t o t t o o W h x b σ - = ⋅ + , (13) 
tanh( )

t t t h o C = * ( 14 
)
where o W and o b are the input weights and bias of the output gate, respectively.

Tree-structured Parzen Estimator (TPE) optimization

Automatic hyperparameter optimization plays a fundamental role in the development of machine learning models, especially when deep neural networks such as LSTM [START_REF] Feurer | Hyperparameter Optimization[END_REF] are used. It allows reducing the human effort necessary to develop the model and improving the network performance by selecting hyperparameter values optimal for the target application at hand [START_REF] Kohavi | Automatic Parameter Selection by Minimizing Estimated Error[END_REF], [START_REF] Melis | On the state of the art of evaluation in neural language models[END_REF]. In this study, we apply Tree-structured Parzen Estimator (TPE) [START_REF] Bergstra | Algorithms for Hyper-Parameter Optimization[END_REF], which is a Sequential Model-based Bayesian Optimization (SMBO) algorithm, to automatically select the hyperparameters of the LSTM model.

The fitness function of our optimization problem is the Root Mean Square Error (RMSE) of the LSTM:

2 1 1 ( ) N i i i RMSE x x N = = - ∑ , ( 15 
)
where N is the number of observations and x and x are the time series true and predicted values, respectively.

The TPE optimization process requires a number of function evaluations lower than other optimization techniques such as grid and random search, which means that it can achieve a faster convergence to the optimum. Also, differently from SMBO, it allows optimizing categorical and conditional hyperparameters, providing a wider range of hyperparameter choices [START_REF] Bergstra | Algorithms for Hyper-Parameter Optimization[END_REF].

The key idea of TPE is to use the Parzen-window density estimation (also known as kernel density estimation) for building probability density functions in the hyperparameter search space.

More specifically, each sample defines a Gaussian distribution in the hyperparameter space with a mean equal to the hyperparameter value and a properly set standard deviation. 

θ θ θ <  =  ≥  (16) 
Then, the expected improvement (EI) is computed at each iteration:

Pr ( ) ( ) Pr ( ) G B EI θ θ θ = (17) 
And the hyperparameter configuration * θ which maximizes EI is chosen. Therefore, TPE selects the optimal hyperparameters based on a set of best observations and their distributions, not only the best one. Fig. 2 describes the overall flowchart of the TPE algorithm, where opt N denotes the number of TPE iterations. 

Multi-step ahead prediction strategies

Multi-step ahead prediction aims at estimating the H next values of a time series { }

ˆ, [1, ] t h x h H + ∈ ,
given the current and previous observations { } 1 2 , ,..., t x x

x . Three strategies are typically considered:

recursive, direct and MIMO [START_REF] Taieb | A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting[END_REF], [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF].

Recursive prediction

It is based on the recursive use of a single model performing the one-step ahead prediction of the time series. In other words, being fR the one-step ahead prediction model and d the embedding dimension, the multi-step ahead predictions are:

1 1 1 2 1 2 1 2 1 ˆ( , ,..., ) ˆ( , ,..., ) ˆˆˆ( , ,..., ) t R t t t d t R t t t d t H R t H t H t H d x f x x x x f x x x x f x x x + - -+ + + -+ + + - + - + -+ = = = M M (18) 
One advantage of the recursive strategy is that the computational effort needed for its development is smaller than that of the other strategies, since it requires to train a single one-output prediction model. However, since intermediate predictions are used as inputs for predicting the next values, the prediction accuracy decreases as the length of the time horizon increases due to error accumulation [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF].

Direct prediction

It 

+ - -+ + - -+ + - -+ = = = M M (19) 
Since each model does not receive in input predictions, the accumulation of the prediction errors is avoided. The two main limitations of this strategy are: 1) the large computational cost associated to the training of the H models; 2) it performs the predictions at different horizons independently, without considering their temporal dependencies [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF].

MIMO prediction

It is based on a single model fMIMO which provides in output a vector formed by the predictions at the different horizons ℎ ∈ [1, ] [42]:

{ } 

+ + + - -+ = (20) 
Since the loss function minimized during the training process simultaneously considers the prediction errors at several horizons, the MIMO strategy is able to preserve the temporal dependencies in the time series. Also, the problem of the accumulation of the prediction errors of the recursive strategy is avoided [START_REF] Taieb | A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting[END_REF].

The multi-step ahead prediction method

The proposed prediction method is composed of two main parts: decomposition and multi-step ahead prediction (Fig. 3). The input is a time series { } ( 1, 2,..., ) , where h represents the prediction horizon. The details of the method are described in the following Sections.

Fig. 3. Overview of the proposed multi-step ahead prediction method.

Decomposition of the original time series

EEMD is employed for decomposing the raw time series 

Multi-step ahead prediction

In the second stage of the proposed method, we develop a dedicated model for the multi-step ahead prediction ℎ ( 1,..., ; 1,..., ) 

c i N h H = = of

Hyperparameter optimization

The three hyperparameters of the LSTM models optimized by the TPE are the activation ( ) x φ and optimization ( , ) 

G θ α functions,

MIMO prediction strategy

As introduced in Section 2.4.3, the MIMO strategy for multi-step ahead prediction offers the following three main advantages with respect to the recursive and direct methods: 1) avoiding the problem of the recursive strategy of error accumulation in long-term predictions; 2) reducing the computational cost of training the models of the direct prediction strategy; 3) preserving the temporal dependencies. For these reasons, the MIMO strategy allows improving the prediction accuracy with respect to both the recursive and direct prediction strategies [START_REF] Taieb | A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting[END_REF]. Further comparisons among the MIMO and the two other strategies in practical prognostic applications can be found in [START_REF] Nguyen | A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators[END_REF]. 

Case study: Prediction of the leakage flow of NPP RCPs

The Reactor Coolant Pumps (RCPs) of a NPP is the most critical component of the Reactor

Coolant System (RCS), given its functions of transferring the thermal energy generated in the reactor core to the primary coolant and circulating the coolant between the reactor and the steam generators. One of the most vulnerable components of a RCP is the shaft seal system, which is shown by the red rectangle in Fig. 6(b). It is composed of three mechanical seals located between the electric motor and the impeller, and it plays an important role in limiting the leakages from the primary circuit to the ambient environment by collecting and routing them to the seal leakoff system [START_REF] Loehberg | Shafts of main coolant pumps -failure analysis and remedies[END_REF]. A failure of the shaft seal system can cause a loss of reactor primary coolant, with potentially catastrophic consequences [START_REF] Liu | An adaptive online learning approach for Support Vector Regression: Online-SVR-FID[END_REF]. Therefore, as soon as the leakage flow exceeds a safety threshold, the plant is shut down to protect personnel and facilities and prevent environmental impacts due to radioactive releases from the nuclear reactor core.

The case study considers five scenarios of RCP seal leakages, which will be indicated by RCP 1, RCP 2, RCP 3, RCP 4 and RCP 5. Each scenario refers to a different NPP, whose name is omitted for confidentiality reasons. 

Results and discussion

The objective of this Section is to validate the proposed method with respect to the effectiveness of: 1) decomposing the time series into IMFs components; 2) performing a separated multi-step ahead prediction for each IMF component; 3) using LSTM neural networks for multi-step ahead prediction.

For each one of the five experiments, the model performance has been evaluated considering three different prediction horizons: 6 steps (1 day), 12 steps (2 days) and 18 steps (3 days) ahead. The following three accuracy metrics have been considered: RMSE (Eq. ( 15)), Mean Absolute Percentage Error (MAPE):

1 1 100% N i i i i x x MAPE N x = - = × ∑ (21) 
and Mean Absolute Scaled Error (MASE):

1 2 1 1 1 N i i N i j i j x x MASE N x x N = =     -   =   -   -   ∑ ∑ , ( 22 
)
where N is the number of test observations in the test set, and x and x are the observed and predicted values, respectively. All the experiments are performed using a GPGPU node composed of two Intel Xeon CPU E5-2695 (24 cores at 2.40 Hz, 32 GB of RAM) and two Nvidia Tesla K40m graphic cards (12 GB of GRAM).

The number of training epochs Nepoch for the LSTM neural network is set by using a trial-anderror approach. More specifically, training is stopped when the training loss does not decrease for Npatience = 10 epochs, considering a maximum number of epochs Nmax_epoch equal to 100. Table 2 reports the number of epochs required for training the prediction models for all the 9 IMFs and the residue extracted from the RCP 3 time series (Fig. 4 

Validation of decomposing the time series into IMF components

We compare the proposed method with a method which does not perform the EEMD decomposition and directly feeds the LSTM model with the time series (Fig. 9). The LSTM architecture is with two layers of 64 neurons each. The hyperparameters are optimized by using the TPE algorithm. This method will be referred to as Comp-A. Fig. 10 shows the obtained predictions of the time series considering the three time horizons on the RCP 3 scenario, whereas Table 3 reports the corresponding performance metrics on all the scenarios. In Table 3, the more accurate results (the lower values of the metrics) are highlighted in bold. Notice that the introduction of the decomposition step allows significantly increasing the prediction accuracy on all the prediction horizons on all of the scenarios. 

Validation of performing a separated multi-step prediction for each IMF component

We compare the proposed method with a method based on a single LSTM which receives in input all the IMF components provided by the EEMD and provides in output the signal prediction using the MIMO strategy. This method will be referred to as Comp-B (Fig. 11). The LSTM architecture is with two layers of 64 neurons each and the LSTM hyperparameters are optimized using the TPE algorithm. 

Validation of the use of LSTM

We compare the proposed method with a method based on the use of a state of the art model different from LSTM for performing the multi-step ahead prediction. We consider the Echo State Networks (ESNs) which are RNNs that have shown very satisfactory performances in the prediction of highly nonlinear and nonstationary time series [START_REF] Wang | Optimizing echo state network with backtracking search optimization algorithm for time series forecasting[END_REF], [START_REF] Chouikhi | PSO-based analysis of Echo State Network parameters for time series forecasting[END_REF].

ESN is a RNN with a sparsely connected hidden layer [START_REF] Jaeger | Echo state network[END_REF]. The connectivity and weights of the hidden neurons (also known as reservoirs) are randomly assigned and fixed, whereas the weights of the output neurons are learned by using a linear regression algorithm. The advantages of ESN are the simple network structure and a low computational cost compared to conventional RNNs. More details about ESN can be found in [START_REF] Jaeger | Echo state network[END_REF], [START_REF] Lukoševičius | Reservoir computing approaches to recurrent neural network training[END_REF].

The method used for this comparison follows the same scheme of the proposed method from which it differs only for the use of ESNs instead of LSTMs. It will be referred to as Comp-C (Fig. 13). TPE is used to optimize the two major hyperparameters of the ESN models, i.e. the number of reservoir neurons and the spectral radius. Fig. 14 shows the obtained predictions of the time series considering the three time horizons on the RCP 2 scenario, whereas Table 6 reports the corresponding performance metrics on all the scenarios. The obtained results show that the use of LSTMs allows improving the accuracy with respect to ESNs. The performance improvement is more significant when long-term prediction horizons are considered. 

  sifting iteration index j set equal to 1. b. Determine the local maxima and minima of ( ) j c t and use a cubic spline interpolation to compute their upper and lower envelopes, ( ) j U t and ( ) j L t , respectively.

Fig. 2 .

 2 Fig. 2. Flowchart of the TPE optimization procedure.

  of IMFs Nc is automatically set by the method and depends on the time series characteristics. Fig. 4 shows an example of EEMD decomposition of a signal measured from a NPP reactor coolant pump (RCP), which is highly nonlinear, nonstationary and noisy. The number of noise realizations J, which determines the ensemble size, is set equal to 100 and the noise standard deviation N σ to 0.05, based on trial and error. EEMD decomposes the original time series into Nc = 9 IMFs and one residue component, as shown in Fig. 4(b). Notice that the complexity of the original time series is reduced in the decomposed components, which appear easier to predict. (a) Raw measurements obtained from a NPP RCP. (b) Decomposed IMFs and residue.

Fig. 4 .

 4 Fig. 4. Time series decomposition obtained by using EEMD.

  the EEMD IMFs, based on LSTM and MIMO prediction. The hyperparameters of each prediction model are automatically set during the training phase by using the TPE procedure of Section 2.3. In the testing phase, the predictions of the components ℎ are performed and aggregated to obtain the multi-step ahead prediction { } t h x + of the original time series. The details of the hyperparameter optimization during the training phase and the MIMO prediction strategy are described in Sections 3.2.1 and 3.2.2, respectively.
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 5 Fig. 5 illustrates the multi-step ahead prediction model based on the MIMO strategy where { ,[ ]} f θ denotes the LSTM model and its hyperparameters, which are automatically optimized by
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 5 Fig. 5. Scheme of the MIMO strategy for multi-step ahead prediction.
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 6 Fig. 6 depicts the structures of the RCS and the RCP of a Pressurized Water Reactor (PWR).
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 6 Fig. 6. Representation of the PWR Reactor Coolant System (RCS) (top) and of the Reactor Coolant Pump (RCP) (bottom). The images have been taken from [45].
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 77 Fig. 7. Evolution of the normalized leakage flow from the first RCP seals in the five RCP leakage scenarios of the case study.

  (b)). Notice that training is stopped within 80 epochs for the lower IMFs (IMFs 6 -9), which contain less noise, and only reach 100 epochs for IMF 3, which is a noise-dominant component. Fig. 8 shows a comparison of the training and validation losses of one fold of the cross-validation for training IMFs 3 and 8 of the RCP 3 time series. The training and validation losses of the IMF 3 (Fig. 8(a)) are almost stable at epoch 100, while the training and validation losses of the IMF 8 (Fig. 8(b)) converge within the first 10 epochs.

Fig. 8 .

 8 Fig. 8. Training and validation losses of the models predicting IMFs 3 (left, a) and 8 (right, b) of the RCP 3 time series.

Fig. 9 .

 9 Fig. 9. Scheme of the method Comp-A used for the comparison.

Fig. 10 .

 10 Fig. 10. Predictions of the method Comp-A used for the comparison (top) and of the proposed method (bottom) on the RCP 3 scenario.

Fig. 11 .

 11 Fig. 11. Scheme of the method Comp-B used for the comparison.

Fig. 12 showsFig. 12 .

 1212 Fig.12shows the obtained predictions of the time series considering the three time horizons on the RCP 4 scenario, whereas Table4reports the corresponding performance metrics on all the scenarios. Notice that the proposed method provides more accurate prediction than the method Comp-B on all the five scenarios and the three time horizons. This is due to the use of an ensemble of models, which allows reducing the noise and spikes of the predictions obtained by the method Comp-B based on a single model, as shown in Fig.12.

Fig. 13 .

 13 Fig. 13. Scheme of the method Comp-C used for the comparison.

Fig. 14 .

 14 Fig. 14. Predictions of the method Comp-C used for the comparison (top) and of the proposed method (bottom) on the RCP 2 scenario.

A

  method for the prediction of the future evolution of time series signals in energy systems over a long time horizon has been developed to help decision makers improving maintenance planning and minimizing unexpected shutdowns. It is based on the combined use of Ensemble Empirical Mode Decomposition and Long Short-Term Memory neural networks. Ensemble Empirical Mode Decomposition allows reducing the complexity of raw time series by breaking down them into separate frequency components characterized by more linear and stationary trends, which facilitate their individual prediction. The multi-step ahead prediction of each one of the decomposed components is performed using Long Short-Term Memory neural networks with the Multi-Input Multi-Output prediction strategy, which allows preserving the temporal dependencies in the time series. The proposed method relies on the use of the Tree-structured Parzen Estimator algorithm to automatically select the hyperparameters of each prediction model during the training phase. A practical case study has been considered, concerning the prediction over three different time horizons, up to 18 steps (3 days) ahead, of the time series evolution of Reactor Coolant Pump seal leakage flow in Nuclear Power Plants. The results obtained show that the average prediction accuracy of the proposed method is improved of 60.52% with respect to alternative state of the art approaches. It has also been shown that: 1) the multi-step ahead predictions obtained by an ensemble of separate prediction models are more accurate and less noisy than the predictions obtained by a single model and 2) the performance improvement is more significant when long-term prediction horizons, characterized by the presence of multiple and very different superposed dynamic trends, are considered. Future work will include the embedding of the proposed predictive model into a practical prognostic context for the quantification of its effectiveness for operation and maintenance of energy production plants.

  

  Algorithm 1 to each time series
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  denotes the hyperparameter set and y is the corresponding value of the response surface (i.e. the fitness score) and init N is the number of start-up iterations. Then, the hyperparameter space is divided into two groups, namely good and bad samples with respect to a threshold value y* of the fitness score. The two groups are defined by the probability distributions Pr G and Pr B of the hyperparameter set θ :

												At the start-up
	iterations, a random search is performed to initialize the distributions by sampling the response
	surface	( ) { , i θ	y	( ) i	}	( 1, 2,..., i =	N	init	)	, where θ Pr ( ) ( | ) Pr ( ) G B p y	if y y if y y	* *

Table 1 .

 1 and the learning rate α . The hyperparameters search spaces are reported in Table1. The optimization process is performed with 30 iterations and we employ a k-fold cross-validation with 3 k = , to avoid overfitting in the computation of the objective function. The number of epochs epoch N considered for the LSTM training is 100. List of hyperparameters of the LSTM models optimized by TPE (column 1), types of distributions from which they are sampled (column 2) and corresponding domains (column 3).

	Hyperparameter	Type of distribution	Domain
	Activation function ( ) x φ	Categorical	{Linear, Sigmoid, Tanh, ReLU}
	Optimization function ( , ) G θ α	Categorical	{SGD, RMSprop, Adam}
	Learning rate α	Uniform float	[0.0001, 0.1]

Table 2 .

 2 The number of training epochs required for the IMFs of the RCP 3 time series.

		IMF 1	IMF 2	IMF 3	IMF 4	IMF 5	IMF 6	IMF 7	IMF 8	IMF 9 Residue
	Num. training epochs	45	77	100	92	40	72	12	19	20	12

Table 3 .

 3 Performances of the method Comp-A and of the proposed method on the five RCP scenarios.

			6 steps ahead		12 steps ahead		18 steps ahead	
	Scenario Approach									
			RMSE	MAPE	MASE	RMSE	MAPE	MASE	RMSE	MAPE	MASE
		Comp-A method	0.0405	13.8939	1.6168	0.0608	30.1245	2.3199	0.0667	30.4937	2.6540
	RCP 1	Proposed method	0.0203	8.7511	1.0871	0.0226	11.4607	1.2278		20.1416	1.7015
		Comp-A method	0.0776	11.6117	3.5690	0.0897	18.9838	5.2261	0.0893	16.2510	4.5966
	RCP 2	Proposed method	0.0246	3.9053	1.1355	0.0300	4.3849	1.3255	0.0463	6.3652	1.9812
		Comp-A method	0.0627	7.9651	1.7586	0.0868	11.1782	2.5560	0.1081	14.2730	3.6001
	RCP 3	Proposed method	0.0256	4.0837	0.8898	0.0309	4.9342	1.0701	0.0408	5.9058	1.2537
		Comp-A method	0.0568	5.4109	3.1283	0.0730	6.9583	4.1817	0.0891	8.3991	4.9783
	RCP 4	Proposed method	0.0231	1.9948	1.1201	0.0303	2.8291	1.6248	0.0312	2.8147	1.6339
		Comp-A method	0.1583	16.7301	4.1357	0.1651	18.9645	4.5333	0.0988	12.9969	2.5915
	RCP 5	Proposed method	0.0347	4.7995	1.0016	0.0471	6.1768	1.1888	0.0548	7.5077	1.4756
		Comp-A method	0.0791	11.1223	2.8416	0.0950	17.2418	3.7634	0.0904	16.4827	3.6841
	Average	Proposed method	0.0256	4.7068	1.0468	0.0321	5.9571	1.2874	0.0413	8.5470	1.6091

Table 4 .

 4 Performances of the method Comp-B and of the proposed method on the five RCP scenarios.

			6 steps ahead		12 steps ahead		18 steps ahead	
	Scenario Approach									
			RMSE	MAPE	MASE	RMSE	MAPE	MASE	RMSE	MAPE	MASE
		Comp-B method	0.0249	9.3767	1.3214	0.0386	20.3446	1.9242	0.0455	17.8378	2.4970
	RCP 1	Proposed method	0.0203	8.7511	1.0871	0.0226	11.4607	1.2278	0.0338	20.1416	1.7015
		Comp-B method	0.0709	9.2070	2.8689	0.0483	6.3916	1.9585	0.0916	20.2789	6.2618
	RCP 2	Proposed method	0.0246	3.9053	1.1355	0.0300	4.3849	1.3255	0.0463	6.3652	1.9812
		Comp-B method	0.0500	8.1171	1.8032	0.0747	10.8237	2.6785	0.0760	10.5087	2.5134
	RCP 3	Proposed method	0.0256	4.0837	0.8898	0.0309	4.9342	1.0701	0.0408	5.9058	1.2537
		Comp-B method	0.0851	8.1530	5.0001	0.0607	5.6678	3.4487	0.0819	7.7580	4.5046
	RCP 4	Proposed method	0.0231	1.9948	1.1201	0.0303	2.8291	1.6248	0.0312	2.8147	1.6339
		Comp-B method	0.1375	18.8527	3.8056	0.3038	27.1751	6.1985	0.1340	18.1811	3.6363
	RCP 5	Proposed method	0.0347	4.7995	1.0016	0.0471	6.1768	1.1888	0.0548	7.5077	1.4756
		Comp-B method	0.0736	10.7413	2.9598	0.1052	14.0805	3.2416	0.0858	14.9129	3.8826
	Average	Proposed method	0.0256	4.7068	1.0468	0.0321	5.9571	1.2874	0.0413	8.5470	1.6091

  Table 5 reports the considered ranges of the ESN hyperparameters.

Table 5 .

 5 Hyperparameters of the ESN models optimized by TPE.

	Hyperparameter	Type of distribution	Search space
	Number of reservoir neurons	Uniform integer	[20, 500]
	Spectral radius	Uniform float	[0.01, 1]

Table 6 .

 6 Performances of the method Comp-C and of the proposed method on the five RCP scenarios.

			6 steps ahead		12 steps ahead		18 steps ahead	
	Scenario Approach									
			RMSE	MAPE	MASE	RMSE	MAPE	MASE	RMSE	MAPE	MASE
		Comp-C method	0.0450	18.2183	2.4145	0.0521	20.1742	2.7480	0.0544	21.2928	2.9608
	RCP 1	Proposed method	0.0203	8.7511	1.0871	0.0226	11.4607	1.2278	0.0338	20.1416	1.7015
		Comp-C method	0.0496	7.7376	2.2372	0.0511	9.4669	2.6751	0.0672	11.1388	3.1238
	RCP 2	Proposed method	0.0246	3.9053	1.1355	0.0300	4.3849	1.3255	0.0463	6.3652	1.9812
		Comp-C method	0.0647	11.3833	2.3444	0.0616	11.1641	2.3267	0.0750	12.7170	2.5916
	RCP 3	Proposed method	0.0256	4.0837	0.8898	0.0309	4.9342	1.0701	0.0408	5.9058	1.2537
		Comp-C method	0.0419	3.7228	2.0821	0.0480	4.5109	2.5750	0.0675	6.0974	3.5221
	RCP 4	Proposed method	0.0231	1.9948	1.1201	0.0303	2.8291	1.6248	0.0312	2.8147	1.6339
		Comp-C method	0.0380	5.1331	1.0158	0.0578	8.0459	1.5163	0.0835	13.3672	2.3941
	RCP 5	Proposed method	0.0347	4.7995	1.0016	0.0471	6.1768	1.1888	0.0548	7.5077	1.4756
		Comp-C method	0.0478	9.2390	2.0188	0.0541	10.6724	2.3682	0.0695	12.9226	2.9184
	Average	Proposed method	0.0256	4.7068	1.0468	0.0321	5.9571	1.2874	0.0413	8.5470	1.6091
	6 Discussion and conclusions						
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