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Abstract 

Chemical process operation optimization aims at obtaining the optimal operating set-points by real-

time solution of an optimization problem that embeds a steady-state model of the process. This task is chal-

lenged by unavoidable Uncertain Parameters (UPs) variations. MultiParametric Programming (MPP) is an 

approach for solving this challenge, where the optimal set-points must be updated online, reacting to sudden 

changes in the UPs. MPP provides algebraic functions describing the optimal solution as a function of the 

UPs, which allows alleviating large computational cost required for solving the optimization problem each 
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time the UPs values vary. However, MPP applicability requires a well-constructed mathematical model of the 

process, which is not suited for process operation optimization, where complex, highly nonlinear and/or 

black-box models are usually used. To tackle this issue, this paper proposes a machine learning-based meth-

odology for multiparametric solution of continuous optimization problems. The methodology relies on the 

offline development of data-driven models that accurately approximate the multiparametric behavior of the 

optimal solution over the UPs space. The models are developed using data generated by running the optimiza-

tion using the original complex process model under different UPs values. The models are, then, used online 

to, quickly, predict the optimal solutions in response to UPs variation. The methodology is applied to bench-

mark examples and two case studies of process operation optimization. The results demonstrate the method-

ology effectiveness in terms of high prediction accuracy (less than 1% of NRMSE, in most cases), robustness 

to deal with problems of different natures (linear, bilinear, quadratic, nonlinear and/or black boxes) and sig-

nificant reduction in the complexity of the solution procedure compared to traditional approaches (a minimum 

of 67% reduction in the optimization time). 

Keywords: Chemical processes; operation optimization; uncertainty; multiparametric programming; 

machine learning; kriging. 

1 Introduction 

In the decision-making hierarchy of chemical plants management, plant-wide optimization, or pro-

cess operation optimization, is a principle layer that receives, as inputs, the outcomes and decisions 

coming from the above layers (i.e., planning and scheduling) (Hauptman & Jovan, 2004; Roffel & 

Betlem, 2004). These inputs, basically, include forecasts of prices and demands, production rate 

targets over long time periods (weeks/days), assignment of resources to activities, (raw material 

allocation, tasks to units allocation, maintenance interventions, staffing), sequencing of activities 

and determination of starting and ending times for the execution over short periods of time (Muller, 

et al., 2017; Marchetti, et al., 2014).  



The goal of the process operations optimization is to obtain the optimal values of the process varia-

bles (temperatures, pressures, compositions, flow rates, etc.) at which the plant and its units must 

operate to maximize  certain performance criteria (e.g., efficiency, profit, operational cost), while 

satisfying all the constraints (equipment capacities, environmental restrictions, etc.) and require-

ments (product quality, production yields, safety, etc.) (Vaccari & Pannocchia, 2017; Biegler, 

2010). This is achieved by solving, in real time, an optimization problem, which embeds a detailed 

and rigorous steady-state model of the process (Shao, et al., 2019). Depending on the model charac-

teristics, such as its structure, transparency (e.g., white, gray, black-box) and availability of deriva-

tive information, and on the  formulation of the objective(s) and constraints of the optimization 

problem, different algorithms can be used, like derivative-free algorithms (e.g., Genetic Algo-

rithms), where the explicit values of the objective(s) function are used to direct the optimization 

search, or derivative-based algorithms (e.g., interior point algorithms), where the optimization 

search is directed based on the derivatives of the objective(s) with respect to the decision variables 

(Salback, 2004; Caballero & Grossmann, 2008).  

In order to maximize the reliability of the optimal set points when they are implemented in the 

plant, the process-model mismatch is minimized by updating the process model parameters (e.g., 

heat transfer coefficients, catalyst activities, distillation column tray efficiencies) before performing 

the operation optimization, relying on reconciled estimates of the steady-state measurements of the 

plant variables (Fadda, 2017; Biegler, 2010). These estimates are often obtained by applying data 

reconciliation and gross error detection techniques to the real data collected by the sensors in order 

to reduce the effect of random errors and sensor faults (bias, drifting, miss-calibration, total failure, 

etc.), respectively  (Chaudhary, 2009).  

Recently, there has been growing interest to use complex and high-fidelity mathematical models of 

the process in the operation optimization task. Although these models are able to capture more de-

tailed features and sophisticated characteristics of the process and, consequently, provide more ac-



curate estimation of its behavior, they show many challenging characteristics which lead to practical 

drawbacks  (Flemming, et al., 2007; Norbert, et al., 2017; Quirante, et al., 2018), such as  

 i) high nonlinearity and complexity, due to the sophisticated phenomena typically involved 

(thermodynamics, reactions kinetics, heat and mass transfer, etc.) and to the large number 

of equations contained in the analytical or First Principle Models (FPMs). For example, a 

full-scale model of a refinery could contain more than a million of equations (Henao & 

Maravelias, 2011),  

ii) complex model architectures, which, in many cases, appear to the user as black-boxes 

with no access to the embedded first principle equations  (Caballero & Grossmann, 2008),  

iii) large computational cost required for the model simulation due to the complexity of the 

utilized numerical solution procedures –e.g., iterative schemes and/or integration tech-

niques-  (Garud, et al., 2017).  

These challenging characteristics inherent to the FPMs of chemical processes represent an obstacle 

to their use for the operation optimization, especially for large scale and/or fast dynamic processes 

(Kelly & Zyngier, 2017). For example, the optimization of a full-scale petrochemical plant (crude 

oil and gas treatment facilities, refineries, etc.) based on its FPM model requires several hours to 

obtain the optimal solution, and in many cases, the optimization process may fail to converge 

(Salback, 2004; Kajero, et al., 2017). 

To overcome the above drawbacks and cope with the above challenges, Surrogate Based Optimiza-

tion (SBO) approaches have been proposed and have received significant attention in the chemical 

process industry area (Quirante, et al., 2018). The basic idea of SBO is to use the original complex 

FPM to generate input-output data points by “Computer Experiments”, and use them to develop 

accurate, but simple and fast-running, data-driven models (“metamodels” or “surrogate models”). 



Then, these data-driven models are used in replacement of the complex FPM in optimization prob-

lem (Ochoa-Estopier & Jobson, 2015). Two classes of SBO approaches can be identified. The first 

one is based on the development of global metamodels approximating the entire modular simulator 

or flow-sheet of the process (the FPM), i.e., the input and output variables of the metamodels are 

the main input and output variables of interest selected over the entire process flow-sheet  (Palmer 

& Realef, 2002; Kempf, et al., 2012; Shokry, et al., 2012; Chia, et al., 2012; Shokry & Espuña, 

2014; Ochoa-Estopier & Jobson, 2015; Ochoa-Estopier, et al., 2018; Davis & Ierapetritou, 2007). 

The second class of approaches is based on partitioning the simulation model into different units or 

subgroups of units, for each of which a dedicated surrogate model is developed; then, the different 

surrogates are aggregated to constitute the final approximate model of the process (Salback, 2004; 

Henao & Maravelias, 2011; Quirante & Caballero, 2016; Quirante, et al., 2018; Caballero & 

Grossmann, 2008). A comprehensive review about metamodeling and SBO methods applied in the 

chemical process engineering area can be found in (Kajero, et al., 2017). One challenge for the ap-

plications of SBO approaches to process operation optimization comes from the fact that surrogate 

models are trained on data generated by FPMs with values of parameters and conditions predefined 

so as to match the real process behavior. So, any sudden and uncertain change in these parameters 

and conditions in the real process makes the surrogate models and, consequently, the obtained op-

timal solution based on their analysis, no longer valid/realistic.  

The presence of uncertainty in the process is unavoidable at various levels  (Jiao, et al., 2012), in-

cluding inherent physical properties (e.g., kinetic rates, heat transfer constants) (Flemming, et al., 

2007; Norbert, et al., 2017; Diangelakis, et al., 2017) and process fluctuations (e.g., feed steams 

properties like temperatures, pressures and concentrations, recipe variations, processing time, 

equipment efficiencies) (Mesfin & Shuhaimi, 2010; Papathanasiou, et al., 2019), as well as external 

uncertainty (such as resources, prices, demands) (Li, 2010). Many methods have been developed for 

handling uncertainty in optimization problems, most of them can be categorized into two main ap-



proaches: proactive and reactive(Medina-González, et al., 2020). The proactive approach aims at 

providing conservative optimal decisions, which minimize the consequences of the uncertainty on 

the performance measures of the system (i.e., objective(s)) (Jiao, et al., 2012). Stochastic program-

ming and robust optimization are among the most popular proactive methods  (Grossmann, et al., 

2016). In stochastic programming methods, the UPs are treated as stochastic variables with “a-

priori” known probability distribution functions, whose parameters are estimated from historical 

data. Then, the goal becomes to identify the optimal decision variables that maximize/minimize the 

expected value of the objective function(s) and achieve feasibility over the distribution of the UPs 

(Li, 2010). Robust optimization methods deal with unknown but bounded UPs and aim at finding 

robust optima that ensures the feasibility of the solution and the immunity of the performance 

measure over the entire range of realizations of the UPs (Norbert, et al., 2017). The three main limi-

tations associated to the use of these methods are: i) the large computational effort required to ob-

tain the optimal solution, since these methods imply the analysis of a large number of scenarios, 

which grows with the number of UPs, ii) the need of a complete knowledge of the characteristics of 

the UPs to identify their types and probability distributions, which is unrealistic especially in dy-

namic environments and iii) the fact that the provided solution becomes suboptimal for most of the 

realizations of the uncertainties during the operation/production (Li, 2010; Pistikopoulos, 2008). 

The reactive approach, instead, is considered when it is necessary to promptly provide online update 

of the optimal values of the decision variables in response to real-time changes of the UPs values, 

which can be measured once unveiled. Since the reactive approach is able to provide the optimal 

solution for each realization of the UPs, it is preferred in dynamic production environments (Pis-

tikopoulos, et al., 2007). Among the reactive methods, MPP is considered as one of the most power-

ful tools, as it is able to explicitly map and explain the effect of the parametric uncertainty and vari-

ability on optimal decisions (Pappas, et al., 2021). The general MPP problem is expressed as  



����  ���, 	
�. . ����, 	
 ≤ 0,      � = 1,2, … . �,� ∈ ��, 	 ∈ ��, ��� ≤ � ≤ ���, ��	 ≤ 	 ≤ ��	���
� (1) 

where � ∈ �! is the vector of decision variables, 	 ∈ �" is a set of uncertain parameters and

�#��, 	
 is a set of constraints. Generally speaking, MPP algorithms rely on the basic Sensitivity

Analysis (SA) theory, but considering a different goal  (Pappas, et al., 2021). Whereas SA gives the 

optimal solution in a local vicinity of the nominal UPs values, MPP provides the optimal solution 

behavior over the entire space of the UPs  (Pistikopoulos, et al., 2007). The MPP solution is based 

on partitioning the UPs space into subdomains called critical regions, where each critical region is 

uniquely associated to a different active set of constraints and yields a different set of Karush-Kuhn-

Tucker (KKT) conditions than the other regions. The set of equations derived from the KKT 

conditions are analytically solved, leading to the explicit construction of the optimal solution over 

the entire UPs space (Oberdieck, et al., 2016; Pappas, et al., 2021). This solution is in the form of a 

number of $ simple mathematical relations describing each of the optimal decision variables  �∗
and the objective �∗ as functions of the UPs 	, and is expressed as follows:

�&∗ = ℱ0,&�	
��&∗ = ℱ�,&�	
, � = 1,2, … , � ,��	& ≤ 	 ≤  ��	&  ,      & = 1,2, … $( (2) 

where the &)* relation is only valid over the &)* critical region of the UPs  (Dua & Pistikopoulos,

1999).  

MPP offers outstanding capabilities (Pistikopoulos, 2008), which include : i) its solution provides 

simple mathematical functions mapping the optimal decisions variables and objective(s) over the 

entire space of UPs, ii)  once uncertainty is unveiled, optimal decisions can be readily and immedi-



ately calculated by these simple functions, avoiding the large computational cost associated to re-

petitive optimization procedure, iii) MPP is not only able to handle uncertainty related to the pro-

cess conditions, but also to the optimization problem parameters (e.g., relative weights or im-

portance of the different objectives). More information on the MPP theory and on the different MPP 

algorithms developed for problems of different natures (linear, quadratic, nonlinear, mixed-integer, 

convex, local, global, etc.) can be found in (Pistikopoulos, 2008; Pistikopoulos, et al., 2007).   

Despite the attractive characteristics of MPP, its successful application is conditioned by two main 

requirements: the first one is the deep and complex mathematical programming knowledge required 

for the development of such formulations, while the second is the need to a process model matching 

some very strict mathematical requirements (Bemporad, et al., 2002; Kouramas, et al., 2011; 

Rivotti, et al., 2012). These requirements hinder the smooth application of MPP to process opera-

tion optimization in practice, where complex, highly nonlinear and/or black-box models need to be 

considered (e.g., modular process simulators).  

To tackle these limitations, the use of data-driven or Machine Learning (ML) techniques for the 

solution of MPP problems has recently emerged as a feasible alternative, where ML models are 

built to capture the mapping (embedded in the optimization problem) between the optimal decisions 

and the UPs. This research direction has been considered in (Shokry, et al., 2016), where kriging 

and Artificial Neural Network (ANN) models have been used to solve explicit Model Predictive 

Control (MPC) problems. Specifically, ML techniques are employed to build control laws that ap-

proximate the optimal control variables that must be applied to the process at future time step as a 

function of the current values of the state variables. The training data used to develop these ML-

based control laws are generated by solving the MPC problem several times, considering different 

values of the initial state variables. Katz, et al. (2020a) and Katz, et al. (2020b) used multilayer 

ANNs with ReLU activation functions as surrogate models that approximate highly nonlinear ob-

jective and/or constraints, and, then, the MPP problem is traditionally solved on the basis of the 



surrogate models. Medina-González, et al. (2020) have used kriging models for approximating the 

multiparametric solution of the multi-objective optimization of a bio-based energy chain subjected 

to uncertainties. In more detail, they employed kriging models to approximate the optimal behavior 

of each decision variable as a function of the UPs that include electricity demands, environmental 

conditions and social dynamics. This set of decision variables was composed by the amount of en-

ergy that must be produced at each of the considered production plants along each of the considered 

successive time periods, besides the associated economic benefit of each plant. Lupera, et al. (2016) 

have proposed a similar approach for supporting reactive scheduling in a real batch plant for syn-

thesis of polyols, which consists of several units working in parallel. The specific aim of their study 

was the development of a tool for the online adaptation of the optimal scheduling decisions to avoid 

overlaps between the emissions generated from the plant units due to frequent and uncertain chang-

es in the units’ starting times and task-unit assignment. Therefore, they utilized one kriging meta-

model to approximate each optimal management decision as a function of UPs including equipment 

starting times and task-unit assignment. Shokry & Espuña (2017) have employed kriging metamod-

els for the dynamic optimization of a batch process, which approximate the relations between the 

optimal time profiles of the batch control variables and UPs including kinetics properties and initial 

conditions of the batch. Shokry, et al., (2017) and Lupera, et al., (2018) have addressed the solution 

of mixed-integer optimization problems by using a combination of regression (kriging) and classifi-

cation (ANN) techniques to approximate the optimal continuous and integer variables, respectively, 

as a function of the UPs. They have applied the methodology to a simple planning problem. Lupera, 

et al. (2018) have proceeded to apply the latter method to successfully solve mixed-integer reactive 

scheduling problem: in their work, they considered an energy production system which is composed 

of several Combined Heat and Power (CHP) units subjected to UPs variation, such as heat demand, 

electricity demand and units’ startup and shutdown states. They have utilized ML models for re-

gression and classification to approximate continuous and discrete optimal scheduling decisions as a 

function of UPs. 



In these previous works, each of the developed ML-based method for the solution of MPP problems 

has been tailored and evaluated in the framework of a particular application of interest, involving an 

optimization problem of a specific nature, which was, in most of the cases, linear. Also, they have 

not addressed the optimization of the process and/or unit operations, where the benefits of such 

methodology, if successfully applied, would be significant, because the update of the optimal set-

points in response to UPs variations is typically required within very tight time slots (minutes or 

seconds), whereas, the models of the process are often complex, nonlinear and/or in the form of 

computationally expensive black-boxes.  

This work contributes with the development of a novel data-driven methodology for the solution of 

general continuous MPP problems. The proposed methodology is based on the combination of i) 

Design Of Computer Experiment techniques (DOCE) techniques (Ibrahim, et al., 2019) to uniform-

ly sample over the UPs domain, ii) state-of-art optimization tools to solve the problem with respect 

to each of the UPs combinations and iii) kriging metamodels which are trained using the generated 

input-output data (i.e., UPs values-optimal variables and objective values) to approximate the mul-

tiparametric behavior of the optimal solutions over the entire space of the UPs. The performance of 

the methodology is assessed by its application to five MPP benchmark examples of different nature 

(linear, bilinear, quadratic and nonlinear optimization problems) and to two case studies, which 

include the operation optimization of a utility plant modeled using a black-box modular process 

simulator and of a batch reactor. 

In this sense, the specific novelties and characteristics of this proposal are:  

i) the generality and applicability of the proposed methodology which, unlike the re-

viewed data-driven method for the solution of MPP problems, is aimed at solving dif-

ferent types of continuous optimization problems (i.e., linear, bilinear, quadratic, non-

linear, black-box) in a systematic way, 



ii) the capacity of the proposed methodology to address process and unit operation optimi-

zation problems, where highly nonlinear and/or black-box models are typically used, 

iii) a novel utilization of the kriging metamodel to approximate the optimal behavior of a 

system, unlike most of the chemical engineering literature, in which the kriging model 

is used to approximate the response of the actual system. 

The rest of the work is organized as follows. Section 2 formulates the problem. Section 3 describes 

the steps of the proposed methodology and the involved techniques. Section 4 assesses the proposed 

approach through its application to different benchmark continuous MPP problems and to two case 

studies of process operation optimization. Section 5 concludes the work and highlights possible 

future directions of research. 

2 Problem statement 

The proposed methodology is aimed at overcoming the difficulties of solving process operation 

optimization problems using classical/mathematical MPP formulations. Generally speaking, the 

problem (Eq.(3)) consists on finding the optimal values of the decisions variables � ∈ �! that max-

imize an objective function ���, 	
 representing a performance index of the process. The problem is 

subjected to set of constraints �#��, 	
, � = 1, . . , �,  and is influenced by a set of bounded UPs 	 ∈
�"  (Pistikopoulos, 1995; Pistikopoulos, et al., 2007; Caballero & Grossmann, 2008). Notice that 

the objective � and/or the constraints �# could involve complex, nonlinear and/or black-box rela-

tions. 

 



���+  ���, 	
�. .                                              �#��, 	
 ≤ 0,      � = 1,2, … . �,� ∈ �! , 	 ∈ �" ,   ��+ ≤ � ≤ ��+ , ��, ≤ 	 ≤ ��,���
� 

 (3) 



In this work, we consider situations, such as process and unit operation optimization, in which clas-

sical MPP approaches cannot be applied due to the high nonlinearity and complexity of the process 

model, and consequently, the exact solutions in Eqs. (2) cannot be attained. Alternatively, the pro-

posed methodology develops ML models that act as accurate data-driven multiparametric relations, 

which are referred to as “MultiParametric Metamodels (MPM)”, and expressed as follows: 

�- ∗ = ./�	
�01∗ = .1�	
��,2 ≤ 	 ≤  ��,2  , � = 1,2, … , �   ( (4) 

where, ./, .1 , � = 1,2, . . � are supervised ML regression models efficiently built to approximate the 

optimal objective function, �- ∗, and the decision variables, �01∗ ,as functions of the UPs, 	. 

3 MPMs for Continuous Optimization under uncertainty 

The steps of the proposed methodology are schematically illustrated in Figure 1, and are detailed in 

the following subsections. 
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2-Optimization for Data Generation 



Figure 1. Schematic representation of the proposed methodology. 

3.1 UPs Sampling by DOCE techniques 

In this step, the optimization problem and the involved FPM are explored in order to identify the 

influencing UPs, 	 ∈ �", and estimate their bounds ��, ≤ 	 ≤ ��, (MPM input domain). Then, the 

goal becomes the selection of a proper set of combinations of the UPs values, 8	96:", (i.e. the 

MPMs inputs) that uniformly cover the entire UPs space in order to collect information about the 

optimal solution behavior over all the sub-regions of the global domain.    

Many DOCE techniques are available in the literature such as Latin hypercube sampling (Garud, et 

al., 2017; Forrester, et al., 2008), low discrepancy sequences as Hammersley technique (Ibrahim, et 

al., 2019), space-filling designs and sequential or adaptive sampling (Kajero, et al., 2017). Most of 

these DOCE techniques show both desired characteristics and limitation in terms of the uniformity 

of the generated sampling plan and of the required computational cost (Garud, et al., 2017). More 

details about different DOCE techniques can be found in (Ibrahim, et al., 2019). In this work, a 

hybrid technique of Hammersley sequence and full factorial design is used, as it achieves high uni-

formity with low computational cost  (Ibrahim, et al., 2019). The idea behind this hybrid technique 

is to employ the factorial design to compensate the limited ability of the Hammersley sequence to 

select sample points near the bounds and vertices of the input space, while at the same time, exploit-

ing the high uniformity of the samples set of the Hammersley sequence over the bulk of the input 

space.  

The number of required sample points, �, is proportional to the number of UPs, �, influencing the 

optimization problem and depends, also, on the complexity of the multiparametric behavior of the 

optimal solutions. On the other hand, as � increases, more computational effort is required for per-

forming optimization runs and for the MPM training. So, the modeler should carefully balance this 



trade-off. The effect of the selection of the number of training patterns to be used, �, on the MPMs

accuracy and on the computational effort required for their training and validation will be illustrated 

and quantified through the first application (Section 4.1). 

3.2 Optimization for Training Data Generation 

Once a good sampling plan, 8	96:", is obtained, the optimization problem must be solved � times,

each time considering one of the generated UPs combinations, so as to obtain the matrix of the op-

timal values of the objective and decision variables 8�∗, �∗96:!;3 . State-of-art optimization algo-

rithms can be used to solve the optimization problem depending on its characteristics (Biegler, 

2010). Particularly, this work addresses different types of continuous optimization problems that 

include linear, quadratic and nonlinear ones, and employs the algorithms included in the Matlab 

optimization toolbox for their solutions. Specifically, for linear problems, the solver “linprog”, 

based on a dual simplex algorithm, is used; for quadratic problems, the solver “quadprog”, based on 

an interior-point-convex algorithm, is selected; and for nonlinear problems, the optimizer “fmin-

con”, based on a sequential quadratic programming algorithm, is adopted. Default values for the 

optimization algorithms parameters (e.g., maximum number of function evaluations, tolerance on 

the constraint violation, termination tolerance on the first-order optimality, termination tolerance on 

decisions variables) are used in all cases. 

3.3 MultiParametric Metamodels (MPM) development 

The generated input (8	96:") and output (8�∗, �∗96:!;3) data are used to train a number of � + 1
kriging-based MPMs, ./, .3, … , .! (see Figure 1), each of them is approximating the optimal behav-

ior of each of the objective and decision variables as a function of all UPs. 

For one optimal decision variable �∗, the kriging technique assumes the predictor �0∗�	
 =  =>"  +
ℤ�	
, where the constant term =>" represents the main trend of the system to be approximated, and



ℤ�	
 is a deviation/residual from that trend, which accounts for detailed complex behavior of the 

system that could not be captured via the main trend =>" (Jones, et al., 1998). The residual ℤ�	
 is 

modeled as a stochastic Gaussian process with expected value @Aℤ�	
B =  0 and  covariance be-

tween two residuals CDE�ℤ�	1
, ℤ�	F

 that only depends on the corresponding input values 	1, 	F. 

Thus, it can be calculated as: CDE�ℤ�	1
, ℤ�	F

 =G>"4  ��	1 , 	F
, being G>"4  the process variance and 

��	1 , 	F
 a correlation function, ��	1, 	F
 = H�&IJ ∑ LℓN	1,ℓO	F,ℓONPℓ"ℓQ3 R + S1F T,  where Lℓ are the 

model hyper-parameters, S1F  is the Kronecker delta, &ℓ are smoothing parameters and T is a regular-

ization constant that enables the kriging predictor to regress noisy data (Forrester & Keane, 2009).    

In order to estimate the values of these parameters [=>" , G>"4 , Lℓ, &U , λ], the likelihood function of the 

observed data 8�∗96:3 is maximized. The kriging predictor (Eq.(5)) and its estimated error (Eq.(6)) 

are obtained by deriving the augmented likelihood function of both the original training data set and 

a new interpolating point �	6WX, �6WX∗ 
. In both equations, 8Y96:3 is the vector of correlations be-

tween the new point to be predicted 	6WX and the original training data points, and calculated as 

� �	1, 	6WX
, and 8Z96:3 is the identity vector (Jones, et al., 1998; Caballero & Grossmann, 2008).  

�0∗� 	6WX
 = =>" + Y[�O3��∗ J Z=>"
 (5) 

\̂4�	6WX
 = G>"4 �1 + T J Y[�O3Y + �1 J Z[�O3Y
O3 �Z[�O3Z
⁄ 
 (6) 

In practice, the maximization of the concentrated log-likelihood function is computationally chal-

lenging because of the high effort associated to the repetitive calculation of the correlation matrix 

inverse 8�96 : 6O3  during the optimization iterations, which quickly grows with the size of the training 

data set and/or the model input dimensionality. Besides, the nature of the concentrated log-

likelihood function itself is quite complicated because it is flat near the optimum. More details 

about these computational challenges, and the numerical methods and optimization techniques to 

overcome or reduce these obstacles can be found in (Fang, et al., 2005; Forrester, et al., 2008). 



After the training of the MPMs, they are validated using a new and different dataset,  8	_96`:" 8�∗,_ , �∗,_96`:!, where �_ is the number of samples. The MPMs are used to estimate the values of

the optimal decision variables and objective, 8�-∗,_ , �0∗,_96`:!, which are compared to their exact

counterparts  8�∗,_ , �∗,_96`:! in order to calculate an accuracy measure, such as the Normalized

Room Mean Square Error (NRMSE) (Eq.(7)), for each of the � + 1 MPMs.

a�b�@ = 100 ∗ �b�@��∗,_,cd+ J �∗,_,c16
 (7) 

�b�@ = e 1�_ f��∗,_,1 J �0∗,_,1
46`
1Q3

Notice that this work adopts the Kriging technique due to its widely reported advantages, especially 

its ability to capture highly nonlinear input-output mapping requiring a relatively low number of 

training data and its independence of any manual selection of specific structure or parameters. Nev-

ertheless, any other efficient ML method can be used such as ANNs, Support Vector Regression 

(SVR), etc. 

4 Benchmarks and Applications 

In this section, five benchmark examples with different characteristics selected from the MPP litera-

ture are used to assess the proposed methodology in terms of its accuracy of estimating the optimal 

solutions and its applicability to different types of continuous optimization problems, including 

linear, bilinear, quadratic and nonlinear cases. The methodology is, then, applied to two additional 

case studies involving the operation optimization of a utility plant and a batch reactor. 



4.1 Linear optimization: refinery blending problem 

A refinery blending and production process (Pistikopoulos, et al., 2002; Pistikopoulos, et al., 2007) 

receives raw materials including two types of crude oils with flowrates �3 and �4 ����/hij
, which 

are processed in order to produce four types of products, namely, Gasoline, Kerosene, Fuel-oil and 

Residuals. It is required to select the optimal flowrates �3 and �4 that maximize the profit �  
�$/hij
. The optimization problem (Eq. (8)) is subjected to three constraints associated to the max-

imum allowable production rates of the Gasoline, Kerosene and Fuel-oil from each crude oil type, 

and is affected by two UPs, 	3 and 	4, which are the maximum allowable production rates (����/
hij
) of the Gasoline and Kerosene, respectively: 

b��+  � =   8.1 �3 +  10.8 �4�. :    0.80 �3 + 0.44�4 ≤ 24000 + 	3 0.05 �3 +  0.10�4   ≤ 2000 + 	40.10 �3 +  0.36�4   ≤ 6000 �3 ≥ 0,        �4 ≥ 00 ≥  	3 ≥ 6000,   0 ≥  	4 ≥ 500 ���
��
� 

 (8) 

The methodology is applied following the steps described in Section 2. In this problem, different 

training sets of different sizes are used to build the MPMs to show the effect of the training set size 

on the MPMs accuracy and on the computational const of training and prediction.  First, over the 

space of the UPs [0: 60000 ���/hij, 0: 500 ���/hij], five different sampling plans with different 

sizes, �8	3, 	493s:4 , 8	3, 	495/:4 , 8	3, 	49ts:4, 8	3, 	49u/:4 , 8	3, 	49vs:4
, are designed by means 

of the hybrid technique of Hammersley sequence and two-levels fractional factorial design (Figure 

2). For each of these sampling plans, the LP problem is solved to obtain the corresponding matrixes 

of the optimal objective and variables values, 8�∗, �3∗, �4∗93s:5, … , … , … . 8�∗, �3∗, �4∗9vs:5. The opti-

mization problem is solved using the “linprog” optimizer of the Matlab optimization toolbox, based 

on a dual simplex algorithm. Finally, using each of the five input-output training datasets 



(e.g., 8	3, 	493s:4 J 8�∗, �3∗, �4∗93s:5), three metamodels are fitted to approximate the optimal objec-

tive and decision variables, �-∗ = ./�	3, 	4
, �03∗ = .3�	3, 	4
, �04∗ = .4�	3, 	4
. 

 

Figure 2. Two of the five sampling plans of the UPs ((a) � = 15 and (b) � = 75): Blue circles indi-

cate UPs combinations generated by the Hammersley techniques, whereas red circles refer to those 

generated by the two-levels full factorial design. 

One validation dataset 8	3_, 	4_9t//:4 J 8�∗,_ , �3∗,_ , �4∗,_9t//:5 is generated and used to assess the 

performances of the five sets of MPMs, ./, .3, .4, trained with the five different datasets. It is worth 

highlighting that the validation set is in the form of a uniform grid of 20×20 over the UPs space, so 

as to achieve a credible assessment of the MPMs predictions in all the local regions of the UPs. The 

NRMSE of the MPMs prediction is calculated by comparing their estimated outputs 

8�-∗,_ , �03∗,_ , �04∗,_9t//:5 with the exact ones 8�∗,_ , �3∗,_ , �4∗,_9t//:5  provided by the rigorous optimiza-

tion itself.  



 

Figure 3. (a) NRMSE and (b) computational effort required for training data generation, MPMs 

training and prediction times as a function of the training dataset size. 

Figure 3 shows that the NRMSE of the MPMs decreases when the training dataset size increases, 

while the required computational efforts for the MPMs training and for prediction (of the validation 

set) increase. The Figure also indicates that even with few (i.e., 15) training patterns, the MPMs are 

able to achieve a satisfactory accuracy (less than 3% of NRMSE). Table 1 illustrates the NRMSE 

and computational efforts required for the MPMs training and validation when the largest training 

dataset (75 patterns) is considered.  

Figure 3 and Table 1 shows i) the high accuracy of the MPMs trained by the dataset containing 75 

instances (NRMSE less than 0.5% of all the MPMs), ii) affordable “offline” computational effort 

required for training the MPMs (2.79 s =0.86+0.80+1.13) and iii) very low computational effort 

required to estimate the optimal solutions of the validation dataset (0.00127 s = 0.51/400), saving 

75.7% ((2.1-0.51)/2.1) of the computational effort required for the “wait and see” optimization pro-

cedure. It is also worth to emphasize that only one multiparametric relation (i.e., a MPM) is able to 

describe the optimal solution behavior over the entire space of the UPs, which makes its online us-

age to react to the UPs variation easier and more flexible than using several multiparametric rela-

tions.  In the literature (Pistikopoulos, et al., 2007), the conventional MPP approach provides a solu-



tion for the same problem that divides the UPs space into two critical regions and, consequently, 

two sets of mathematical parametric functions are obtained each of them is valid only for one of the 

two partitions of the UPs space. 

As an additional assessment of the performance of the developed MPMs,  the deterministic mul-

tiparametric solution provided in (Pistikopoulos, et al., 2007) is used to calculate the optimal objec-

tive and decision variables values for the validation dataset and compared with the one obtained by 

the MPMs in Figure 4. 

 

 

   (a)                                                      (b) 



Figure 4. Refinery blending problem: comparison between (a) the results obtained by the classical 

MPP solution provided in (Pistikopoulos, et al., 2007) and (b) the results provided by the proposed 

methodology. 

4.2 Bilinear optimization 

In this mathematical example (Eq.(9)) (Ichihara & Anai, 2012), a bilinear objective function is to be 

minimized, subjected to two linear constraints which are affected by one uncertain parameter:  

b��+  � = �3�4�. .: 2 �3 + �4  ≥ 	�3 + 3 �4  ≥ 0.5 	J1 ≤ �3 , �4 ≤ 1,    0 ≤ 	 ≤ 1��
 

 (9) 

The proposed method is applied starting by designing a sampling plan 8	9u/:3 over the space [0: 1] 

of the UP (i.e., the MPMs input). The optimization problem is solved 60 times considering the val-

ues of the UP in the sampling plan, to obtain the corresponding optimal decision variables and ob-

jective values (i.e., the MPMs outputs) 8�∗, �3∗, �4∗9u/:5. The “fmincon” optimizer of the Matlab 

optimzation toolbox, based on a sequential quadratic programming algorithm, is used. This input-

output training dataset is used to build three MPMs, one for each of the optimal objective and deci-

sion variables (�- ∗ = ./�	
, �03∗ = .3�	
, �04∗ = .4�	
). A different validation dataset, including a 

uniform grid of 150 samples, is generated �8	_93s/:3 J 8�∗,_ , �3∗,_ , �4∗,_93s/:5
 and the trained 

MPMs are used to estimate the optimal solutions 8�03∗,_ , �04∗,_, �- ∗,_93s/∗5. 

 



Figure 5. Bilinear optimization problem: comparison between the solutions obtained by the classi-

cal MPP provided in (Ichihara & Anai, 2012) (blue solid lines) and the solutions provided by the 

proposed methodology (red dashed lines). 

Table 1 reports the results obtained by the proposed methodology, which indicate the very 

high accuracy of the three MPMs (NRMSE of 0.01%, 0.8% and 0.4%) and, also, the significant 

reduction (98.9%) in the required computational effort with respect to the use of standard optimiza-

tion tools. Also, the deterministic MPP solution provided in (Ichihara & Anai, 2012) is used to cal-

culate the optimal objective and variables of the validation dataset, and the extend of matching be-

tween both solutions is shown in Figure 5.  

4.3 Quadratic optimization 

The second application (Dua, et al., 2002) involves the minimization of a quadratic objective 

function subjected to a set of six constraints, which are affected by two UPs in their right-hand side 

(Eq.(10)). 

b��+  � = C[8�3 , �49[ + 0.58�3 , �49x8�3 , �49[�. . :  y 8�3 , �49[ ≤ � + z 8	3 , 	49[J1 ≤ �3 , �4 ≤ 1,    0 ≤ 	3, 	4 ≤ 1 ( (10) 

C = {00| , x {0.0196 0.00630.0063 0.0199|

� =
~��
���
0.4174253.5825750.4132250.4670751.0902002.909800���

���, y =
~��
���

1 0 J1  0 J0.0609  0 J0.0064  0 0  1 0 J1���
��� ,   z =

~��
���

 3.16515  3.7546J3.16515 J3.7546 0.17355 0.06585  1.81960J1.81960
J0.2717 0.4714J3.2841 3.2841���

���

The same procedure is considered. A sampling plan 8	3, 	49�/:4 is designed over the UPs

space. The problem is solved 80 times to obtain the matrix 8�∗, �3∗, �4∗9�/:5, using the “quadprog”



optimizer of the Matlab optimization toolbox based on an interior-point-convex algorithm. Using 

this input-output dataset, three MPMs are fitted: �- ∗ = ./�	3, 	4
, �03∗ = .3�	3, 	4
, �04∗ = .4�	3, 	4
. 

The validation is accomplished using a different dataset including 400 samples (8	3_ , 	4_9t//:4 J
8�∗,_ , �3∗,_ , �4∗,_9t//:5), where the MPMs are used to estimate the outputs 8�03∗,_ , �04∗,_ , �-∗,_9t//∗5  and 

the NRMSE of the MPMs predictions is calculated (Table 1). In this case, the accuracy of the 

MPMs (NRMSE of 0.0001%, 0.028 % and 0.018%) is significantly higher than that of the MPMs in 

the previous two examples, which can be explained by the smooth and continuous multiparametric 

behavior of the optimal solutions over the entire UPs space (Figure 6), which is relatively easy to 

capture by the data-driven models. On the contrary, the multiparametric behavior of the optimal 

solution in the previous two cases shows discrete features, which represent a challenge for the data-

driven models.   

The MPMs were also able to save a considerable percentage (67%) of the computational ef-

fort required to calculate the optimal solutions through real optimization, but the saving percentage 

is not as high as in the previous two cases. This is, again, due to the relative simplicity of the opti-

mization problem solution (i.e., a quadratic objective function subjected to linear constraints). 

The deterministic multiparametric solution obtained by (Dua, et al., 2002) for the same prob-

lem, divides the UPs space into four critical regions, and a different set of mathematical multipara-

metric functions are used to calculate the optimal solutions over each region.  



 (a)                                                      (b) 

 Figure 6.Quadratic optimization problem: comparison between (a) the results obtained by the 

classical MPP solution provided in (Dua, et al., 2002) and (b) the results provided by the proposed 

methodology. 

4.4 Quadratic optimization: milk surplus problem 

This application considers a Dutch agriculture cooperative company that produces four products 

including milk for direct consumption, butter, fat and cheese with prices �3, �4, �5 and �t, respec-

tively  (Pistikopoulos, et al., 2007). The consumer demand from each product is modelled as an 

inverse function of the product price. The cooperative company must decide the optimal prices (that 

indirectly set the optimal quantities of products to be delivered) that maximize the profit, assuming 

this will not affect the production costs. The optimization problem is subjected to production capac-



ity constraints and an escalation of the price constraint, and is influenced by four UPs, 	3, 	4, 	5 

and 	t, related to the consumer demand, and another UP  	s, associated to the escalation of the 

prices. Notice that, in this optimization problem, the UPs are affecting both of the constraints and 

the objective function, as follows:   

���+ � = – 1.2338 �34–  0.0203 �44–  0.0136 �54–  0.0027 �t4 +  0.0031 �5 �t + 2139 �3
+  135 �4  +  103 �5 +  19 �t + �3θ3  + �4θ4   +  �5θ5   +  �tθt  

                 �. .: 
 – 0.0321 �3 –  0.0162 �4 –  0.0038 �5 –  0.0002 �t  

≤ – 80.5– 0.026 θ3 –  0.800 θ4 –  0.306 θ5 –  0.245 θt, 
– 0.1061 �3 –  0.0004 �4–  0.0034 �5 –  0.0006 �t  

≤  26.6– 0.086 θ3 –  0.020 θ4 –  0.297θ5 –  0.371 θt, 
1.2334 �3  ≤  2139 +  θ3, 
0.0203 �4  ≤  135 + θ4, 

0.0136�5 –  0.0015  �t  ≤  103 +   θ5, 
– 0.0016�5  +  0.0027 �t  ≤  19 +   θt, 

0.0163�3 +  0.0003�4  +  0.0006�5  +  0.0002  �t  ≤  10 +  θs, 
– 150 ≤   θ3  ≤  150, 

– 5 ≤   θ4  ≤  5, 
– 6 ≤   θ5 ≤  6, 
– 2 ≤  θt  ≤  2, 
– 1 ≤   θs  ≤  1 

 



The methodology is, again, applied following the same procedure. A sampling plan, 

8	3, 	4, 	5, 	t, 	s9�/:s, is created including different combinations of the UPs values, which are 

selected by the hybrid DOCE method within the known bounds [-150:150, -5:5, -6:6, -2:2, -1:1]. 

The quadratic optimization problem is solved 80 times using the “quadprog” optimizer of the 

Matlab optimization toolbox, based on the interior-point-convex algorithm, to yield the output da-

ta 8�∗, �3∗, �4∗, �5∗, �t∗9�/:s. Five MPMs, �- ∗ = ./�	3, 	4, 	5, 	t, 	s
, �01∗ = .1�	3, 	4, 	5, 	t, 	s
, � =
1, … 4, are fitted to approximate the optimal profit and prices as a function of the demand and the 

price escalation uncertainties. 

The MPMs performances are assessed relying on a new dataset, (8	3_ , 	4_, 	5_, 	t_ , 	s_9t//:s J
8�∗,_ , �3∗,_ , �4∗,_ , �5∗,_ , �t∗,_9t//:s), and their accuracies, in terms of NRMSE, are reported in Table 1. 

As in the third case (section 4.3), a significantly high prediction accuracy of the MPMs is obtained 

(a maximum NRMSE of 0.0035 %), which can be justified by similar reasons. Notice that despite 

the high dimensionality of the optimization problem (four decision variables) and the high number 

of the UPs (five) with respect to the other examples, the size of the training dataset required to 

achieve such high accuracy is on the same order of magnitude (80 points). 

Classical MPP approaches (Pistikopoulos, et al., 2007) provide a deterministic solution to this prob-

lem that is characterized by two critical regions over the UPs space. Figure 7 shows a comparison 

between the deterministic solution and the approximate one provided by the proposed methodology, 

using the validation dataset. 



 

Figure 7. Milk surplus problem: comparison between the solutions obtained by the classical MPP 

provided in (Pistikopoulos, et al., 2007) and the solutions provided by the proposed methodology. 

4.5 Nonlinear optimization 

The last multiparametric optimization benchmark example  (Domínguez, et al., 2010) includes a 

nonlinear objective subjected to two constraints, each one involving an uncertain parameter in the 

right-hand side (Eq.(11)): 

b��+  � = �35 + 2 �34 J 5 �3 + �44 J 3 �4 J 6�. :                                                2.0 �3 + �4 ≤ 2.5 + 	30.5 �3 +  �4 ≤ 1.5 + 	40 ≥ 	3 ≥ 1,   0 ≥ 	4 ≥ 1 ���
� 

 (11) 

Three MPMs, �-∗ = ./�	3, 	4
, �03∗ = .3�	3, 	4
   and �04∗ = .4�	3, 	4
, are fitted using the in-

put-output training dataset,  8	3, 	493t/:4 J  8�∗, �3∗, �4∗93t/:5, generated as explained earlier for the 

other examples. The performance of the MPMs is evaluated using a new validation dataset, 

 8	3_ , 	4_9t//:4 J  8�∗,_ , �3∗,_ , �4∗,_9t//:5, and the results are shown in Table 1. Figure 8 compares the 

approximated multiparametric solution obtained by the MPMs to the deterministic one obtain by 



(Pistikopoulos, et al., 2007; Domínguez, et al., 2010). In (Domínguez, et al., 2010), different classi-

cal MPP algorithms have been applied to the problem, and the best one was the quadratic approxi-

mation algorithm that partitioned the UPs into four critical regions. 

In this application, the size of the training dataset required to fit the MPMs is relatively high 

and, although the resulted accuracy is good (NRMSE of 0.62%, 1.5% and 1.9%), it is not as high as 

in the previous examples, where the NRMSE is less than 1% in the worst cases. Again, this is be-

cause of the challenging discrete or piecewise characteristics of the multiparametric solution, which 

can be clearly noticed in Figure 8.  

 

 

   (a)                                                      (b) 



Figure 8. Nonlinear optimization problem: comparison between (a) the results obtained by the clas-

sical MPP solution provided in (Domínguez, et al., 2010) and (b) the results provided by the pro-

posed methodology. 

4.6 Case Study: Operational Optimization of a Utility System 

A utility system (Figure 9) supplying mechanical energy to an industrial process is considered. The 

system is composed of a boiler (E-1) that receives water and supplies high pressure steam to a 

steam turbine (T1), whose outlet steam is  condensed to water that is fed-back to the boiler inlet by a 

pump (P-1). 

                          

Figure 9. Utility system model. 

The objective is to minimize the system operational cost, C, which includes the costs of the energies 

consumed by the boiler, T1, and the pumps, E-1 and E-2, (Q2, Q1 and Q5 respectively), and the 

cooling water cost. The operational cost is modeled as a function of the boiler outlet steam flowrate 

(SF) and temperature (ST). However, two uncertain parameters, 	3 and 	4, affect the system, which 

are: i) the power demand that must be satisfied by the turbine (Qw) and varies in the range [53000, 

57000] kW, and ii) the turbine efficiency that varies in the range [75, 95] %.  

The system is simple to describe, but complex thermodynamic relations have to be considered, so 

the natural way to model the system consists on using a sequential-modular simulator (in this case, 

ASPEN HYSYS  (Aspen-Hysys, 2020) modeling and simulation environment has been chosen, see 

Figure 9). Then, a black box (simulation-based) optimization procedure is the straight-forward op-



timization alternative. In any case, due to this complex thermodynamic/mathematical behavior, 

optimization under uncertainty will be hard to be managed through conventional multiparametric 

mathematical programming approaches.  

The problem is formulated as: 

b����,��  � =  .��� , �) , 	3, 	4
�. :�ℎH &YDCH\\ �DhH�x� ��� , �) , 	4
 ≤ 	336000 < �� < 79200 ��bD�H/ℎY , 162 < �) < 360 �>���
�

(12) 

A sampling plan 8	3, 	49v/:4, is designed over the domain [53000:57000, 75:95]. The black-box

simulation-based optimization problem (Eq.(12)) is solved 70 times (the “Fmincon” Matlab opti-

mizer is used) to obtain the optimal values of the objective and decision variables 8�∗, ��∗ , �[∗  9v/:5.

Using this dataset, three MPMs are trained, which approximate the optimal behavior of the opera-

tional cost, steam flowrate and temperature as a function of the power demand and turbine efficien-

cy: �-∗ = ./�	3, 	4
, �-�∗ = .3�	3, 	4
, �-[∗ = .4�	3, 	4
. The validation is performed using another

dataset including 400 samples, 8	3_, 	4_9t//:4 J 8�∗,_ , ��∗,_, �[∗,_9t//:5, where the three MPMs are

employed to predict the outputs 8�-∗,_ , �-�∗,_ , �-[∗,_9t//:5  and the NRMSE is calculated (Table 1).



 (a)  (b) 

Figure 10. (a) Exact versus (b) approximate multiparametric behavior of the utility system. 

Table 1 shows the high potential of the method: the optimal decisions are accurately predicted via 

simple interpolations using the MPMs, in a very short time (0.2 sec, using a regular personal com-

puter), saving the significant computational effort required by the simulation-based optimization 

(300.8 sec). Thus, the method represents a powerful tool to promptly manage the UPs variations 

during the process online operations.  



4.7 Case Study2: Operational Optimization of a Batch Reactor 

The second case study (Hale & Qin, 2004) considers a hypothetical scenario in which an engineer is 

charged with starting up a new chemical process based on the reactions: 

y → �,  Y3= �3��,    �3 = 0.05 \O3  
� → �,  Y4= �4��,   �4 =  	3�3 \O3 
y → �,  Y5= �5��,  �5 =  	4�3 \O3 

where y is the reactant, � is the desired product, � is a secondary undesired product, Y1 , � = 1,2,3
are the respective reaction rates,  �1, � = 1,2,3 are the reaction rate constants, �� is the reactant con-

centration and �� is the desired product concentration. It has been assumed that the reaction con-

stants of the two side-reactions, �4, �5, are not precisely estimated, so they will be represented by

two  UPs 	3 and 	4.

The process is to be run in a batch reactor with maximum capacity �cd+  =  1000�, on which an

automatic feeding and emptying system is installed, with flowrate 0 ≤ z ≤ zcd+ = 1 �/\. The

process can be operated in two scenarios:   

• A complete batch mode, where the process starts with the reactor full of reactants, i.e.,

the initial volume equals to the reactor maximum capacity:  �/  = �cd+  =  1000�.

• A hybrid mode of fed-batch then batch, according to which, the process starts with ini-

tial volume, �/, of the reactant less than the maximum capacity, i.e., �/  < �cd+. Then,

the rest of the reactant volume (�cd+ J �/) is continuously fed into the batch with con-

stant flowrate, z, until the time � at which the reactor is full (���
 = �cd+); then the

flow is shut-off and the process continues in a batch mode.



Given that the duration of the batch is , the time � = ��cd+ J �/
/z (i.e., for a full batch mode 

scenario � = 0) and the feed concentration ��/ = 2 b, hence the process can be modeled as: 

for the time 0 ≤ � < � 

h�y′h� = �y0 z J �1 + �4
   �1�y′  ,               �y′ �0
 =  �y0�0     h��′h� = �1�y′ J �3�1��′ ,                                   ��′ �0
 = 0         h �′h� = z                                                              �′�0
 = �0      
 

for time � ≤ � ≤  

h�yh� = J�1 + �4
   �1�y ,                                �y��
 =  �y′ ��
     h��h� = �1�y J �3�1��,                                     ����
 = ��′ ��
         h�h� = 0                                                              ���
 = �′��
      
 

where the dash superscript is used to distinguish the process variables during the fed-batch period. 

The process total time, �, is the summation of the time required to fill the reactor with the initial 

volume of reactant, �/, plus the batch duration, , plus the time to empty the batch, i.e., � = �0���� +
 + �������� . The objective of the batch operation is to select the optimal values of the decision varia-

bles �/, z and  that maximize the amount of the desired product � produced per unit of time, con-

sidering bounded uncertain parameters 	3 and 	4. 

Max ��� ,[,¡      ��/ , F, 
/��. . :�ℎH &YDCH\\ �DhH�0 ≤ z ≤ zcd+0 ≤ �/ ≤ �i�0 ≤ � ≤ 0 ≤ 	3 , 	4 ≤ 5 ���
��
� 

 (13) 



Before the application of the proposed method, the correctness of the optimization procedure is 

checked by solving the problem considering the nominal values of the UPs 	3 = 0.05 and 	4 =
0, as in (Hale & Qin, 2004), and exactly the same solution of the nominal problem ( �0∗ =
978.7 L , z∗ = 1 �/\ , ∗ = 27.7 \) is obtained. 

The proposed method is straightforwardly applied with the same steps previously illustrated. A 

sampling of 150 points is designed, the optimization problem (Eq.(13)) is solved (using the Matlab 

“Fmincon” algorithm) to obtain the input-output training data  8	3, 	493s/:4 J
 8��∗ , �/∗, z∗, ∗93s/:t and, finally, four MPMs, ��∗ = ./�	3, 	4
, �/∗ = .3�	3, 	4
, z∗ =
.4�	3, 	4
   and ∗ = .5�	3, 	4
, are trained. The MPMs validation is accomplished in the same way 

as previously mentioned, considering a new input-output dataset  8	3_, 	4_95//:4 J
8��∗,_ , �/∗,_ , z∗,_ , ∗,_95//:t different from the training one.    



(a)                                                                (b) 

Figure 11. (a) Exact versus (b) approximate multiparametric behavior of the batch reactor. 



The performance, shown in Figure 11 and reported in Table 1, further emphasizes the methodology 

capabilities in terms of high prediction accuracy and significant reduction in the optimization time ( 

99.92% = (4887-3.88)/4887). Notice that the optimal flowrate is insensitive to the UPs variation 

(see Figure 11) and always takes the maximum allowable value, which make sense because using 

the maximum flowrate minimizes the time of filling and emptying the reactor and, consequently, 

maximizes the objective function (maximum desired product � produced per unit time). Also, since

the variability range of  z∗ is almost zero, the calculation of its NRMSE is meaningless (see Eq.(7)),

as it will lead to an extremely high “numerical” value that is not expressing the actual performance 

of the  MPM.  

Table 1. NRMSE (%) of the MPMs and computational effort for training and validation. 

Problem  MPMs Training Validation NRMSE 

(%) No. of 

training 

samples 

CPU Time (s)* No. of 

validation 

samples 

CPU Time (s)* 

Ups 

Sampling 

Optimization 

for data 

generation 

Fitting Optimization 

for data 

generation 

Prediction 

Refinery blending 

problem 

�- ∗ 

75 0.002 0.53 

0.86 

400 2.10 0.51 

0.44 

�03∗ 0.80 0.39 

�04∗ 1.13 0.44 

Bilinear objective 

with linear con-

straints 

�- ∗ 

60 0.012 6.9 

0.53 

150 16.20 0.17 

0.01 

�03∗ 1.08 0.80 

�04∗ 1.56 0.40 

Quadratic optimi-

zation 

�- ∗ 

80 0.015 0.815 

5.76 

400 4.51 1.49 

0.00011 

�03∗ 2.52 0.02813 

�04∗ 4.46 0.01853 

Quadratic optimi-

zation: milk 

surplus problem 

�- ∗ 

80 0.023 1.07 

1.47 

400 8.17 1.59 

0.00350 

�03∗ 1.52 0.00020 

�04∗ 1.42 0.00016 

�03∗ 1.39 0.00021 

�04∗ 155 0.00010 



*Intel core i5-6200U CPU@2.3GHz. 

The Table, as a whole, also shows that the method advantages increase as the optimization problem 

complexity increases: in examples 1, 3 and 4,  simple linear and quadratic optimization problems 

are solved, and the computational effort is reduced by 75.7% (=100 ×(2.1-0.51)/2.1), 67% and 80%, 

respectively. However, as the problem complexity increases, as in example 2 (bilinear objective 

function including a saddle behavior) and in example 5, the percentage of the computational effort 

saved rises to 98.9% and 88.2%, respectively. Finally, when the optimization problem involves a 

complex, nonlinear and/or black-box model (case studies), to which the conventional multiparamet-

ric mathematical programming approaches are not applicable, the ratios of the reduced computa-

tional effort reaches to 99.9%. 

Finally, the criticalities of the proposed method are inherently associated to the general drawbacks 

of ML models. The first one is that the provided solution is approximated without any explicit 

mathematical proof of optimality, unlike classical MPP methods. However, given that the optimali-

ty of the data, which are used to train the ML models, is guaranteed because they are generated by 

state-of-art optimization techniques, the point becomes to which extent these ML models are able to 

capture the exact multiparametric behavior, and this can be assessed by an offline validation step. 

Using the proposed procedure, the offline validation has proven the very high accuracy of the de-

Nonlinear optimi-

zation 

�- ∗ 

140 0.039 4.67 

4.60 

400 13.85 1.60 

0.62 

�03∗ 4.00 1.5 

�04∗ 6.00 1.9 

Operational cost 

minimization of 

utility plant 

�- ∗ 

70 0.015 48.4 

1.20 

400 300.80 0.20 

0.31   

�-�∗ 1.40 0.61 

�-[∗  1.07 0.77 

Operational cost 

minimization of 

batch reactor 

�-�∗    
150 0.038 861 

14.0 

300 4887.00 3.88 

0.08 

�¦/∗ 17.5 1.50 

z¦∗ 0.66 NA 

¦ ∗ 11.1 1.45 



veloped MPMs (less than 1% of NRMSE in most of the cases presented in this work). The second 

criticality is the computational burden required for the training of the ML models, which arises as 

the training data size and/or dimensions increase. Nevertheless, the MPMs are developed and vali-

dated offline, which makes the computational burden required for their training and validation quite 

affordable. The third criticality is associated to the discrete multiparametric behavior of some deci-

sion variables (e.g., see Section 4.5), for which the performance of the ML models is relatively re-

duced.  

5 Conclusions 

This paper presents an efficient ML-based methodology for multiparametric optimization of general 

continuous problems subjected to uncertainties, with special emphasis on chemical processes opera-

tion optimization problems, where the applications of conventional MPP approaches can be difficult 

due to the complexity, high nonlinearity and low transparency of the process models that must be 

considered at this operating phase. The method combines different statistical and mathematical 

tools including DOCE techniques, state-of-art optimization algorithms and machine learning mod-

els.    

The proposed method has been tested on five benchmark MPP examples including linear, bilinear, 

quadratic and nonlinear problems and applied to two case studies of process operation optimization. 

The results show that the method is able to approximate the multiparametric solutions using a rela-

tively small number of training data, with very good accuracy (less than 1% of NRMSE, in most 

application cases). More importantly, significant differences with the results of the standard MPP 

appear, which are: i) in all the tested cases, a single MPM was enough to correctly reproduce the 

multiparametric behavior of the optimal solution over the whole UPs domain, which makes the 

online usage of the MPMs simpler and more flexible than using several mathematical functions 

(provided by classical MPP approaches) each one of them is applicable to a certain partition of the 



UPs space, ii) the method is able to solve problems of different types (linear, bilinear, quadratic, 

nonlinear) in a systematic and robust way, instead of using many types of conventional MPP algo-

rithms, each one is applicable to a specific problem type, and iii) the method is capable of solving 

process operation optimization problems where complex, black-box and/or highly nonlinear models 

must be considered, providing a huge reduction in computational effort required for the online op-

timization (a ratio of 99.9 %).  

Future research will investigate the extension of the methodology capabilities for improving the 

modeling of the multiparametric behavior of continuous variables that show significant/discrete 

changes over the UPs space (e.g., the example in section 4.5), the solution of mixed-integer optimi-

zation problems and the quantification of uncertainty in the MPMs predictions. 
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