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Abstract

In this paper, a phase field model of ductile fracture is described within the framework of large
plastic strains. Most results dealing with phase field modeling of ductile fracture are carried out
on a fixed mesh, which requires a fine mesh throughout all the computation. The aim of this
paper is to introduce an adaptive isotropic remeshing strategy coupled with a phase field model
of ductile fracture to achieve accurate results with a major decrease in computational time. A
mixed velocity/pressure finite element formulation is used for the solution of mechanical fields.
The plastic strain field needs to be transferred to the new mesh after each remeshing operation.
This field transfer requires the use of a suitable remeshing-transfer operator. Different field transfer
operators are tested and results are reported. In order to reduce the numerical diffusion associated
with the field transfer operation, a volume quality based metric has been introduced. This paper
presents different numerical examples with both qualitative and quantitative analyses in order to
show the ability of the developed strategy in predicting crack evolution in ductile materials. The
proposed framework is also able to predict crack paths in highly ductile materials while benefiting
from space-adaptivity.

Keywords: Phase field model, Ductile fracture, Velocity/pressure finite element, Adaptive
isotropic remeshing, Field transfer operator

1. Introduction1

The phase field model for fracture was introduced in a variational form by Francfort and Marigo2

[1] as a generalization of Griffith’s criterion to predict the critical stress for brittle fracture. The3

minimization of a functional that contains the sum of total elastic strain energy and fracture4

energy enables predicting the initiation, propagation, merging and branching of multiple cracks5

under complex loading conditions. Nonetheless, the original formulation is not appropriate for6

numerical treatment since the crack surfaces are not known a priori; hence the computational7

scheme becomes non-tractable in the sense that the resulting algorithm will be complicated to8

implement. Fortunately, this problem has been tackled in the field of image processing with the9

so-called Mumford-Shah functional [2] and thereafter a regularization introduced by Ambrosio and10

Tortorelli [3]. Bourdin et al. [4] introduced a numerical procedure based on the regularized func-11

tional that substitutes the sharp crack topology by a damaged zone with a field variable known as12

"phase field" that goes from 0 (intact material) to 1 (totally damaged).13
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Most of the phase field models available in the literature deal with the problem of brittle frac-14

ture [5, 6, 7]. However, many extensions of the phase field model for ductile fracture have been15

introduced in the literature for 2D configurations [8, 9] and also for 3D configurations with finite16

strains [9, 10, 11, 12, 13]. Recently, a porous-ductile phase field model was introduced in [14] in17

which the critical energy release rate is decomposed into elastic and plastic parts where the plastic18

deformation is described by a modified GTN model [15, 16]. Unfortunately, the phase field model19

for ductile fracture is not variationally consistent. In consequence, different options are proposed20

in the literature on the way plastic strains can contribute to the ductile fracture in order to mimic21

the behaviour of brittle fracture. For example, M. Ambati et al. [8] introduced a new degradation22

function that contains the equivalent plastic strain in an exponential form. This means that the23

material is degraded in regions where the plastic strain is localized; hence the crack propagation24

is directly affected by plasticity. On the other hand, Borden et al. [11] added the plastic strain25

energy along with a plastic degradation function that depends only on the phase field variable in26

the crack driving force. A good review for the different phase field models of ductile fracture can27

be found in [17].28

In the current work, the model of Borden [11] is implemented in FORGE ®1 where a mixed29

velocity/pressure finite element model with a bubble function stabilization known as P1+/P1 is30

used to solve the mechanical equations using tetrahedral elements. The bubble stabilization tech-31

nique is used in order to satisfy the Brezzi-Babuska inf-sup condition [18, 19]. The resulting finite32

element model is able to solve the mechanical problems with large plastic strains while minimiz-33

ing numerical instabilities. The phase field equation is solved on the same mesh. A staggered34

algorithm is used to decouple the solution of mechanical equations from the phase field equation35

since the resulting coupled system of equations is highly nonlinear [6]. Numerical comparisons are36

carried out in order to validate the current numerical implementation with the original model.37

Starting the computations with a fixed mesh that is locally refined in the areas where the phase38

field is expected to propagate is the main strategy used in the literature to solve this problem.39

It can be expected that two problems emerge when this strategy is applied: (i). the locations40

of cracks need to be known a priori which is not the case in most of the applications in fracture41

mechanics; (ii). the number of elements in the mesh becomes very large from the beginning of42

the computations which is usually not needed before a crack is initiated, hence the computational43

scheme becomes inefficient. In order to deal with these problems, an adaptive isotropic remeshing44

strategy is used in order to adapt the mesh in the regions where the phase field is expected to45

propagate. In isotropic remeshing, all edges of each element should be scaled with the same mul-46

tiplicative factor which is suitable for our purpose. Very few attempts to use adaptive remeshing47

strategies coupled with a phase field model in the context of brittle fracture have been reported in48

the literature. To the extend of our knowledge, the development of an adaptive remeshing scheme49

for the phase field model for ductile fracture has not been addressed before in the literature.50

A multi-scale modeling approach has been adopted in [20] to keep a small mesh size around the51

crack tip. A fine mesh structure is defined with respect to a coarse mesh topology using a multi52

scale basis functions.53

Another proposition of a multi level hp-FEM strategy has been adopted also in [21] for brittle54

fracture simulations. They showed that with the developed remeshing strategy, it was possible to55

obtain accurate numerical results as compared to the cases with a fixed mesh. The main advan-56

tage is the great reduction in the number of degrees of freedom at the beginning of the simulation57

1FORGE ® is a finite element software specialized in material forming simulation.
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and hence the computational time decreases significantly. In [22], a predictor-corrector refinement58

strategy inspired by the work in [23] is presented within a global-local approach for the anistropic59

phase field modeling. The solution of the mechanical system is solved on a global coarse mesh60

while the phase field solution is based on a local refined mesh. Recently, Alba Muixi et al. [24]61

introduced a new h-refinement strategy that is based on the use of two types of elements: stan-62

dard and refined elements where continuity is imposed in a weak sense by the means of Nitsche’s63

method. In addition, Patil et al. [25] presented a Phase field adaptive scheme for brittle materials64

that combines three different methods: (i). Phase field method; (ii). Extended finite element65

method (XFEM); (iii). Multiscale finite element method. The proposed approach reduces the so-66

lution domain to a small vicinity around the crack tip with an adaptive refinement which reduces67

significantly the computation time.68

In [26], a predictor-corrector remeshing strategy is implemented within the framework of brittle69

fracture. Starting with a coarse mesh, a two-steps solution procedure is adopted: a predictor step70

on a coarse mesh is first used to obtain initial results which is followed by a refinement step where71

the solution is recalculated. A similar idea is used in [23], a solution is obtained at time t on an72

initial mesh. Then, the time advances and if the crack is found to propagate outside the refined73

zone, a refinement operation takes place while the old phase solution is interpolated on the new74

mesh. The process is repeated until no change happens.75

Authors in [27] introduced a computational framework known as VEM (Virtual element method)76

as a generalization of the classical finite elements method that can be used to form any shape of77

elements with an arbitrary number of nodes. The developed method is suitable for crack prop-78

agation and brittle and ductile fracture simulations [28, 29]. Ali Hussein et al. [30] introduced79

an adaptive crack simulation framework using the phase field method and the VEM in brittle80

materials. The mesh is refined around the crack tip when the maximum value of the phase field81

reaches some threshold which is followed by an equilibrium step using the staggered algorithm.82

Finally, a cutting algorithm is used to split the virtual elements and open the crack faces.83

In this paper, we generalize the remeshing operation to deal with ductile fracture where the84

material is history dependent due to plastic deformations. Three main challenges are to be stud-85

ied: (i). the choice of an appropriate refinement indicator function that is suitable for ductile86

materials; (ii). the choice of a conservative field transfer operator that minimizes the numerical87

diffusion during the transport of fields; (iii). the reduction of the number of remeshing operations88

in order to minimize the numerical diffusion that could lead to inaccurate tracking for the crack89

path. The ultimate goal is to have a numerical framework that is able to accurately resolve the90

phase field equations while reducing the computational time in ductile fracture simulations. A91

comprehensive review for the different field transfer operators can be found in [31]. The paper is92

structured as follows: Section 2 introduces the variational formulation of the phase field method93

for ductile fracture within the framework of velocity/pressure mixed finite element formulation.94

Then section 3 presents the adaptive isotropic remeshing scheme used in this work. In section 4,95

two numerical examples are presented with both qualitative and quantitative analyses. Finally, a96

conclusion with some perspectives on the future work is drawn in section 5.97
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2. Formulation of the problem98

2.1. Original formulation99

The first step is to define a free energy functional ℰ which is a Mumford–Shah [2] type as follows

ℰ(u, Γ) =
∫︁

Ωℎ

𝑊𝑒(𝜀𝑒) 𝑑Ωℎ +
∫︁

Γ
𝐺𝑐 𝑑Ωℎ (1)

where 𝜀𝑒 is the elastic strain tensor, 𝑊𝑒 is the elastic energy density, 𝐺𝑐 is the fracture toughness,
Ωℎ is the occupied volume in the reference configuration and Γ is the crack surface in the reference
configuration. This energy functional is an extension of the Griffith’s definition of brittle fracture.
The competition between internal elastic and fracture energies leads to the onset and propagation
of cracks in materials. As can be observed, it is needed to determine a priori the fractured
surface in order to calculate the fracture energy. This results in a computational scheme that
is non-tractable and inconvenient to apply. To facilitate the solution of this problem, another
variational formulation based on regularizing the energy functional following the work of Ambrosio
and Tortorelli was introduced [3]. With this approximation, a scalar variable known as the phase
field variable is added; 𝑑 goes from 0 (intact material) to 1 (totally broken). The variational
formulation of brittle diffused damage is written as

ℰ𝑙(u, 𝑑) =
∫︁

Ωℎ

𝑔𝑒(𝑑) 𝑊𝑒(𝜀𝑒) 𝑑Ωℎ +
∫︁

Ωℎ

𝐺𝑐 𝒞(𝑑,∇𝑑) 𝑑Ωℎ (2)

where two new components are added:
𝑔𝑒(𝑑) is an elastic degradation function that is defined as follows

𝑔𝑒(𝑑) = ((1− 𝑑) + 𝜁)2 (3)

and 𝒞(𝑑,∇𝑑) is the crack surface density that diffuses the sharp crack topology into a continuous
field

𝒞(𝑑,∇𝑑) = 1
2𝑙𝑐

(𝑑2 + 𝑙2
𝑐 |∇𝑑|2) (4)

where 𝜁 is a numerical parameter used to prevent the singularity of the stiffness matrix. Minimizing100

the regularized energy functional would give a differential equation that governs the evolution of101

the phase field in brittle materials. Miehe et al. [6, 32] proposed a thermodynamically consistent102

formulation to the phase field problem based on transforming the discontinuous nature of the crack103

to a continuous one leading to very similar mathematical formulation.104

In order to deal with the ductile fracture problems, new components should be added to the105

formulation such as plastic strain, stress triaxility and Lode parameter [33]. M. ambati et al. [8]106

showed that although there is no variationally consistent formulation for the phase field problem107

of ductile fracture, it is possible to mimic the brittle fracture formulation by adding components108

that represent the ductility of the material. Authors proposed to couple the elastic degradation109

function with the equivalent strain through an exponential form. In addition, Borden et al. [11]110

added the plastic energy with a new plastic degradation function to the free energy functional.111

2.2. Phase field formulation of ductile fracture112

Following the work of [11], the plastic strain energy is added to the crack driving force ℋ where
a plastic degradation function 𝑔𝑝 is added in order to weaken the material where the plastic
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deformation is localized. The strong form of the phase field evolution equation is written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐺𝑐

𝑙𝑐
(𝑑− 𝑙2

𝑐∇2𝑑) = ℋ(x, 𝑡) (Evolution of the phase field)

ℋ = 𝛽1 𝑔′
𝑒(𝑑) max

𝑛
W𝑒(𝜀𝑒(x, 𝑑𝑛)) + 𝛽2 𝑔′

𝑝(𝑑) < W𝑝(𝜀)−W0 > (Crack driving force)

∇𝑑 · n = 0 (Neumann boundary condition)

(5a)

(5b)

(5c)
the angle bracket operator is defined as follows:

< 𝑥 >=

⎧⎨⎩𝑥 𝑥 ≥ 0
0 𝑥 < 0

𝜀 is the equivalent plastic strain, 𝑑 is the phase field variable that varies from 0 (intact material)113

to 1 (totally broken), W𝑒 is the elastic strain energy, W𝑝 is the equivalent plastic strain energy, ℋ114

is the crack driving force, 𝑔𝑒 and 𝑔𝑝 are the elastic and plastic degradation functions, respectively.115

For simplicity, the plastic degradation function 𝑔𝑝 is chosen to be the same as the elastic one116

represented in equation 3 as used in [11]. 𝐺𝑐 is the fracture toughness, 𝑙𝑐 is a predefined length117

scale, 𝛽1, 𝛽2 and W0 are numerical parameters used for calibrating the phenomenological model118

and n is a unit vector normal to the surface. The Neumann boundary condition is imposed to119

ensure that no external source can actively create the crack. In other words, the crack evolution120

is governed by the evolution of other mechanical fields.121

Figure 1: 𝑎. Geometry and boundary conditions of an arbitrary domain with discontinuity Γ. 𝑏. Transformation
of the crack to a diffused damage with the phase field 𝑑 that goes from 0 to 1.

2.3. Mechanical beahaviour at large strains122

main formulations are used in order to deal with large strain nonlinear problems within the123

context of finite element analysis: (i). Total lagrange formulation; (ii). Updated lagrange formu-124

lation [34, 35] . In order to deal with the problem of large plastic strains, an updated lagrangian125

formulation coupled with adaptive remeshing is used. With the updated lagrange formulation,126

the new reference configuration is set to be the deformed configuration of the last time step. In127

consequence, a continuous update of the geometry coordinates necessitates adaptive remeshing128

operation in order to conserve the quality of elements used throughout the simulation.129

2.4. Mechanical constitutive law130

An elasto-plastic constitutive material law is considered. Applying the phase field model without131

any special treatment for crack evolution in the regions where compressive stresses exist have132

shown unrealistic interpenetration of crack lips. Bourdin et al. have already demonstrated with133

numerical examples in [4] this problem.134
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2.4.1. Elastic model135

Decomposing the elastic strain energy into positive and negative parts while degrading solely the
positive part seems to solve the aforementioned problem. The final form of the elastic energy can
be decomposed as

𝑊𝑒(𝜀𝑒) = 𝑔𝑒(𝑑)𝑊 +
𝑒 (𝜀𝑒) + 𝑊 −

𝑒 (𝜀𝑒) (6)

where 𝑊 +
𝑒 and 𝑊 −

𝑒 are the positive and negative parts of the elastic strain energy, respectively.
The approach introduced by Amor et al. [36] for the energy decomposition is used as follows:

𝑊 +
𝑒 (𝜀𝑒, 𝑑) = 𝜅

2 ⟨𝑡𝑟(𝜀𝑒)⟩2+ + 𝜇 𝜀𝑒
𝑑𝑒𝑣 : 𝜀𝑒

𝑑𝑒𝑣

𝑊 −
𝑒 (𝜀𝑒, 𝑑) = 𝜅

2 ⟨𝑡𝑟(𝜀𝑒)⟩2−
(7)

where 𝜀𝑒
𝑑𝑒𝑣 = 𝜀𝑒 − 𝑡𝑟(𝜀𝑒)

3 , 𝜇 = 𝐸
2(1+𝜈) , 𝐸 is the Young’s modulus, 𝜈 is Poisson’s ratio and 𝜅 is the

bulk’s modulus.
where

< 𝑥 >+=

⎧⎨⎩𝑥 𝑥 ≥ 0
0 𝑥 < 0

< 𝑥 >−=

⎧⎨⎩0 𝑥 ≥ 0
𝑥 𝑥 < 0

The first part of the positive elastic strain energy 𝑊 +
𝑒 replaces the total strain energy 𝑊𝑒 that

appears in equation 5b. The positive elastic energy 𝑊 +
𝑒 contains a volumetric part that reflects

the effect of dilatation along with the deviatoric part that reflects the effect of shear deformation.
The positive elastic strain energy enters in competition with the fracture energy resulting in the
evolution of the phase field.

On the other hand, the negative part of the elastic energy density that is related to reduction in
volume does not contribute to the evolution of the phase field. The resulting constitutive relation
is shown as

𝜎 = 𝜅(1− 𝛼𝑑)2 𝑡𝑟(𝜀𝑒) + 2(1− 𝑑)2 𝜀𝑒
𝑑𝑒𝑣 𝐼𝑑𝑒𝑣 (8)

where

𝛼 =

⎧⎨⎩1 𝑡𝑟(𝜀𝑒) > 0
0 𝑒𝑙𝑠𝑒

and 𝐼𝑑𝑒𝑣
𝑖𝑗𝑘𝑙 = 𝐼𝑖𝑗𝑘𝑙 − 1

3𝛿𝑖𝑗𝛿𝑘𝑙, 𝐼𝑖𝑗𝑘𝑙 = 1
2(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙) with 𝛿 the Kronecker’s delta.136

2.4.2. Elasto-Plastic model137

The return mapping algorithm is used to update the equivalent plastic strain and deviatoric Cauchy
stress tensor at each time step, with the assumption of no plastic deformation increment, the
resulting equations can be written as

𝑠𝑡𝑟𝑖𝑎𝑙 = 2 𝜇 𝑔𝑒(𝑑𝑛) [𝜀𝑛+1 − 𝜀𝑝
𝑛] (9a)

𝑓 𝑡𝑟𝑖𝑎𝑙 = 𝜎𝑉 𝑀 − 𝑔𝑝(𝑑𝑛)𝜎0(𝜀𝑛) ≤ 0 (9b)

where
𝜎𝑉 𝑀 =

√︁
3 𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙

𝑛+1 ) (10)
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where 𝑠𝑡𝑟𝑖𝑎𝑙 is the trial deviatoric stress, 𝜀 is the total strain tensor and 𝜀𝑝 is the plastic strain
tensor, 𝐽2 is the second invariant of the deviatoric stress tensor and 𝑛 is the increment number. If
condition 9b is not satisfied, a new plastic deformation increment is found as follows

𝑓 =
√︁

3 𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1 )− 𝑔𝑝(𝑑𝑛)𝜎0(𝜀𝑛+1)− 3𝜇𝑔𝑝(𝑑𝑛)Δ𝜆 = 0 (11)

where 𝜆 is the plastic multiplier. The effective stress is defined as follows

𝜎0 = 𝜎𝑦 + 𝐻𝜀 (12)

where 𝜎𝑦 is the initial yield stress and 𝐻 is the plastic modulus. It should be noted that 𝑑𝑛 is
constant in equation 11. A Newton-Raphson nonlinear solver is used to solve equation 11, the
plastic strain update is written as

𝜀𝑛+1 = 𝜀𝑛 + Δ𝜆 (13)

The update of the deviatoric stress tensor and discrete tangent modulus are expressed as follows

𝑠𝑛+1 = 𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1

1 + 3𝜇𝑔𝑒(𝑑𝑛)Δ𝜆
𝜎0(𝜀𝑛+1)

(14)

𝐶𝑑
𝑛+1 = 𝜕�̇�𝑛+1

𝜕�̇�𝑛+1 = 2𝜇𝑔𝑒(𝑑𝑛)
(︂

1− 6 𝜇2Δ𝜆

𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1 )𝐼𝑑𝑒𝑣

)︂
− 4𝜇2�̄�⊗ �̄�

(︂ 1
𝜕𝜎0
𝜕𝛿𝜆

+ 3𝜇𝑔𝑒(𝑑𝑛)
+ Δ𝜆

𝐽2(𝑠𝑡𝑟𝑖𝑎𝑙
𝑛+1 )

)︂
(15)

where �̄� = 3
2

𝑠
𝐽2(𝑠𝑛+1) and ⊗ is the tensor product.138

3. Adaptive isotropic remeshing139

The most used strategy in the literature to deal with the phase field model is to use a fixed mesh140

with local refinement. The minimum element size ℎ𝑚𝑖𝑛 should be chosen in order to properly141

describe the damage zone. However, a larger element size can be used at the beginning of the142

simulation before starting the damage initiates. As recommended by Miehe et al. [6], ℎ𝑚𝑖𝑛 in the143

critical zones where the crack is expected to propagate is chosen to be two times less than the144

length scale 𝑙𝑐. Two main problems arise with that choice: (i). the element size is not necessary145

to get accurate results before damage occurs, which leads to high unnecessary computational cost;146

(ii). the fact that the mesh size should be refined before starting the computations contradicts the147

purpose of our model which is to predict the location of crack initiation and propagation.148

In this article, an adaptive scheme is adopted to generate new meshes that are refined in the149

regions where the phase field is expected to propagate. The originality of the current work comes150

from the applicability of the developed tools to deal with both brittle and ductile fracture patterns151

using the phase field model. Three main challenges exist with the adopted remeshing strategy:152

(i). controlling the number of remeshing operations until the final geometry is obtained; (ii). the153

choice of an indicator function that triggers the remeshing process; (iii) the choice of a consistent154

field transfer operator that minimizes the numerical diffusion after each remeshing step.155

Elements are refined upon reaching a given threshold for a given indicator function that can be156

tailored numerically. A tag for each element is used to know whether or not it needs to be refined157

during the computations.158
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3.1. Controlling the number of remeshing operations159

Numerical diffusion during remeshing is inevitable. Thus, the solution will be more conservative
as the number of remeshing operations is reduced. Once a sufficiently refined mesh is obtained,
the remeshing process should be terminated. In order to achieve that objective, another indicator
function is proposed that is based on a volume quality metric. The volume quality metric is
defined as the ratio between the new and old volumes of each element. At each increment, the new
volume of each element is calculated based on the nodal values of the phase field. For example,
if the smallest volume quality among all elements of the new mesh exceeds a given threshold, a
remeshing step is carried out. Otherwise, no remeshing step is done. Fig. 2 illustrates the way of
calculating the element size. The size related to the phase field value at each node is determined
based on the value of the phase field, i.e., the size only changes if the phase field value exceeds the
pre-set threshold. At each increment, a volume quality metric ℬ is calculated for each element 𝑇
as follows

ℬ(𝑇 ) = 𝑚𝑖𝑛(
(︂

𝑙𝑛𝑒𝑤

𝑙𝑜𝑙𝑑

)︂3
,
(︂

𝑙𝑜𝑙𝑑

𝑙𝑛𝑒𝑤

)︂3
,

𝑉Ω1

𝑉𝑅𝑒𝑓

) (16)

where 𝑙𝑛𝑒𝑤 is the average length of a tetrahedron in the new mesh in case of remeshing, 𝑙𝑜𝑙𝑑 is the
average length of a tetrahedron in the old mesh, 𝑉Ω1 is the volume of a tetrahedron in the old
mesh and 𝑉𝑅𝑒𝑓 is the volume of a reference equilateral element of the same average length as the
element of the new mesh in case of remeshing.
The mesh quality threshold can be chosen to be as follows

Mesh quality threshold =
(︂

𝑙𝑓
𝜂 𝑙0

)︂3
(17)

where 𝑙𝑓 is the pre-set element size in the refined zone in which the phase field is expected to160

propagate, 𝑙0 is the element size of the initial mesh and 𝜂 is a numerical parameter that varies161

between 0.6 and 1.4. This artificial parameter 𝜂 gives some tolerance for the remeshing initiation162

process as the initial element size distribution is heterogeneous. The proposed threshold gives an163

upper bound for the ratio of element volume between the old and new meshes.164

This proposed mesh quality metric is essential in limiting data diffusion due to remeshing. In165

other words, the rule here is that: once the region in which the crack is expected to propagate is166

remeshed, the remeshing is terminated.167

Figure 2: Calculating the new element size based on the phase field values at the nodes.
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3.2. Field transfer operator168

Field transfer operation refers to the transport of fields between two different topologies repre-169

senting the same geometrical space. Regardless of the method used in this step, an amount of170

data is always lost due to the non-exact transfer of fields. The main features of a conservative171

remeshing-transfer operator are: (i). Minimizing the numerical diffusion; (ii). Preserving the me-172

chanical equilibrium. Two types of fields can be transferred, nodal fields and fields that are stored173

at the integration points. For the updated lagrangian formulation that is used in this study, both174

the nodal fields and the fields that are stored at the integration points will be interpolated to the175

new mesh.176

Two categories of transfer operator will be used for the sake of demonstration: (i). P0 transfer:177

each integration point in the new mesh takes the value of its nearest neighbourhood in the old178

mesh; (ii) P1 transfer: A three-step procedure is carried out (i). A smoothing operator transforms179

the field stored at the integration points to a nodal field; (ii). A direct interpolation maps the nodal180

fields of the old mesh to the new mesh; (iii). The continuous field at the new mesh is remapped181

to the integration points [37, 38].182

Different remeshing transfer operators are introduced in the literature. Sushil Kumar et al. [31]183

presented a comparison between a wide categories of methods related to the recovery by element184

patches and recovery by nodal patches. Authors have shown that increasing the interpolation order185

of the transfer operator increased the accuracy and convergence behaviour by the same order. In186

[39], a continuous solution is given in the vicinity of a given integration point that is considered187

to be valid for a patch of elements. Then, the value is used for the element of the new mesh that188

contains this integration point. Likewise, Zienkiewicz and Zhu presented in [40] the SPR (Super189

convergent Patch Recovery) method which is based on retrieving a mapped stress field using a190

patch of elements sharing a common node. In order to ensure the equilibrium after each remeshig191

operation, a few Newoton-Raphson iterations need to be carried out as suggested in [41]. Authors192

in [42] propose to divide the loading step just after the remeshing operation to two steps in order193

facilitate the convergence while ensuring the equilibrium. Another proposition in [31, 43] is to194

ensure that the transferred field preserves the equilibrium at the new mesh.195

In this article, for the sake of simplicity, two field transfer operators are tested: i. Nearest point196

interpolation method; ii. P1 transfer by Galerkin smoothing method.197

3.2.1. P0 transfer method (Nearest point interpolation)198

This method is the simplest one among the other field transfer operators. However, it lacks a199

proper mathematical consistency when compared to other methods so that it can be very diffusive200

if the mesh is not very refined. The values of P0 fields (constant per element) are transferred201

directly from each integration point of the old mesh to the nearest new point in the new mesh as202

shown in Fig. 3a. This technique has the advantage of preserving the values of the transferred203

field when the changes in the mesh topology are very small. However, the remapping error is204

proportional to the field gradient, i.e., when the gradient of a given field is very high, it becomes205

very difficult to recover the fields with high accuracy. This technique also has the advantage of206

a low computational cost since no additional operations are done except for locating the nearest207

neighbourhood of each integration point in the mesh. Fig. 3a summarizes the steps of this method.208

3.2.2. P1 transfer with Galerkin smoothing209

The Galerkin smoothing method is referred to the smoothing of discontinuous P0 fields in order to
build another continuous P1 field per element. This means that at each time step the P0 fields are
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transformed to be P1 fields followed by a direct nodal interpolation using the same interpolation
functions used for the finite element solution as shown in Fig 3b. Finally, a P0 field is recovered
from the constructed P1 field. The main advantage of this method is that it is expected to be more
conservative than the nearest point interpolation method when the old and new mesh typologies
are very different. On the contrary, it should always be expected to have an amount of data loss
due to the P0-P1-P0 transformations even if the mesh topological changes are small.

Let us consider a given discontinuous field 𝑔𝑃 0 that is calculated on an old mesh and the new
continuous field calculated at the element nodes 𝑓𝑃 1. Recovering the same field at the nodes
requires that

𝑓𝑃 1 = 𝑔𝑃 0 (18)

since the condition cannot be strongly applied due to the nature of the two functions, transforming
the equation into a weak form and minimizing the residual using the Galerkin smoothing method
would be a possible solution. The weak form applied over an element gives∫︁

Ωℎ

𝜑ℎ𝑓𝑃 1 𝑑Ω =
∫︁

Ωℎ

𝜑ℎ𝑔𝑃 0 𝑑Ω (19)

where 𝜑ℎ is a test function. The functions 𝑓𝑃 1 and 𝜑ℎ are defined as follows

𝑓𝑃 1 =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑓𝑘

𝑃 1 (20a)

𝜑ℎ =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝜑𝑘 (20b)

where 𝑁𝑘
𝑙 are the same basis functions used in the finite element model in appendix A.210

Figure 3: Field interpolation method: a. P0 transfer (Nearest point interpolation. b. P1 transfer with Galerkin
smoothing.

The resulting finite element system is solved. In the smoothing step, a nodal interpolation step211

is done in order to find the field values at the new nodes. Then, another interpolation is done to212

find the field value at a single integration point at the barycentre of the element.213
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3.3. Summary214

A summary of the developed method is presented in algorithm 1.215

Result: �⃗�𝑡=0:𝑇 , 𝑝𝑡=0:𝑇 , 𝑑𝑡=0:𝑇
1. Initialize �⃗�𝑡, 𝑝𝑡 and 𝑑𝑡;
for 𝑡 = 0 : 𝑇 do

𝑖← 0, �⃗�𝑖 ← �⃗�𝑡, 𝑝𝑖 ← 𝑝𝑡;
2. while (𝑅𝑒𝑠1 > 𝑇𝑜𝑙𝑁𝑅 and 𝑖 < 𝑖𝑚𝑎𝑥) do

Solve the system of equations 27a, 27b and 27c using a Newton Raphson solver to
obtain 𝑣𝑖+1, 𝑝𝑖+1;

Compute the new plastic strain increment using equations 9, 11 and 13;
𝑖← 𝑖 + 1

end
𝑣𝑡 ← 𝑣𝑖;
𝑝𝑡 ← 𝑝𝑖;
3. Compute ℋ(x, 𝑡) based on the new elastic and plastic strains using equation 5b;
4. Solve equation 27d with ℋ(x, 𝑡) to obtain 𝑑𝑡+Δ𝑡;
5. Check if the phase field value at each node exceeded the threshold;
6. compute new element size;
7. Check the volume quality for each element in the mesh.;
if (Minimum mesh quality < Mesh quality threshold) then

8. Trigger remeshing and transport the mechanical fields;
else

Go to step 2;
end

end

216

4. Numerical results and validation217

4.1. Symmetrically notched tension test218

In this section, numerical validation of the implementation of Borden et al. [11] is done.219

The validation step is carried out with a fixed mesh. Fig. 4 shows the geometry and boundary220

conditions of a symmetrically notched tension test. A sensor is also placed at the middle of the221

distance between the two notches to trace the evolution of the phase field variable at different222

deformation levels. The material parameters used are: 𝐸 = 68.8 GPa, 𝜈 = 0.33, 𝜌 = 2700 𝑘𝑔/𝑚3,223

𝜎𝑦 = 320 MPa, 𝐻 = 688 MPa. The model parameters are: 𝛽1 = 𝛽2 = 1, 𝑙𝑐 = 0.6452 mm224

𝐺𝑐 = 60 𝑘𝐽/𝑚2 and 𝜁 = 10−3.225

In order to choose a suitable time step for performing the calculations, a convergence study is done226

with a plastic energy threshold 𝑊0 = 10 MPa and results are illustrated in Fig. 5. Normalized227

stress refers to the applied force divided by the initial area of the narrowest cross section and228

normalized strain is the total displacement divided by the initial length of the specimen. From229

the results shown in Fig. 5, a time step of 0.05 sec is used for all subsequent simulations since it230

provides a good compromise between quality of results and CPU time. At the same time, one can231

observe that in the linear regime, the Normalized stress vs. Normalized strain curves are almost232

identical to the reference solution and hence a larger time step can be used without loosing the233

solution accuracy.234
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Figure 4: The representation of the tension test geometry and boundary conditions of a reference case [11]. The
mesh is illustrated with the local refinement. The thickness of the specimen is 2.37 mm where all dimensions are
in mm.

Figure 5: Study of the time step convergence for the Normalized Stress vs. Normalized Strain curves. Time
increments are in seconds.

Fig. 6 shows a comparison with the implementation of [11] of the normalized stress vs. normal-235

ized strain curves for two different values of the plastic threshold 𝑊0. The curves are very close to236

the reference solution especially for 𝑊0 = 10 MPa. It can be observed that there is a small shift237

between the curves of the current work and reference solution. This is most likely related to the238
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type of spatial discretization used for the numerical simulations which is different than the one239

used in [11]. For the reference case, the computations were performed using a quadratic NURBS240

isogeometric spatial discretization [44] whereas in the present work a tetrahedral element is used.241

Fig. 7 also shows the crack evolution for different values of the plastic threshold. One can clearly242

observe that the phase field profile at the initiation phase depends on the threshold and hence it243

should be well calibrated in order to accurately track the crack evolution.244

Figure 6: Numerical validation with the model of M.J. Borden et al. [11]. Results are reported for two different
values of the plastic threshold. The time step is set to 0.5 sec during the first 125 steps in the linear regime then
0.025 sec for the rest of the simulation.

Figure 7: Contour plots of the phase field evolution for three different values for the plastic threshold 𝑊0. Four
different deformation states are illustrated starting from crack initiation at (a) until the final failure at (d).

4.2. Double-edge symmetric tension test with remeshing245

In this example, we show the numerical results of the phase field model obtained with the developed246

isotropic remeshing strategy. When remeshing is used, a constant mesh size is used in the whole247
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initial domain. Then, a mesh refinement process is carried out in order to have a small enough248

element size in the regions in which the crack is expected to propagate. Two different base element249

sizes are compared for the values 0.5 mm and 1.25 mm. The numerical computations are carried250

out with two different base mesh sizes in order to illustrate the accuracy of the two field transfer251

operators. Results are compared with a reference case of an initial fixed mesh with local refinement252

as shown in Fig. 4. The same geometry and material properties as in section 4.1 with a plastic253

work threshold equals to 10 MPa are used in all the simulations. Two fixed size meshes, mesh 1254

and mesh 2, are used to compare the results with the cases where remeshing is adopted 4. Mesh 1255

and mesh 2 have sizes of 0.5 mm and 1.25 mm in the domain, respectively. A minimum mesh size256

of 0.1613 mm is used in the region where the crack is expected to propagate. The specimen is fixed257

from the bottom and displaced from the upper end with a constant velocity of 0.0042 mm/sec.258

Two different thresholds of the phase field indicator function are used: 0.025 and 0.075.259

Fig. 8 shows the phase field evolution at four different strain states with the phase field260

threshold value equals to 0.025 and base mesh size set to 0.5 mm. The time step is set to 0.5 sec261

for the first 125 increments since accurate results can be obtained in the linear regime with a large262

time step and then 0.05 sec for the rest of the simulation since it is concluded from the time step263

convergence study that the proposed time step is a good compromise between accuracy and low264

computational time. The results are plotted on the current configuration where the mesh topology265

at the different states is shown. In Fig. 8a, the remeshing is not yet initiated since this is a very266

early deformation state, i.e., the same phase field distribution is obtained. Then, the remeshing267

operation is initiated with both transfer operators as shown in Fig. 8b.268

The phase field profiles with a threshold value of 0.075 are shown in Fig. 9. Comparing Figs.269

8c and 9c shows that when the phase field threshold is 0.075, the crack initiates and propagates270

at a larger displacement than the case of a threshold of 0.025. This can be explained by the fact271

that when the elements size in the damaged region are not sufficiently fine, the accuracy of the272

mechanical fields evolution is affected. In other words, when the remeshing initiation is a lightly273

delayed, the exact moment of crack initiation is not accurately captured. In consequence, the full274

crack is formed at a displacement 𝑢 = 0.3671 mm which is also higher than the case when the275

threshold is 0.025 as it is reported as 𝑢 = 0.3650 mm.276

It can also be observed in Fig. 9c that the crack propagates for a longer distance toward the277

center at the same displacement when the Galerkin smoothing method is used. The reason for that278

is also related to the field transfer operation that affects the accuracy of the transported fields.279

Fig. 10 shows the Normalized Stress vs. Normalized Strain curves for different threshold values.280

Results are obtained for both field transfer operators and compared with the case of an initial fixed281

mesh. When the value of the threshold is increased to 0.075, the coarse mesh topology before the282

initiation of the remeshing operations does not permit to capture the localized plastic strains at an283

early stage of the deformation and hence the crack initiation is delayed. Locally, Fig. 14a shows284

the local phase field evolution at a node shown in Fig. 4. It can be clearly observed that there is285

a small difference in the phase field profile between the remeshing and the reference cases.286

The number of elements and run time 2 are reported in table 1. It can be clearly observed that287

the number of elements in the end of simulations is even lower than the reference case since it is288

difficult to know where exactly the refinement should take place so we tend to enlarge the region.289

2The calculations are carried out using 6 processors on a workstation with an Intel@ coreTM i7-8700 CPU @ 3.2
GHz and a 32 GB RAM

14



Figure 8: Evolution of phase field at different deformation states on the deformed configuration for a phase field
threshold is set to 0.025. a. u = 0.3028 mm. The average element size of the base mesh is set to 0.5 mm. b. u =
0.3417 mm. c. u = 0.3618 mm. d. u = 0.3650 mm.

Figure 9: Evolution of phase field at different deformation states on the deformed configuration for a phase field
threshold is set to 0.075. The average element size of the base mesh is set to 0.5 mm. a. u = 0.3207 mm. b. u =
0.3539 mm. c. u = 0.3648 mm. d. u = 0.3671 mm.
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of the refined mesh.290

To conclude, the developed adaptive remeshing strategy results in a very accurate prediction291

of the crack initiation and propagation with a significant reduction in the computation time. It292

should be noted that the reduction factor in the element size from the beginning to the end of293

the computations was about 3 times. The next step is to test the model validity with a higher294

reduction ratio. A base element of size 1.25 mm is used with a reduction ratio to the final element295

size of about 7.75. Figs. 11 and 12 show the phase field evolution profiles for two threshold values296

of 0.025 and 0.075, respectively.297

In a general sense, for both threshold values the crack is initiated at a larger displacement than298

the cases with a base element size 0.5 mm. It can be observed again that displacements starting299

at the crack initiation until the complete failure are higher when the threshold 0.075 is used.300

The same conclusion is drawn regarding the two field transfer operators; the crack propagates301

for a longer distance at the same displacement when the Galerkin smoothing method is used as302

shown in Figs. 11c and 12c.303

The Normalized Stress vs. Normalized Strain curves are shown in Fig. 13. From a global view,304

there is a the shift between the curves of fixed mesh and remeshing cases as compared to the case305

with a base element size of 0.5 mm. It can be also observed that when a threshold of a value 0.025306

is used, closer results to the reference solution are obtained. The behavior of the global response307

can be explained by the local evolution of the phase field as shown in Fig. 14b.308

309

Figure 10: Symmetrically notched specimen tension test. a Normalized Stress vs. Normalized Strain curves for
two different values for the phase field threshold. A comparison is shown for the two field transfer operators with
the reference case with an initial fixed mesh. The base element size = 0.5 mm.
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Table 1: Symmetrically notched tension test with base element size = 0.5 mm.

Transfer operator Threshold Remeshing
operations

Initial number
of elements

Final number
of elements

CPU run time [hour]

Fixed mesh 112080 112080 1.09
Galerkin smoothing 0.025 6 82477 125550 0.85
Galerkin smoothing 0.075 6 82477 111800 0.79

Nearest point 0.025 7 82477 130800 0.77
Nearest point 0.075 6 82477 117780 0.71

The initial and final number of elements along with the CPU run time are reported in table 2.310

It can be clearly seen that the initial and final number of elements are less than the case with a311

base element size of 0.5 mm, i.e., the computational time has drastically been reduced by a factor312

of nearly 4 in average.313

Figure 11: Evolution of phase field at different deformation states on the deformed configuration for a phase field
threshold is set to 0.025. The average element size of the base mesh is set to 1.25 mm. a. u = 0.3027 mm. b. u =
0.3539 mm. c. u = 0.3749 mm. d. u = 0.3788 mm.
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Figure 12: Evolution of phase field at different deformation states on the deformed configuration for a phase field
threshold is set to 0.075. The average element size of the base mesh is set to 1.25 mm. a. u = 0.3207 mm. b. u =
0.3446 mm. c. u = 0.3759 mm. d. u = 0.3788 mm.

Figure 13: Normalized Stress vs. Normalized Strain curves for two different values for the phase field threshold.
Comparison between the two field transfer operators with the reference case with an initial fixed mesh. The base
element size = 1.25 mm.
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Figure 14: Comparison between the phase field evolution at a fixed mesh and with remeshing with a base element
size = 0.5 mm in a and 1.25 mm in b.

Table 2: Symmetrically notched tension test with base element size = 1.25 mm.

Transfer operator Threshold Remeshing
operations

Initial number
of elements

Final number
of elements

CPU run time [hour]

Fixed mesh 52278 52278 0.57
Galerkin smoothing 0.025 7 7023 43688 0.15
Galerkin smoothing 0.075 5 7023 34618 0.14

Nearest point 0.025 4 7023 38326 0.15
Nearest point 0.075 4 7023 26119 0.11

The conclusion here is that, it is possible to get a significant decrease of computational time314

by using remeshing. However, the solution accuracy with remeshing is reduced when the initial315

element size is increased. In addition, the results are improved when the phase field threshold is316

reduced since the localization of plastic strain is well captured with the small element size, but317

the computational time is increased. In consequence, the developed computational framework318

can be adopted to have a good compromise between solution accuracy and computational time.319

Regarding the field transfer operators, the results show that the data diffusion is very similar for320

the two cases with a slight improvement exists when the Galerkin smoothing method is used. In321

the following example, the Galerkin smoothing method is adopted for all cases.322

4.3. Double notched specimen323

In this example, a double notched thin specimen is used to prove the ability of the developed324

algorithm to deal with complex crack paths efficiently. The geometry and boundary conditions of325

the specimen are shown in Fig. 15 [17] along with the mesh size distribution. The thickness of326

the specimen is chosen to be 0.2 mm. A quasi static loading is assumed, i.e., inertial effects are327

neglected. The material parameters are: 𝐸 = 180 GPa, 𝜈 = 0.28, 𝜎𝑦 = 443 MPa, 𝐻 = 300 MPa.328
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Figure 15: a. Geometry and boundary conditions of a double notched specimen. b The mesh size of the reference
case without remeshing. The thickness of the specimen is 0.2 mm. All dimensions are in mm.

The model parameters are: 𝑊0 = 80 MPa, 𝛽1 = 𝛽2 = 1, 𝑙𝑐 = 0.04 mm, 𝐺𝑐 = 20 𝑘𝐽/𝑚2 and329

𝜁 = 10−3. The Galerkin smoothing method is used for all simulations in this section.330

Fig. 16 shows the phase field evolution for a base element size of 0.2 mm where the phase field331

threshold is chosen to be 0.06. It should be noted that the choice of the numerical parameter 𝜂 is332

tailored manually in all the following examples in order to obtain a similar number of remeshing333

operations i.e., the effect of data diffusion due to remeshing is eliminated. The loading velocity334

is set to 0.05 mm/sec. The time step is set to 0.01 sec in the first 200 steps since the level of335

the damage is still low and 0.002 for the rest of simulations in order to properly track the crack336

evolution.337

The obtained phase field profile for this case indicates that the crack is initiated at the two338

notches which is the same observation as the reference case with a fixed mesh (this is the case339

which we consider as the most accurate). Then, the two crack branches propagate toward the340

center until merging and leading to the final failure. It can also be observed that the evolution341

of the refined zone in the mesh follows the phase field evolution starting from the crack initiation342

until the complete failure.343

Fig. 17 shows the crack and mesh topology evolution with a base element size of 0.15 mm.344

The obtained cracking sequence is very similar to the case of a 0.2 mm mesh presented earlier.345

However, the specimen is completely fractured at a lower displacement as compared to the case of346

a 0.2 mm mesh size.347

Fig. 18 shows the phase field and mesh topology evolution with a remeshing indicator function348

that is based on the equivalent plastic strain with a threshold value equals to 0.06. The initial349

element size is 0.2 mm. Remeshing is initiated at an early stage in which the zone where the crack350

is expected to propagate is fully remeshed before the crack initiation, i.e., the maximum value of351

the phase field is not yet equal to 1. It can be also observed that the refined zone is wider than the352

cases where the phase field is used as an indicator function. This observation is confirmed with the353

final number of elements in this case which is reported in table 3 as compared to the case where a354

phase field remeshing indicator function is used with the same initial element size.355

Fig. 19 shows the evolution of the equivalent plastic strain at two different displacements where356
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three remeshing indicator functions are used: phase field, equivalent plastic strain and normalized357

yielding functions. It can be observed that the error of the equivalent plastic strain with respect358

to the reference case is reduced when a plastic strain threshold is used. This can be related to the359

fact that when the mesh size is reduced earlier, more accurate calculation of the equivalent plastic360

strain is obtained since the strain localization is properly captured; hence the phase field evolution361

becomes more accurate.362

363

Figure 16: Phase field evolution at various deformation stages on the deformed configuration for a fine mesh with
base element size 0.2 mm. The phase field is used to trigger the remeshing with a threshold of 0.06. The mesh
topology is shown at each stage. a. u = 0.2698 mm. b. u = 0.2796 mm. c u = 0.3535 mm.
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Figure 17: Phase field evolution at various deformation stages on the deformed configuration with base element
size 0.15 mm. The phase field is used to trigger the remeshing with a threshold of 0.06. The mesh topology is
shown at each stage. a. u = 0.2297 mm. b. u = 0.2547 mm. c. u = 0.3180 mm.

The normalized yielding function 𝑁𝑌 𝐹 defined in equation 21 is used as another remeshing
indicator function.

𝑁𝑌 𝐹 = 𝑓 𝑡𝑟𝑖𝑎𝑙

𝜎𝑉 𝑀(𝑢, 𝑑) (21)

with this indicator function, the number of elements is reduced over time since the stress far from
the crack lips (damaged region) is degraded due to the creation of the crack surface as shown in
Fig 20.

The Force vs. Displacement curves are shown in Fig. 21 and. Comparing the results when
remeshing is used for two mesh sizes with the reference case shows that the initial element size plays
an important role in determining the moment at which the softening phase begins. Furthermore,
when the mesh adaptation is based on the phase field variable, the element size in the region of
interest will be only modified when the plastic energy exceeds the threshold 𝑊0, i.e., the phase
field evolution is mainly governed by the plastic strains. The values of plastic strain will not be
close enough to the reference case as to accurately contribute to the phase field evolution, hence
the crack initiation is delayed. So, it seems convenient in such case to adapt the mesh based on
the plastic strain or yielding function rather than the phase field variable so that the evolution of
plastic strains becomes more conservative.

Table 3 shows the performance analysis for different cases along with the fixed mesh case. It
can be seen that a reduction of the equivalent plastic strain threshold to 0.001 leads to results very
close to the reference case with a fixed mesh at a computational cost reduced by a about 12%. In
addition, when the normalized yielding function is used, the computational time is reduced by a
factor of 59 % while the results are very close to the reference case with a fixed mesh. In addition,
an energy error is found in the same table for each threshold type. The energy error is calculated
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as follows
Energy error % =

∫︀ 𝑟𝑚𝑎𝑥
0 (𝐹𝑟𝑒𝑚𝑒𝑠ℎ − 𝐹𝑟𝑒𝑓 ) 𝑑𝑟∫︀ 𝑟𝑚𝑎𝑥

0 𝐹𝑟𝑒𝑓 𝑑𝑟
(22)

where 𝐹𝑟𝑒𝑚𝑒𝑠ℎ is the force obtained with remeshing, 𝐹𝑟𝑒𝑓 is the force obtained from the reference364

case with a fixed mesh, 𝑟 is the displacement and 𝑟𝑚𝑎𝑥 is the maximum displacement. The energy365

error helps in quantifying the energy loss for each method. It can be seen that the normalized366

yielding function gives the lowest possible energy loss among the others which proves its accuracy.367

368

Figure 18: Phase field evolution at various deformation stages on the deformed configuration with base element
size 0.2 mm. The equivalent plastic strain is used to trigger the remeshing with a threshold of 0.06. The mesh
topology is shown at each stage. a. u = 0.2249 mm. b. u = 0.2421 mm. c. u = 0.2592 mm.
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Figure 19: Evolution of equivalent plastic strain at two different displacements. Comparison is carried out
between the reference case with no remeshing, remeshing with phase field (PF) threshold, two equivalent plastic
strain thresholds (EQP) and normalized yielding function (NYF).

Figure 20: Evolution of number of elements for different remeshing cases along with the reference case (Fixed
mesh).
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Figure 21: Force vs. Displacement curves for different remeshing cases along with the reference case (Fixed mesh).
𝑁𝑌 𝐹 is the normalized trial yield function.

Table 3: Double notched specimen performance analysis

Threshold 𝜂 Threshold
value

Base element
size [mm]

Initial nb.
of elements

Final nb.
of elements

CPU time
[hour]

Energy error
%

Fixed
mesh

182900 182900 2.25

PF 1 0.06 0.15 23663 48193 0.8 50.7
PF 0.8 0.06 0.2 13046 41904 0.7 54.86
EQP 0.8 0.06 0.2 13046 70677 1.05 20
EQP 0.8 0.001 0.2 13046 148300 1.97 4.9
NYF 1.25 0.0001 0.2 13046 36113 0.93 2.7

To conclude, the proposed adaptive remeshing strategy provides a flexible compromise between369

accuracy and computational cost. Depending on the application, whether the phase field or the370

equivalent plastic strain can be used to trigger remeshing. When the normalized yielding function371

is used, the obtained results are very close to the reference case with a significant reduction in the372

computation time; hence this criterion seems to be the most suitable to be used.373

5. Conclusion and perspectives374

The main advantage of the phase field model is the ability to model fracture processes without375

any special treatment for the crack initiation and propagation. In order to enhance the efficiency376
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of the computational model, an adaptive isotropic remeshing strategy is coupled with a phase377

field model of ductile fracture. The proposed strategy offers a robust tool for predicting initiation378

and propagation of complex crack path in highly ductile materials. This paper analysed both379

qualitatively and quantitatively two applications with different levels of complexity: a straight380

crack path between two notches having the same sizes and a diagonal crack formed in a non381

symmetric notched specimen.382

Two different field transfer operators are used in order to efficiently remap the mechanical383

fields: (i). the nearest point interpolation; (ii). the Galerkin smoothing method. The former is384

considered as the simplest approach since a direct interpolation is done for each integration point,385

however its accuracy is dependent on the size of mesh and the gradient of remapped field. While386

the latter is more computationally expensive since a smoothing step is needed to transform the P0387

field to a P1 field. The results presented in this paper show some differences using both mapping388

techniques. However, a lower amount of data diffusion is usually obtained using the Galerkin389

smoothing method.390

In order to minimize the data loss in the transfer process, two different thresholds were used: (i).391

a remeshing indicator function threshold that is used to locate the regions where the mesh should392

be refined; (ii). a volume quality threshold that controls the number of remeshing operations so393

that the data loss is minimized and the numerical strategy becomes more conservative.394

A comparison is carried out between the results when a phase field, equivalent plastic strain395

and normalized yielding stress indicator functions are used. Results have shown that in some396

cases where the contribution of the plastic strain in the phase field evolution is delayed, the397

mesh in the damaged region will be refined lately; hence the evolution of the plastic strain will398

not be accurate. On the other hand, when both the equivalent plastic strain and normalized399

yielding functions are used to trigger the remeshing, the mesh will be refined at an early stage,400

so the evolution of the plastic strain will be conservative for an accurate prediction for the crack401

initiation and propagation. Unfortunately, when the equivalent plastic strain is used, the remeshed402

region becomes wider with higher number of elements; hence the computation time is increased as403

shown in the performance tables for all the examples. On the other hand, when the normalized404

yielding function is used, the final number of elements is decreased due to the localization of plastic405

strains around the damaged region. The recorded CPU times vary with each threshold depending406

on the threshold type and value, but it can be seen that the normalized yielding function gives407

the best possible precision with respect to the reference case with a fixed mesh with the lowest408

computational time.409

Several extensions are possible in the future to the developed framework. For example, testing410

the ability of the model to predict complex fracture modes in metal forming applications for which411

crack paths are not known a priori. In such applications, the plastic strains are very large and412

special treatment of the crack driving force is needed to include the effect of stress triaxiality. An413

adaptive time scheme would also be interesting in order to obtain the most efficient solution from414

the computational point of view when combined with mesh adaptivity.415
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Appendices416

A. Weak formulation of the problem417

In this section, the weak form of the phase field for ductile fracture and mechanical equations is418

demonstrated within the framework of mixed velocity/pressure formulation. The strong form of419

mechanical equations is written as420

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜌
𝜕�⃗�

𝜕𝑡
= ∇⃗ · 𝑠− ∇⃗𝑝 + 𝜌�⃗� (Conservation of linear momentum)

∇⃗ · �⃗� = − �̇�

𝜅
(Conservation of mass)

�⃗� = ⃗̄𝑣0 on 𝜕Ω𝑣 (Dirichlet boundary condition)

�⃗� = ⃗̄𝑡0 on 𝜕Ω𝑡 (Neumann boundary condition)

(23a)

(23b)

(23c)

(23d)

𝜕Ωℎ = 𝜕Ω𝑣 ∪ 𝜕Ω𝑡

where 𝑠 is the deviatoric part of the Cauchy stress tensor, 𝑝 is the pressure, �⃗� is the velocity
vector, 𝜅 is the bulk’s modulus, 𝜌 is the material density and �⃗� is the body force vector per unit
mass. The boundary conditions are illustrated in Fig. 1. Ωℎ is the solid domain in the current
configuration, 𝜕Ω𝑣 and 𝜕Ω𝑡 are the predefined boundaries for Dirichlet and Neumann boundary
conditions, respectively. The finite element method is used to solve the system of equations 5
and 23. Following the standard Galerkin formulation by multiplying the strong form of partial
differential equations by the appropriate test functions leads to the weak form of the following
problem:
Find (�⃗�ℎ, 𝑝ℎ and 𝑑ℎ) ∈ 𝒱ℎ ⊗ 𝒫ℎ ⊗ 𝒟ℎ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ωℎ

(︂
𝜌

𝜕�⃗�ℎ

𝜕𝑡
· 𝑣ℎ

* + 𝑠(𝑣ℎ) : �̇�(𝑣ℎ
*)− 𝑝ℎ∇⃗ · 𝑣ℎ

* − 𝜌�⃗� · 𝑣ℎ
*
)︂

𝑑Ωℎ =
∫︁

𝜕Ω𝑡

𝑡0 · 𝑣ℎ
* 𝑑𝜕Ωℎ (24a)∫︁

Ωℎ

𝑝*
ℎ ∇⃗ · 𝑣ℎ + 𝑝*

ℎ �̇�ℎ

𝜅
𝑑Ωℎ = 0 (24b)∫︁

Ωℎ

𝐺𝑐

𝑙𝑐
𝑑*

ℎ 𝑑ℎ +
∫︁

Ωℎ

𝐺𝑐 𝑙𝑐∇𝑑*
ℎ · ∇𝑑ℎ 𝑑Ωℎ −

∫︁
Ωℎ

𝑑*
ℎ ℋ 𝑑Ωℎ = 0 (24c)

∀𝑣*
ℎ, 𝑝*

ℎ, 𝑑*
ℎ ∈ 𝒱0

ℎ ⊗ 𝒫0
ℎ ⊗𝒟0

ℎ (24d)

𝒱ℎ =
{︂

𝑣ℎ ∈ (𝐻1)𝑑𝑖𝑚(Ωℎ), �⃗�ℎ = �⃗�0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒫ℎ =

{︂
𝑝ℎ ∈ (𝒞0)𝑑𝑖𝑚(Ω𝑒) ∩ 𝐿2, 𝑝ℎ ∈ 𝑃 1 in Ω𝑒, 𝑝ℎ = 𝑝0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒟ℎ =

{︂
𝑑*

ℎ ∈ (𝒞0)𝑑𝑖𝑚(Ωℎ) ∩𝐻1, 𝑑ℎ ∈ 𝑃 1 in Ω𝑒, 𝑑ℎ = 𝑑0 on 𝜕Ω𝑒, ∀𝑒 ∈ 𝑁𝑒

}︂
𝒱0

ℎ =
{︂

𝑣*
ℎ ∈ 𝒱ℎ, �⃗�*

ℎ = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
𝒫0

ℎ =
{︂

𝑝*
ℎ ∈ 𝒫ℎ, 𝑝*

ℎ = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
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𝒟0
ℎ =

{︂
𝑑*

ℎ ∈ 𝒟ℎ, 𝑑*
ℎ = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
the test functions are chosen to be the variations of the unknown variables so that the kinematic
admissibility conditions are satisfied at the boundaries. Ωℎ is the volume of a finite element mesh
at the current configuration so that

Ωℎ =
⋃︁
𝑒

Ω𝑒 (𝑒 ∈ 𝑁𝑒)

where 𝑁𝑒 is the number of elements in the mesh.421

A.1. Finite element model422

In order to ensure the well-posedness and stability of the numerical solution, a bubble function is
introduced to enrich the velocity field. The bubble function should have a value of 1 at the center
of the element and vanishes at the boundaries, the resulting velocity, pressure and phase fields of
the elements in the mesh can be expressed as

�⃗�ℎ = �⃗�𝑙 + �⃗�𝑏 =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑣𝑙

𝑘 +
𝑁𝑒∑︁
𝑗=1

𝑁𝑘
𝑏 𝑣𝑏

𝑘 (25a)

𝑝ℎ =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑃 𝑘 (25b)

𝑑ℎ =
𝑁𝑛∑︁
𝑘=1

𝑁𝑘
𝑙 𝑑𝑘 (25c)

where 𝑁𝑘
𝑙 and 𝑁𝑘

𝑏 are the base and bubble interpolation functions associated with node 𝑘,
respectively. 𝑁𝑒 and 𝑁𝑛 are the number of elements and nodes respectively. The resulting system
of equations can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ωℎ

𝜌
𝜕�⃗�𝑙

𝜕𝑡
· 𝑣𝑙

* + 𝑠(𝑣𝑙) : �̇�(𝑣𝑙
*)− 𝑝ℎ∇⃗ · 𝑣𝑙

* − 𝜌�⃗� · 𝑣𝑙
* 𝑑Ωℎ =

∫︁
𝜕Ω𝑡

𝑡0 · 𝑣𝑙
* 𝑑Ωℎ (26a)∫︁

Ωℎ

𝜌
𝜕�⃗�𝑏

𝜕𝑡
· 𝑣𝑏

* + 𝑠(𝑣𝑏) : �̇�(𝑣𝑏)− 𝑝ℎ∇⃗ · 𝑣𝑏 𝑑Ωℎ =
∫︁

Ωℎ

𝜌�⃗� · 𝑣𝑏
* 𝑑Ωℎ (26b)∫︁

Ωℎ

𝑝*
ℎ ∇⃗ · (𝑣𝑙 + 𝑣𝑏) + 𝑝*

ℎ �̇�ℎ

𝜅
𝑑Ωℎ = 0 (26c)∫︁

Ωℎ

𝐺𝑐

𝑙𝑐
𝑑*

ℎ 𝑑ℎ𝑑Ωℎ +
∫︁

Ωℎ

𝐺𝑐 𝑙𝑐
𝜕𝑑ℎ

𝜕�⃗�
· 𝜕𝑑*

ℎ

𝜕�⃗�
𝑑Ωℎ −

∫︁
Ωℎ

𝑑*
ℎ ℋ 𝑑Ωℎ = 0 (26d)

ℒ0
𝑙 =

{︂
𝑣𝑙

* ∈ (𝒞0)𝑑𝑖𝑚(Ω𝑒) ∩ 𝒱0
𝑙 , 𝑣𝑙

* ∈ 𝑃 1 in Ω𝑒, 𝑣𝑙
* = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂
ℒ0

𝑏 =
{︂

𝑣𝑏
* ∈ (𝒞0)𝑑𝑖𝑚(Ωℎ), 𝑣𝑏

* ∈ 𝑃 1 in Ω𝑒, 𝑣𝑏
* = 0 on 𝜕Ω𝑒,∀𝑒 ∈ 𝑁𝑒

}︂

with the following properties taken into account:
∫︀

𝜕Ω𝑡
𝑡0 · 𝑣𝑙

* 𝑑Ωℎ = 0 since the bubble function
vanishes at the boundaries, the inertial contribution of the bubble part is neglected so that

∫︀
Ωℎ

𝜌𝜕�⃗�𝑙

𝜕𝑡
·

𝑣𝑏
* 𝑑Ωℎ =

∫︀
Ωℎ

𝜌𝜕�⃗�𝑏

𝜕𝑡
· 𝑣𝑙

* 𝑑Ωℎ = 0 and
∫︀

Ωℎ
𝑠(𝑣𝑏) : �̇�(𝑣𝑙

*) 𝑑Ωℎ =
∫︀

Ωℎ
𝑠(𝑣𝑙) : �̇�(𝑣𝑏

*) 𝑑Ωℎ = 0 due to the
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orthogonality property of the bubble and nodal spaces. The time derivative of the velocity is
approximated as follows

𝜕�⃗�𝑙,𝑏

𝜕𝑡
=

�⃗� 𝑡+Δ𝑡
𝑙,𝑏 − 𝑣𝑙,𝑏

𝑡

Δ𝑡

where Δ𝑡 is the time step. Substituting equations 25 and A.1 in A.2, the final form of the residual
equations can be written on the following form:

𝑅𝑙𝑙 + 𝑅𝑙𝑝 = 0 (27a)
𝑅𝑏𝑏 + 𝑅𝑏𝑝 = 0 (27b)

𝑅𝑝𝑙 + 𝑅𝑝𝑏 + 𝑅𝑝𝑝 = 0 (27c)
𝑅𝑑𝑑 + 𝑅𝑑𝑙 = 0 (27d)

where 𝑅𝑥𝑦 is the residual force vector of coupled set of unknowns 𝑥 and 𝑦. The system of equations423

in 27 will be solved in a staggered manner. A Newton Raphson nonlinear solver is used to solve424

the system of the first three equations before each remeshing step. Then, the fourth equation will425

be solved independently. It is worth noting that the system of equations 27a, 27b and 27c are426

condensated so that the final unknowns become the velocities and pressures at the nodes without427

the need to explicitly solving for the bubble velocities.428
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