Conditional simulation of channelized meandering reservoirs using particle filtering Les Journées de Géostatistique

Alan TRONCOSO, Xavier FREULON, Christian LANTUÉJOUL, Fabien ORS, Jacques RIVOIRARD

MINES ParisTech - PSL

16/09/2021

A. Troncoso (MINES ParisTech - PSL)

Les Journées de Géostatistique

Outline

Introduction

2 Flumy

- Particle Filtering in Flumy
- Results

3 Conclusions

• The accurate modeling of heterogeneous reservoirs is an important task for the industry.

• The accurate modeling of heterogeneous reservoirs is an important task for the industry.

• Conventional geostatistical Models.

- Pixel-Based Model: Plurigaussian Model [Le Loc'h et al., 1994] or MPS [Strebelle, 2002]
- Conditioning data: Rich data.
- Results: They do not represent the temporal reservoir development.

• The accurate modeling of heterogeneous reservoirs is an important task for the industry.

• Conventional geostatistical Models.

- Pixel-Based Model: Plurigaussian Model [Le Loc'h et al., 1994] or MPS [Strebelle, 2002]
- Conditioning data: Rich data.
- Results: They do not represent the temporal reservoir development.

Rule-Based Models

- Object-Based Models with rules: Boolean Model [Lantuéjoul, 2002], Surface-based Models, etc.
- Conditioning data: Strong dependence of the model.
- Results: They represent, with some simplifications, the temporal reservoir development

• The accurate modeling of heterogeneous reservoirs is an important task for the industry.

• Conventional geostatistical Models.

- Pixel-Based Model: Plurigaussian Model [Le Loc'h et al., 1994] or MPS [Strebelle, 2002]
- Conditioning data: Rich data.
- Results: They do not represent the temporal reservoir development.

Rule-Based Models

- Object-Based Models with rules: Boolean Model [Lantuéjoul, 2002], Surface-based Models, etc.
- Conditioning data: Strong dependence of the model.
- Results: They represent, with some simplifications, the temporal reservoir development

• Process-based Models

- Conditioning data: Challenge.
- Result: Reservoirs' development honored.

 Flumy: [Lopez, 2003] [Lopez et al., 2009] Stochastic and process-based reservoir model developed by MINES-ParisTech for channelized meandering systems in fluvial and turbidite environment [Lemay, 2018].

- Flumy: [Lopez, 2003] [Lopez et al., 2009] Stochastic and process-based reservoir model developed by MINES-ParisTech for channelized meandering systems in fluvial and turbidite environment [Lemay, 2018].
- Simulation based on 3 physical processes:
 - Migration.
 - Aggradation.
 - Avulsion.

- Flumy: [Lopez, 2003] [Lopez et al., 2009] Stochastic and process-based reservoir model developed by MINES-ParisTech for channelized meandering systems in fluvial and turbidite environment [Lemay, 2018].
- Simulation based on 3 physical processes:
 - Migration.
 - Aggradation.
 - Avulsion.
- Reproduction of the sedimentological evolution of the meandering.

- Flumy: [Lopez, 2003] [Lopez et al., 2009] Stochastic and process-based reservoir model developed by MINES-ParisTech for channelized meandering systems in fluvial and turbidite environment [Lemay, 2018].
- Simulation based on 3 physical processes:
 - Migration.
 - Aggradation.
 - Avulsion.
- Reproduction of the sedimentological evolution of the meandering.
- The current conditional step: Dynamic Conditioning [Bubnova, 2018].

- Flumy: [Lopez, 2003] [Lopez et al., 2009] Stochastic and process-based reservoir model developed by MINES-ParisTech for channelized meandering systems in fluvial and turbidite environment [Lemay, 2018].
- Simulation based on 3 physical processes:
 - Migration.
 - Aggradation.
 - Avulsion.
- Reproduction of the sedimentological evolution of the meandering.
- The current conditional step: Dynamic Conditioning [Bubnova, 2018].
- The proposed conditional step: Particle Filtering

Particle Filtering in Flumy

Flumy: Sequential Approach

- Flumy fills the reservoir model with lithologies, mimicking the main depositional processes in a fluvial context.
- This continuous process from the base to the top of the reservoir can be split into *T* layers with a fixed thickness.
- Consolidated layer $t: [z_t, z_{t+1}]$. Cannot be reworked.
- Unconsolidated zone t: the upper part of the consolidated layer, just below the current topography → can be later reworked due to the avulsions and the lateral migration of the channel.
- The simulation can be separated into a series of **depositional sequences**, each one completing the filling of a given layer.

Flumy: Sequential Approach

Figure: Sequential definition of Flumy. Well in solid color: Information; well in hatched colors: Cond. Sim. results

Flumy: For the state t: Weighting and Resampling

Weighting

• The weight depends on: Facies match in the consolidated layer and the unconsolidated zone, and the global sand proportion in the consolidated layer.

Resampling

• Residual resampling is used.

Flumy: Conditioning Data

Figure: Flumy Standalone: Non-Conditional Simulation (NCS)

A. Troncoso (MINES ParisTech - PSL)

Les Journées de Géostatistique

Flumy: Conditioning Data

NCS Wells: Facies

Flumy: Conditional Data: R

Vertical Proportion Curve NCS

Results

Result of Simulation: Particle Tree

Particles Tree with 250 Particles

Figure: Particle Tree

A. Troncoso (MINES ParisTech - PSL)

Les Journées de Géostatistique

Criteria for the Final Selection

All the particles are candidates to be the channelized meandering reservoir simulation. However, different criteria can be taken on account to choose the particle.

- Random (R): One particle is chosen randomly, since all of them have the same probability of being a simulation candidate.
- Best Facies Match (FM): The particle that posses the higher facies match in mean related to the data.
- Best Sand Proportion Match (SP): The particle that posses the higher sand proportion match in mean related to the data.
- Best Global Sand proportion Match (QC): The particle that posses the higher global sand proportion match in mean related to the data.

Results

Example of Conditional Simulation

Comparison Well 1 Facies: α = 0.5, β = 0.5, γ = 0, μ = 1, K = 250 Comparison Well 2 Facies: α = 0.5, β = 0.5, γ = 0, μ = 1, K = 250

Results

Example of Conditional Simulation

Comparison Well 3 Facies: $\alpha = 0.5$, $\beta = 0.5$, $\gamma = 0$, $\mu = 1$, K = 250

Comparison Well 4 Facies: $\alpha = 0.5$, $\beta = 0.5$, $\gamma = 0$, $\mu = 1$, K = 250

Measuring the Uncertainty

- Is one realization of particle filtering enough to measure the result quality?
- Measuring the uncertainty of the results $\rightarrow N = 25$ independent simulations are performed.
- Best P. FM. and Random P. are shown for a fix the influence of the unconsolidated zone:

Results

Conditional Simulation: NCS

Boxplot FM. Crit. Best P. FM., N = 25 , NCS

Boxplot FM. Crit. Random P., N = 25, NCS

Conclusions

- The algorithm has been designed to respect the facies along wells and the global sand proportion.
- There is a vast choice in the implementation of the particle filtering regarding the parametrization of the different factors that specify the weights, the resampling technique and the selection of the final particle.
- It is not clear the influence of the unconsolidated zone in the results.

References I

Bubnova, A. (2018).

Sur le conditionnement des modèles génétiques de réservoirs chenalisés méandriformes à des données de puits. PhD thesis, PSL University - MINES ParisTech. Thèse de doctorat dirigée par Rivoirard, Jacques Géosciences et géoingénierie Paris Sciences et Lettres 2018.

Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms. Springer, Berlin.

Le Loc'h, G., Beucher, H., Galli, A., and Doligez, B. (1994). Improvement in the truncated gaussian method: Combining several gaussian functions.

References II

Lemay, M. (2018).

Transposition à l'environnement turbiditique chenalisé d'un modèle de systèmes fluviatiles méandriformes pour la modélisation de réservoirs. PhD thesis, PSL University - MINES ParisTech. Thèse de doctorat dirigée par Cojan, Isabelle Géosciences et géoingénierie Paris Sciences et Lettres 2018.

Lopez, S. (2003).

Channelized Reservoir Modeling: a Stochastic Process-based Approach.

Theses, École Nationale Supérieure des Mines de Paris.

 Lopez, S., Cojan, I., Rivoirard, J., and Galli, A. (2009).
 Process-Based Stochastic Modelling: Meandering Channelized Reservoirs, pages 139–144.
 John Wiley & Sons, Ltd.

References III

Strebelle, S. (2002).

Conditional simulation of complex geological structures using multiple-point statistics.

Mathematical geology, 34(1):1–21.

Annexes

Flumy: Weight Step

$$PC_{t,j}^{(k)} = \frac{\int_{z_t}^{z_{t+1}} \mathbf{1}_{F_j(z) = F_j^{(k)}(z)} dz}{\int_{z_t}^{z_{t+1}} dz}$$
(1)

$$PNC_{t,j}^{(k)} = \frac{\int_{z_{t+1}}^{z_{t,j}} e^{-\mu * R[z - z_{t+1}]} \mathbf{1}_{F_j(z) = F_j^{(k)}(z)} dz}{\int_{z_{t+1}}^{z_{t+1} + H} e^{-\mu * R[z - z_{t+1}]} dz}$$
(2)

$$QC_t^{(k)} = 1 - \left| GPC_t - GPC_t^{(k)} \right|$$
(3)

• $j \in J$: Well;

• $\mu :$ Influence factor from the unconsolidated zone;

•
$$R = \frac{R_{migg}}{R_{agg}}$$
: Ratio

Flumy: Weight Step; Unconsolidated Layer

Influence of μ on the layers

Flumy: Weight Step

Grouping the wells:

$$PC_{t}^{(k)} = \frac{\sum_{j=1}^{J} PC_{t,j}^{(k)}}{J}; PNC_{t}^{(k)} = \frac{\sum_{j=1}^{J} PNC_{t,j}^{(k)}}{J}$$

Calculating the weight of each particle at each stage *t*:

$$\omega_t^{(k)} = \frac{\alpha * PC_t^{(k)} + \beta * PNC_t^{(k)} + \gamma * QC_t^{(k)}}{\sum_{k'}^{\kappa} \alpha * PC_t^{(k')} + \beta * PNC_t^{(k')} + \gamma * QC_t^{(k')}}$$
(5)

With the graphical condition :

$$\alpha + \beta + \gamma = 1$$

(4)

Annexes

Flumy: Conditional Simulation: α, β and γ

Ternary Plot: Example

Parameters		
α	β	γ
1,000	0,000	0,000
0,500	0,000	0,500
0,800	0,200	0,000
0,444	0,111	0,444
0,667	0,333	0,000
0,400	0,200	0,400
0,571	0,429	0,000
0,364	0,273	0,364
0,000	1,000	0,000
0,000	0,500	0,500
0,091	0,909	0,000
0,048	0,476	0,476
0,167	0,833	0,000
0,091	0,455	0,455
0,231	0,769	0,000
0,130	0,435	0,435
0,286	0,714	0,000
0,167	0,417	0,417
0,333	0,667	0,000
0,200	0,400	0,400
0,500	0,500	0,000
0,333	0,333	0,333

Figure: Ternay Plot: A. Troncoso (MINES ParisTech - PSL)

Criteria for The final Selection

- 4 Criteria:
 - Random (R):
 - Best Facies Match (FM):

$$PC_{j}^{(k)} = \frac{\int_{0}^{z_{lim}} f_{j}(z) = F_{j}^{(k)}(z)}{z_{lim} - 0} \to \max_{\{k \in \mathcal{K}\}} \frac{\sum_{j=1}^{J} PC_{j}^{(k)}}{J}$$

• Best Sand Proportion Match (SP):

$$SP_{j}^{(k)} = 1 - \left| \frac{\int_{0}^{z_{j} i m} 1_{F_{j}^{(k)}(z) = SB} dz - \int_{0}^{z_{j} i m} 1_{F_{j}(z) = SB} dz}{z_{lim} - 0} \right| \to \max_{\{k \in K\}} \frac{\sum_{j=1}^{J} SP_{j}^{(k)}}{J}$$

• Best Global Sand Proportion Match (QC):

$$\max_{\{k\in K\}}\sum_{t=1}^T (QC_t^{(k)})^2$$

Les Journées de Géostatistique

Measuring the Uncertainty

- Is one realization of particle filtering enough to measure the result quality?
- Solution: Measuring the uncertainty → N = 25 Independent simulations are performed for each parameter combination.
- Best P. FM. and Random P. are shown for a fix α, β and γ :

A. Troncoso (MINES ParisTech - PSL)

Measuring the uncertainty: Random P.

Ternary Plot FM., Random P., μ = 1 , K = 250Ternary Plot FM., Random P., μ = 10 , K = 250

Measuring the uncertainty: Random P.

Ternary Plot FM., Random P., μ = 50 , K = 250Ternary Plot FM., Random P., μ = 100 , K = 250

Measuring the uncertainty: Best P. FM.

Ternary Plot FM., Best P. FM., μ = 1 , K = 250Ternary Plot FM., Best P. FM., μ = 10 , K = 250

Measuring the uncertainty: Best P. FM.

Ternary Plot FM., Best P. FM., μ = 50 , K = 250Ternary Plot FM., Best P. FM., μ = 100 , K = 250

Conditional Simulation: NCS and DCS

- By the principle of the sequential simulation.
 - One layer is built: [0, 10][m], no resampling.
 - Each particle: NCS (Non-conditional simulation) and DCS (dynamic conditional simulation).
- The conditional results can be compared.

Conditional Simulation: NCS

Boxplot FM. Crit. Best P. FM., N = 25 , NCS

Boxplot FM. Crit. Random P., N = 25, NCS

Conditional Simulation: DCS

Boxplot FM. Crit. Best P. FM., N = 25, DCS

Boxplot FM. Crit. Random P., N = 25, DCS

Conditional Simulation: $\alpha = 1, \beta = 0$ and $\gamma = 0$

Boxplot FM. Crit. Random P., N = 25 , α = 1 , β = 0 , γ = 0

Flumy: Dynamic Conditioning: Flumy Standalone

Figure: Flumy Standalone: Dynamic Conditional Simulation (DCS)

Les Journées de Géostatistique