
HAL Id: hal-03398565
https://minesparis-psl.hal.science/hal-03398565

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WHAT IS GENERATIVE IN GENERATIVE DESIGN
TOOLS? UNCOVERING TOPOLOGICAL

GENERATIVITY WITH A C-K MODEL OF
EVOLUTIONARY ALGORITHMS

Armand ; Hatchuel, Pascal Le Masson, Maxime Thomas, Benoit Weil

To cite this version:
Armand ; Hatchuel, Pascal Le Masson, Maxime Thomas, Benoit Weil. WHAT IS GENERATIVE IN
GENERATIVE DESIGN TOOLS? UNCOVERING TOPOLOGICAL GENERATIVITY WITH A C-
K MODEL OF EVOLUTIONARY ALGORITHMS. Proceedings of the Design Society: International
Conference on Engineering Design, 2021. �hal-03398565�

https://minesparis-psl.hal.science/hal-03398565
https://hal.archives-ouvertes.fr

Cite this article: Hatchuel, A., Le Masson, P., Thomas, M., Weil, B. (2021) ‘What is Generative in Generative Design
Tools? Uncovering Topological Generativity with a C-K Model of Evolutionary Algorithms.’, in Proceedings of the
International Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16-20 August 2021. DOI:10.1017/
pds.2021.603

ICED21 3419

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED21
16-20 AUGUST 2021, GOTHENBURG, SWEDEN

ICED21 1

WHAT IS GENERATIVE IN GENERATIVE DESIGN TOOLS?
UNCOVERING TOPOLOGICAL GENERATIVITY WITH A C-K
MODEL OF EVOLUTIONARY ALGORITHMS.

Hatchuel, Armand;
Le Masson, Pascal;
Thomas, Maxime;
Weil, Benoit

MINES ParisTech-PSL

ABSTRACT
Generative design (GD) algorithms is a fast growing field. From the point of view of Design Science,
this fast growth leads to wonder what exactly is 'generated' by GD algorithms and how? In the last
decades, advances in design theory enabled to establish conditions and operators that characterize
design generativity. Thus, it is now possible to study GD algorithms with the lenses of Design Science
in order to reach a deeper and unified understanding of their generative techniques, their differences
and, if possible, find new paths for improving their generativity.
In this paper, first, we rely on C-K ttheory to build a canonical model of GD, based independent of the
field of application of the algorithm. This model shows that GD is generative if and only if it builds,
not one single artefact, but a "topology of artefacts" that allows for design constructability, covering
strategies, and functional comparability of designs. Second, we use the canonical model to compare
four well documented and most advanced types of GD algorithms. From these cases, it appears that
generating a topology enables the analyses of interdependences and the design of resilience.

Keywords: C-K theory, generative design algorithms, Design theory, Computational design methods,
Design informatics

Contact:
Le Masson, Pascal
MINES ParisTech-PSL
Management Science
France
pascal.le_masson@mines-paristech.fr

3420 ICED21

1 INTRODUCTION: GENERATIVE DESIGN ALGORITHMS THROUGH THE

LENSES OF DESIGN SCIENCE

Generative design algorithms (GDA) is a fast growing field that develops “design approaches that use

algorithms to generate designs” (Caetano et al., 2020). Advances in CAD software (in particular with

the launch of Autodesk so-called generative design (Kazi et al., 2017)), computing power and new

computer science algorithms have contributed to the emergence of various “generative design tools”

(Buonamici et al., 2020) with multiple applications. This fast growth leads to critical questions about

generative design algorithms from the point of view of design science. What is exactly ‘generated’ and

how? What means progress in the field? And more fundamentally, what can design science say for the

theoretical understandings and enhancement of generative algorithms?

Design science have also achieved major steps. C-K theory has paved the way to new formalizations

of a design process with a high level of generality. Design science is now able to establish conditions

and operators that define and enable design generativity and generative power. Such notions are now

independent of “what” is designed and of classic technical models. They describe generativity as the

transformation of known objects into new ones using a new abstract language which received wide

validation in the literature: concepts, generic extensions, restrictive and expansive partitions, identity

of objects, independence and splitting structures of knowledge (Hatchuel et al., 2011, Le Masson et

al., 2016). Thus, it is now possible to study Generative design algorithms with the lenses of Design

Science in order to reach a deeper and unified understanding of their generative techniques, their

differences and, if possible, find new paths for improving their generativity.

This paper develops such study through four steps that correspond to the sections of the article. In the

literature review (part 2), we describe a brief state of the art of GDA and applications. In part 3, since

any GDA is necessarily a constructive and iterative process, applying C-K theory to such constraints

we can predict a general C-K logic for GDA. We define it as a canonical model of GDA that is not

dependent of the field of application of the algorithm. This model mainly shows that GDA is

generative if and only if it builds, not one single artefact, but a special “topology of artefacts” that

allows for design constructability, covering strategies, and functional comparability of designs. In part

4, using the canonical model we compare the generative power of four well documented and most

advanced types of GDA, which confirm their capacity to generate a ‘topology of artefacts’.

2 LITERATURE REVIEW: THE VARIETY OF GD ALGORITHMS INVENTIONS

2.1 GD definition.

Recent reviews on GDA (Caetano et al., 2020, Mountstephens and Teo, 2020) share a definition of

GDA: “a design approach that uses algorithms to generate designs” (Caetano et al., 2020); GDA is

also seen “as the exploration of the principle of generating complex forms and patterns from a simple

specification [with an algorithm]” (Shea et al., 2005, McCormack et al., 2005). Some authors insist on

potential “creative outcomes” (Bernal et al., 2015) or “happy accidents” ie “unexpected results” born

from “the number of design variations” and “the range of the variations”, that positively impact the

design process” (Chaszar and Joyce, 2016). Hence GDA definition focuses on the presence of an

algorithm but remains relatively fuzzy on what exactly generativity consists in. The notion of the

variety of designs provided by the software is key in GD A, even if the link between design variations

 and GD generativity is not clearly explained and loosely related to how GDA provokes ‘surprises’.

2.2 A variety of Generative Design techniques.

GDA is clearly related to algorithmic rule-based processes that mainly refer to evolutionary techniques

but are not limited to them (Caetano et al., 2020) (p. 294) - More specifically, (Mountstephens and Teo,

2020) identifies four generation methods: genetic algorithms, Shape grammars, L-Systems, Swarm

intelligence - the authors mention other useful techniques: parametric modeling and topology

optimisation. One could also add the recent use of techniques coming from AI like Generative

Adversarial Networks (GAN) Variational AutoEncoders (VAE) to enhance topology optimization (Oh et

al., 2019) or to enable shape parameterization for further generation processes (Burnap et al., 2016,

Umetani, 2017). In this paper, we will rely on well-known Multi-Objective Generative Algorithms (also

known as Multi-Objective Evolutionary Algorithms - MOEA) - and we will pay a particular attention to

a new family of algorithms called quality-diversity, which are particularly relevant for GDA: quality-

ICED21 3421

diversity algorithms (Pugh et al., 2016) “evolve an archive of solutions which is, according to a user-

defined behaviour space, as diverse as possible while obtaining for each solution a high performance”

(Bossens et al., 2020). This family contains for the moment two prototypical algorithms: Novelty-

Search with Local Competition (Lehman and Stanley, 2011a) and Multidimensional Archive of

Phenotypic Elites (MAP-Elites) (Mouret and Clune, 2015).

2.3 Generativity in GD algorithms: a need for clarification and unification.

The field of GDA presents multiple streams of works that develop original algorithms applied to ad

hoc design cases. Each software has its applications and illustrates one form of generativity. For

instance:

- Byrne et al present a multi Objective Evolutionary Algorithm for design exploration and

optimisation of a wing profile (Byrne et al., 2014);

- Multi-Objective Genetic Algorithm (in Autodesk) has been used in architectural space planning

(Nagy et al., 2017), the design of office table (Nagy et al., 2017) (Chen et al., 2018);

- Novelty Search was used to evolve robot controllers into a deceptive maze (Pugh et al., 2016,

Lehman and Stanley, 2011b) or to design images (Woolley and Stanley, 2011);

- Map-Eliteswas used to design a self-repairing hexapod robot (Cully et al., 2015) or wing profile

(Cully et al., 2015) as well as in video game (Fontaine et al., 2019), automated image generation

(Nguyen et al., 2015), robot morphologies and controllers (Hart et al., 2018);

- Autogenetic Design Theory was used for gearbox design (Wünsch et al., 2012).

This variety of applications calls for a clarification of the design logic associated to each GD software.

2.4 The locus of generativity in GDA: an engine to generate a population of artefacts?

Self-evidently, GDA operates on a parametrically defined object with constraints on the parameters,

which restrict its use in design processes. (Mountstephens and Teo, 2020) proposed to distinguish

between autonomous and interactive generative design: in a parametrically defined solution space,

autonomous design might sound quite self-evident and generativity could appear only coming from

interaction (capacity to use the GDA in a more or less creative way, at varied moments in the design

process). Still, maybe counterintuitively, in this paper we first focus precisely on the specific

generativity of the algorithm itself, its capacity to generate a collection of varied artefacts. Even if this

generativity might sound limited (‘parametric’?), we investigate how a unique property of GDA

software lies in its capacity to offer a structured set of alternatives, and, then, how the user might react

to this set.

In this paper, we focus on the generative logic of GDA such as: MOGA, quality-diversity algorithms,

topologic optimisation, particle swarm optimisation, space filling techniques... Qualifying their

generativity of these algorithms is not an easy task - and, to our knowledge, no systematic study was

done until now. Hence, our research question: how can we characterize formally and

systematically the generativity logic of GDA ‘engines’?

3 A C-K CANONICAL MODEL TO UNCOVER THE GENERATIVITY OF GDA

3.1 Method: casting GDA in C-K theory.

C-K theory (Hatchuel and Weil, 2009), is one of the most advanced formulations of a design theory

(Hatchuel et al., 2018). C-K theory presents the advantage to be independent of what is designed and

can account for very strong forms of generativity (Hatchuel et al., 2011).

Casting a design method in C-K theory has already been done in other papers (Reich et al., 2012, Kroll

et al., 2014). We will follow the same method. We first codify in a canonical model what can make the

generativity of a GDA. Based on this analytical model, we analyse the generativity of a sample of

published GDA.

3.2 A canonical model of GDA: concepts, object model, expansions.

3.2.1 Knowledge base - object model and splitting condition

A GDA operates on an initial state of knowledge 𝐾0 which contains an object model 𝑀0 with:

3422 ICED21

– Variables that can be assimilated to ‘design parameters’ or also called ‘genotypical
parameters’ - parameters that are considered as directly actionable by the designer, noted

1i nX = .

– Variables that can be assimilated to functional (or behavioural or phenotypical) features,
jφ .

They are not directly actionable; their value is computed in the object model:
1 jφi nX = → .

– One artefact is a point value 1i nx = that has the features
j 1 mφ =

.

GDA apply in situations where:

– The object model M0 is not invertible: given specific
j 1 mφ =

, the object model 0M doesn’t

enable to find even one 1i nX = that meets
j 1 mφ =

 in finite reasonable time (see H1 below).

– The object model M0 is not derivable not continuous, which means that a small change in one

iX can provoke strong changes in
j 1 mφ =

 and conversely a small change in
jφ can

correspond to a strong change in 1i nX = . In particular, this means that it is not possible, for a

known object
1 j 1 m(, φi nX = =

), to know what is its neighbourhood in terms of genotype and

(even less) in term of phenotype - so that in this kind of K0, there is no self-evident solution to
a problem of optimisation, ie finding an object that, at least locally, phenotypically dominates
the others.

Design theory leads us to wonder whether this initial knowledge base K0 is splitting (Le Masson et al.,

2016), ie non-modular and non-deterministic. Modularity would mean that some design parameters

could be added without effect on phenomenology. As we just mentioned, initially, in K0, the design

parameters are supposed to influence phenomenology. Determinism would mean that some design

parameters would determine the phenomenological behaviour: again, as we just mentioned, initially,

in K0, one can’t say that such deterministic law exist. So in usual contexts, we have:

Property P1: usually GDA operates on a knowledge base that meet the splitting condition, hence

GDA is compatible with a generative process.

3.2.2 Concepts as departures of a GDA:

Following C-K theory, any GDA that aims to design some X begins necessarily with a concept of the

form “X that fulfils P(X)”, P(X) being a series of properties of X such that:

– P(X) are undecidable in K0 ie. there is no constructive rule that allows to design such X with

K0 (of course, since we want to describe the mechanism of the GDA ‘engine’ following the C-K

operators, the ‘engine’ itself is not in K; otherwise it would appear as a constructive rule and the

design is finished)

– P(X) will be constructible, true and compatible in some established Kn state of K.

It has to be underlined that here is a specific feature of GDA: GDA actually work to generate a

collection of artefacts, ie in the concept {X, P (X)}, X actually refers to a collection of artefacts; and P

actually refers to a property of this collection: in the concept “the set of wing profiles that form a

Pareto front”, we want to generate a collection (X) of wing profiles, and this collection has the

property to form a Pareto front (this is a property of the population, and not of a lone artefact). Hence a

second property:

P2: usually GDA designs a collection of artefacts with specific property, this property can make

that it is undecidable whether it is possible or impossible to get a population with property P.

P has to be interpretable (hence it is in K0) and just needs to make X undecidable in K0. Illustration:

– "a collection of N artefacts": it can be generated by instantiating M0 N-times. It is not a

concept.

– "a collection of N artefacts generated by random variation of genotype": it can easily be

generated as soon as one knows of random number generator. This is not a concept.

– "a collection of N artefacts generated by variation of phenotype": if the object model is non-

invertible, this is a concept.

3.2.3 Expansion in space K and concepts partition in space C

C-K theory models Concept partitions and expansions through tree structured sequences of nested

partitions. They describe a constructive refinement of C0 that should lead to the design of X; each of

ICED21 3423

these steps may activate space K, hence creating a knowledge expansion. At least, the last refinement

produces an acceptable design that is integrated as a new true object in space K.

In the case of GDA, the algorithm is parameterized to produce knowledge and concept expansions. In

a genetic algorithm, this is done by variation-selection. But the partitions can’t be easily followed.

When successive partitions can’t be easily followed, it is possible to evaluate the expansions:

– If the initial proposition {X, P(X)} was a concept and has become knowledge (in C-K terms:

there was an initial disjunction and there is a final conjunction), then there was C-expansion.

– By comparing the knowledge base before (K0) and after the GD process (Kfinal), one can

estimate K-expansion.

P3: a criteria to evaluate the generativity of a GD is twofold: a- is there a conjunction after an

initial disjunction? b- what is the knowledge expansion between K0 and Kfinal?

P1, P2, P3 are the main properties of a canonical model of GDA in C-K framework (Fig. 2)

Figure 1. A canonical model of GD algorithms in C-K. P1: object model is non-invertible, a
priori non continuous (hence splitting); P2: Property P is undecidable; P3: generativity is
measured on disjunction-conjunction and K-expansions (a topology on object model M0)

3.3 Avoiding the combinatorial trap in GDA: C-K conditions for generativity and the
emergent topology of designs.

3.3.1 Variation and selection in GDA: the combinatorial trap

GDA raise a critical question for design theory: in which way can an algorithm be generative in the

sense of C-K theory? Usual applications of C-K theory consider that K-space contains propositions

(that are true or false) as well as propositions that can be logically deducted one from the other -

hence not every new proposition is a K-expansion. Hence the knowledge base contains an internal

“knowledge production engine” and one considers that there is expansion only if one goes ‘beyond’

this internal knowledge production engine. In the case of a GDA, our hypothesis is:

H1: we consider that classical computations techniques in finite time are available in K and their

results are not considered as K-expansions. The algorithm that is under investigation is not in K.

3.3.2 Generativity in GD: the emergence of a topology of artefacts.

Building on properties P1 to P3 and hypothesis H1, what does C-K predict on GDA generativity?

– According to P1 and H1: even GDA-knowledge base is purely made of combinatorial

knowledge, the knowledge base is splitting and enables generativity

– According to P2 and H1: concepts in GDA are related to specific properties associated to a

collection of artefacts - the concept doesn’t come from the number of entities (because of H1);

hence the concepts comes from the structure and descriptors of this collection.

– According to P3: expansions can be evaluated by analysing initial and final C and final K-

expansion. In the end of a GDA process, one gets a collection of artefacts that meet the

structural property P. So that the generativity is in this new structure of the collection of

artefacts.

At first sight, GDA appears trapped into a closed world of combinatorial designs. To avoid such trap,

C-K theory calls for thorough examination of all knowledge produced by the algorithm. Clearly this

knowledge is much more extended than the single artefacts that are designed. We have to recognize

that the GDA not only explores single designs but compares them, positions them one to another,

creating structures in the collection of artefacts. GDA provides new knowledge on the topology of Xis.

A population (� �= 1…� ,φj= 1…m) …

with property P

Based on some parameters (initial

data, computation param…)

object

model � �

Rules to compute:

x�= 1…� →φj …

C KIterations

based on:
• criteria P
on the

collection
of artefacts

• variations
d� , …

Phenotype param:

� , …

Genotype param

� , … = x , …

Variations on

genotype param
� , …

Capacity to compare

phenotypical
features

Topology with set

paramets, at time t,

Topology other

param, other time…
A topology on

object model � �

not-invertible,

splitting

3424 ICED21

The expansion comes from the emergence of a ‘geometry’, a space in which artefacts can be relatively

positioned. This new structure is a topology on the model of objects, in the sense that:

– GDA expresses each object in all its dimensions ()1 j 1 m, φi nX = =
. Hence this space is

multidimensional, linking genotypic dimensions and phenotypic dimensions.
– GDA enables to distinguish certain objects - each object of the final collection is carefully

separated (in singletons).

– GDA also enables to not distinguish other objects: all the ‘dominated’ artefacts are considered

in the same “neighbourhood”

– In this topology, the object model can be inverted (almost) everywhere: for each point of the

topology, one relevant artefact can be associated (with respect to the criteria P). It means that

in the resulting topology the knowledge base is not splitting anymore.

3.3.3 How topological knowledge provides a source of generativity for the user

For sure, there is a circular logic here: the topology that emerges is dependent of the iterative

algorithm and another GDA technique would produce a different topology. Conversely, the

information on the topology of designs can improve the GDA. However, what counts for the

generativity of GDA is the type of new knowledge extracted from the topology that appeared.

Information linked to this topology helps to explore dimensions of expansion predicted by canonical

model Fig. 1:

– The topology can be extended by extending
1 j 1 m, φi nX = =

, and/or the model object 0M :

adding or deleting some iX , changing range, or modifying
j 1 mφ =

.

– The topology of the
1 j 1 m, φi nX = =

 revealed by the population of designs can help to compute

some property P that will be introduced to change the iteration rules. E.g an algorithm can use

the density of designs in some areas of the Xis to evolve the selection rules.

4 GDA: UNCOVERING TOPOLOGIES AND COMPARING GENERATIVITY

We now have analytical tools (canonical model) and clear predictions (GDA tools generate topology

of artefacts). We test them on a sample of most recent GDA. This sample was built on GDA recent

reviews (Caetano et al., 2020, Mountstephens and Teo, 2020). We hence selected the following

methods:

– MOEA (with one particular illustrative use case: (Byrne et al., 2014)),

– space-filling techniques (one particular illustrative use case: (Khan and Awan, 2018)),

– topological optimization (illustrative use case: (Matejka et al., 2018))

– Quality-Diversity (QD) algorithms (illustrative use case: (Clune et al., 2013))

4.1 Analysis of four GDA tools with the C-K canonical model

4.1.1 Multi-Objective Evolutionary Algorithm (MOAE)

Byrne et al. (Byrne et al., 2014) present a use case evolving parametric aircraft models. Coded with the

canonical model (see Fig. 2 below): the designer knows a model of the aircraft, where given design

parameters lead to two particular functional performances, Lift and Drag. The concept is: “A Pareto

Front on the functions, max Lift, min Drag”. The designer makes variations on a subset of three

parameters among the set of possible design parameters and run the GDA tool, powered by a multi-

objective evolutionary algorithm (MOEA) non-sorting genetic algorithm-II (NSGA-II) (Deb et al.,

2002). This leads to a first Pareto front (see blue dots in the figure). Then the designer selects a larger

set of parameters and run the algorithm again, to get another Pareto front (see red dots in the figure).

ICED21 3425

Figure 2. Pareto front GDA tool (MOEA NSGA-II), from Byrne et al 2014. Parametric object

model in K. GDA generates the topology associated to a Pareto front.

Generativity analysed within the canonical model:

– the designer designs a Pareto front (not a single aircraft). We have a clear topology: single

artefacts along the front, dominated artefacts below the front, no artefacts beyond.

– Modifying the design parameters to be varied, the designer gets several topologies (in case 1,

the designer only evolved the wing profile, in case 2, the designer also evolved the fuselage).

4.1.2 Space-filling generative design

Khan & Awan (Khan and Awan, 2018) give (among others) an simple illustration of a “generative

design technique for exploring shape variation”, based on space-filling technique. In GD canonical

model (see Fig. 3 below): in K, the designer disposes of a parameterized CAD-model (here a lamp,

with two design parameters). The concept is: a map that represents the diversity of possible CAD

shapes. To this end, the designer selects mapping criteria P: either space-filling (the criteria pushes to

maximise the distance between shapes), or non-collapsing criteria (avoiding too different shapes

(Draguljić et al., 2012)) or both. Powered also by MOES NSGA-II, the GD tool generates a map of

CAD shapes.

Figure 3. Space-filling GD tool (MOEA-NSGA-II) from Khan et al. 2014

Generativity analysed within the canonical model:

– the designer designs a map (not a single CAD shape) - hence a topology of artefacts.

– Formally speaking, the only difference with Pareto front case is that the former relies on

mapping criteria whereas Pareto case, the mapping criteria are the function themselves.

4.1.3 Topological optimization algorithm

Matejka et al. present an example of topological optimization GDA for “exploration and visualization

of large-scale generative design data set” (Matejka et al., 2018). In GD canonical model (see Fig. 4

below): in K, the designer has defined functions of the object (an office table) and the design

parameters are only the presence or absence of matter. The concept can be formulated as “a large

variety of (possibly surprising) office tables”. To design one office table (CAD shape), the designer

can fix a level to each of the constraints and use a topological optimization algorithm, optimizing the

A	Pareto	Front	on	(max	Lift	� ; min	Drag	�) ,

From a subset of 3

parameters {� … }

From a subset with more

parameters {� … }

solutions are shown in red and green respectively w ith a line

connecting individ ual on the pareto front. Overall the pareto front

of the evolved solutions is equivalent to the randomly gener ated

solutions, indicating that no bene t was provided by the genetic

information.

That an evolutionary approach did not outperform a brute force

approach could be the result of the constrained nature of the

representation. Each of the three airfoil sections had two variables.

Although each individual was encoded by 30 integers, the range

of each variable was limited to viable designs. Such a representa-

tion could generat e good solutions purely by random variation,

indicating that it is too constrained. This conclusion would be

supported by the fact that both approaches generat ed

pareto optimal designs that outperformed the original model. A

sample of individuals from the pareto front is shown in Fig. 9.

Limiting the evolvable representation to the airfoils produced

optim ised solutions that maintained the same overall design as

the BWB aircraft.

A scatter plot of w ing and airfoil optimisation is shown in

Fig. 8(b). Again the original model is shown in black and the

evolved and brute force solutions are shown in red and green

respectively. The graph shows how well the design maximised

lift on the x-axis and how well it reduced drag on the y-axis.

Fig. 9. Airfoil optimisation in the order of increasing lif t (and increasing drag) from top lef t to bott om right. The overall shape of the design remains the same.

Fig. 10. The change in aver age lift/drag during the course of the run: (a) average lift maximisation and (b) average drag minimisation.

Fig. 11. Wing optimisation in the order of increasing lift (and increasing drag) from the top lef t to the bottom right. The increased number of variables result ed in different

w ing con gurations.

Fig. 12. The Cessna 182 model. The optimised sections are highlighted in red.

(For interpret ation of the referen ces to colour in this gure caption, the reader is

referr ed to the w eb version of this paper .)

J. Byrne et al. / Neurocomputing 142 (2014) 39–47 43

solutions are shown in red and green respectively with a line

connecting individual on the pareto front. Overall the pareto front

of the evolved solutions is equivalent to the randomly generated

solutions, indicating that no bene t was provided by the genetic

information.

That an evolutionary approach did not outperform a brute force

approach could be the result of the constrained nature of the

representation. Each of the three airfoil sections had two variables.

Although each individual was encoded by 30 integers, the range

of each variable was limited to viable designs. Such a representa-

tion could generate good solutions purely by random variation,

indicating that it is too constrained. This conclusion would be

supported by the fact that both approaches generat ed

pareto optimal designs that outperformed the original model. A

sample of individuals from the pareto front is shown in Fig. 9.

Limiting the evolvable representation to the airfoils produced

optim ised solutions that maintained the same overall design as

the BWB aircraft.

A scatter plot of wing and airfoil optimisation is shown in

Fig. 8(b). Again the original model is shown in black and the

evolved and brute force solutions are shown in red and green

respectively. The graph shows how well the design maximised

lift on the x-axis and how well it reduced drag on the y-axis.

Fig. 9. Airfoil optimisation in the order of increasing lift (and increasing drag) from top lef t to bott om right. The overall shape of the design remains the same.

Fig. 10. The change in average lift/drag during the course of the run: (a) average lift maximisation and (b) average drag minimisation.

Fig. 11. Wing optimisation in the order of increasing lift (and increasing drag) from the top left to the bott om right. The increased number of variables result ed in different

w ing con gurations.

Fig. 12. The Cessna 182 model. The optimised sections are highlighted in red.

(For interpret ation of the referen ces to colour in this gure caption, the reader is

referr ed to the w eb version of this paper.)

J. Byrne et al. / Neurocomputing 142 (2014) 39–47 43

C

object

model � �

Rules to compute:

x�= 1…� →Fj ,

K

Genotype param

� , … = x , …
Selected functions F�

Genetic algorithm for Pareto fronts (NSGA II)

• select 3 (or 5) parameters to be varied
• select functions for the Pareto front

Variations on n=3

(or n=5) param
Compare Pareto

domination

A map that represents the variety of CAD models

From selected design parameters �

Based on P1:

space-filling
criteria only

Based on P2:

non-collapsing
criteria only

Based on P1 and P2:

space-filling and non-
collapsing criteria

C

narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to fi rst detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capabili ty of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabili ties at any phase of the design process [12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can fi rst in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces unti l he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues unti l the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.

Fig. 2. Design alternatives for a 3D CAD model

with two design parameters (a) are obtained in

2D spaces considering; (b) only space-fi lling

criterion, (c) only non-collapsing criterion, and

both space-fi lling and non-collapsing criteria

using Sf-GDT (d). Design alternatives for the

same CAD model with three parameters (e) are

generated in 3D design space using Sf-GDT

while considering both space-fi lling and non-

collapsing criteria (f).

S. Khan, M.J. Awan

narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to first detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capability of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabilities at any phase of the design process [12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can first in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces until he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues until the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.

Fig. 2. Design alternatives for a 3D CAD model

with two design parameters (a) are obtained in

2D spaces considering; (b) only space-fi lling

criterion, (c) only non-collapsing criterion, and

both space-fi lling and non-collapsing criteria

using Sf-GDT (d). Design alternatives for the

same CAD model with three parameters (e) are

generated in 3D design space using Sf-GDT

while considering both space-fi lling and non-

collapsing criteria (f).

S. Khan, M.J. Awan

narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to fi rst detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capabili ty of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabili ties at any phase of the design process [12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can fi rst in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces unti l he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues unti l the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.

Fig. 2. Design alternatives for a 3D CAD model

with two design parameters (a) are obtained in

2D spaces considering; (b) only space-fi lling

criterion, (c) only non-collapsing criterion, and

both space-fi lling and non-collapsing criteria

using Sf-GDT (d). Design alternatives for the

same CAD model with three parameters (e) are

generated in 3D design space using Sf-GDT

while considering both space-fi lling and non-

collapsing criteria (f).

S. Khan, M.J. Awan

object

model � �

Rules to compute:

x�= 1…� →� � � file

K

Genotype param

� , … = x , …

No function, only

CAD file

Genetic algorithm for Pareto fronts (NSGA II),

adapted to population constraints distribution
• 2 parameters to be varied

• Different properties P (P1, P2…)

for the collection (mapping criteria)

Variations on n=2

param

narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to fi rst detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capability of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabilities at any phase of the design process [12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can fi rst in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces until he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues until the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.

Fig. 2. Design alternatives for a 3D CAD model

with two design parameters (a) are obtained in

2D spaces considering; (b) only space-fi lling

criterion, (c) only non-collapsing criterion, and

both space-fi lling and non-collapsing criteria

using Sf-GDT (d). Design alternatives for the

same CAD model with three parameters (e) are

generated in 3D design space using Sf-GDT

while considering both space-fi lling and non-

collapsing criteria (f).

S. Khan, M.J. Awan

3426 ICED21

office table weight while meeting the functional requirements - depending on optimization parameters

(eg voxel size). By varying the functional levels and the optimization parameters, the designer gets a

variety of shapes.

Figure 4. Topological algorithm GD tool coded in C-K - based on Matejka et al. 2018

Generativity analysed within the canonical model:

– the designer designs a variety of tables (Xi, Fj), on a functional map. Hence a topology.

– the object model is different: in MOEA case, design parameters determine functions; here the

model can be punctually inverted: for one functional definition, topological optimization

determines the design parameters (matter or not matter in each voxel). Still the model is only

punctually invertible and so the topology is a concept.

– This GDA tool seems different from MOEA - but formally it leads to quite similar results: a

set of artefacts ordered according to functional dimensions, with design parameters for each

artefact.

4.1.4 MAP-Elites Quality-Diversity (QD) algorithm

MAP-Elites QD algorithm was used in a large variety of problems. One good illustration is the mapping

of gaits of a hexapod robot (Cully et al., 2015, Koos et al., 2013). In GDA canonical model (see Fig. 5

below): the designer has a model of an hexapod described by 24 parameters, which create numerous

gaits, from purely quadruped gait to classic tripod gait. The gait is a phenotype that can be described in

several ways. For instance, one phenotype dimension can be 1=the speed in forward-axis - to be

maximized. The concept can be formulated as: a map of gaits that present an optimal 1. This map is

unknown and the designer can work on the space in which she will design these gaits. She has to propose

a mapping criteria 2. She can map the 1-optimal gaits according to the y-axis speed - and this will

probably result in a Pareto front. She can choose to map the gaits according to another phenotype

dimension such as the fraction of time that each of the 6 legs touches ground (6-dimensional map).

Based on 1 and 2, the MAP-Elites algorithm constructs an elite for each 2 niche.

Generativity analysed within the canonical model:

– The design process results in a topology of artefacts. Compared to Pareto front GDA, user

relies on a phenotype feature that is not functional; compared to space-filling GDA, user

defines his/her own phenomenological feature. Hence mapping criteria is a free parameter of

the tool.

– The map can be seen as a generalization of topological optimization GDA tools: map

dimensions are made by a phenomenological feature 2 and there is 1-optimized genotype (in

topological space: for each set of functional levels, there is a shape that minimizes the weight).

A large variety of (possibly surpising) office

tables, generated by topological optimization

Modifying initial constraints/functions

C

Modifying the parameters of the

topological optimisation algorithm

object

model � �

Topological

optimization:
x�= 1…� →� � � file

K

Genotype param

� , … = x , …

Set functions,

optimize weight

Repeated topological optimization

• With selected functions to be varied
• Algo parameters (voxel size…)

Variation step on

functions �

Problem Definition

Dream Lens

www.autodeskresearch.com/publications/dreamlens

middle load

outer load

middle

outer loads

Center of Mass

(x, y, z), Weight, Overhang Percentage, Surface Area,

Area/Volume Ratio

Maximum

Displacement, Max. Strain, Total Strain, Max. Vonmises,

Objective Value (for the simulation)

Variation Creation

convergent

divergent

24”

80mm

Edg e loads

Middle load
Middle platform

Desk (obstacle)

Fixed “ feet”

Edge platforms

ICED21 3427

Figure 5. Map-Elitesalgorithm GD tool, from (Cully et al., 2015, Koos et al., 2013)

4.2 Characterizing the generativity of GDA tools: the design of topologies

We can synthesize the results just obtained above:

1. We confirm that GDA tools don’t generate one artefact but generate a topology of artefacts

which is the locus of the generative power of the algorithm.

2. In this topology design process, GDA tools differ (at least!) by the degree of freedom they offer

for building the topology. Pareto front GDA tools maximize correlated functions; space filling

techniques maximize phenotypic distances; topological optimization paves functional space with

weight optimal artefacts; Map-Elites has the interesting (generic) property to be free in term of

phenomenological and genotypical features.
3. As predicted, the GDA tools also open diverse directions for design expansions Each GDA tool

generates a specific topology which impacts DP’s or FR’s generativity (see table below). One can

predict the emergence of complementary GDA algorithms to work on the relevant 1i nX = ,

explore the
j 1 mφ =

 and evolve the resulting 0.M (Gaier et al., 2017, Bossens et al., 2020). One

can also predict the emergence of algorithms with double generativity (on DPs and FRs).
4. Analysing GDA as tools for designing topologies has several consequences for understanding

their generativity, their value and their use:

– GDA tools help analyse interdependences between functions, not only correlation -as in

Pareto front MOEA- but also independences - as in QD algorithm.

– The capacity to map independences can’t be underestimated in engineering design: this is

precisely the capacity required to design resilient systems, capable of being independent of

external events. Hence GDA tools might actually be useful for designing resilience.

– Mapping phenotypes to genotypical elites, GDA tools also contribute to “invert” usual models

that compute functional requirements from design parameters. The maps generated by GDA

tools gives a genotype for each phenotype niche. Doing so, GD A tool actually contributes to

uncover general laws and models linking phenotypes to their genotypical roots. Hence it

contributes to establish design rules. Mac Cormack (McCormack et al., 2005) considered that

GDA tools would lead designers to focus on the design of design rules and GDA tools would

then generate artefacts based on these new design rules. Fifteen years later, one could rather

say that GDA tools could be an essential tool to uncover design rules and hence improves

the generativity of users.

Table 1. Expansion directions opened by GD-generated topology

A map of the � elites

Based on

mapping
dimension

	� = {feature 1,

feature 2…}

Based on

mapping
dimension

�

Illumination algorithms
(quality diversity algorithm)

Goal: find the “fitness potential” for each combination features

 The elites of the search space

Elite = best of the family

Family = solution with similar features (niche)

object

model � �

Rules to compute:

x�= 1…� →� , �

K

Genotype param

� , … = x , …

Genetic algorithm (MAP-Elites)

• Genotype evolutions
• Fitness crit � 	, mapping crit �

Variations on

n=24 param

Phenotypical param � , �

Keep � -elite

for each � -niche

C

Fast Damage Recovery in Robotics with the
T-Resilience Algorithm

Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret⇤

Damage recovery is critical for autonomous robots that need

to operate for a long time without assistance. M ost current

methods are complex and costly because they require antici-

pating each potential damage in order to have a contingency

plan ready. As an alternative, we introduce the T-resilience al-

gorithm, a new algorithm that allows robots to quickly and au-

tonomously discover compensatory behaviors in unanticipated

situations. This algorithm equips the robot with a self-model

and discovers new behaviors by learning to avoid those that

perform differently in the self-model and in reality. Our algo-

rithm thusdoes not identify the damaged parts but it implicitly

searches for efficient behaviors that do not use them. We evalu-

ate the T-Resilience algorithm on a hexapod robot that needs to

adapt to leg removal, broken legs and motor failures; we com-

pare it to stochastic local search, policy gradient and the self-

modeling algorithm proposed by Bongard et al. The behavior

of the robot is assessed on-board thanks to a RGB-D sensor and

a SLAM algorithm. Using only 25 tests on the robot and an

overall running time of 20 minutes, T-Resilience consistently

leads to substantially better results than the other approaches.

1. Introduction

Autonomous robots are inherently complex machines that have

to cope w ith a dynamic and often hostile environment. They

face an even more demanding context when they operate for a

long time without any assistance, whether when exploring re-

mote places (Bellingham and Rajan, 2007) or, more prosaically, in

a house w ithout any robotics expert (Prassler and Kosuge, 2008).

As famously pointed out by Corbato (2007), when designing such

complex systems, “ [we should not] wonder if some mishap may

happen, but rather ask what one will do about it when it occurs” .

In autonomous robotics, this remark means that robots must be

able to pursue their mission in situations that have not been an-

ticipated by their designers. Legged robots clearly il lustrate this

need to handle the unexpected: to be as versatile as possible,

they involve many moving parts, many actuators and many sen-

sors (Kajita and Espiau, 2008); but they may be damaged in nu-

merous different ways. These robots would therefore greatly ben-

efit from being able to autonomously find a new behavior if some

legs are ripped off, if a leg is broken or if one motor is inadver-

tently disconnected (Fig. 1).

Fault tolerance and resilience are classic topics in robotics and

engineering. The most classic approaches combine intensive test-

ing w ith redundancy of components (Visinsky et al., 1994; Ko-

ren and Krishna, 2007). These methods undoubtedly proved their

usefulness in space, aeronautics and numerous complex systems,

but they also are expensive to operate and to design. More impor-

tantly, they require the identification of the faulty subsystems and

a procedure to bypass them, whereas both operations are difficult

for many kinds of faults – for example mechanical failures. An-

other classic approach to fault tolerance is to employ robust con-

trollers that can work in spite of damaged sensors or hardware

⇤ Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret are with the ISIR, Univer-
sité Pierre et Marie Curie-Paris 6, CNRS UMR 7222, F-75252, Paris Cedex 05,
France. Contact: mouret@isir.upmc.fr

(a) Normal state. (b) Two legs ripped out.

(c) One broken leg. (d) Two unpowered motors.

Figure 1: Examples of situations in which an autonomous robot

needs to discover a qualitatively new behavior to pur-

sue its mission: in each case, classic hexapod gaits can-

not be used. The broken leg example (c) is a typical

damage that is hard to diagnose by direct sensing (be-

cause no actuator or sensor is damaged).

inefficiencies (Goldberg and Chen, 2001; Caccavale and Villani,

2002; Qu et al., 2003; Lin and Chen, 2007). Such controllers usu-

ally do not require diagnosing the damage, but this advantage is

tempered by the need to integrate the reaction to all faults in a

single controller. Last, a robot can embed a few pre-designed be-

haviors to cope w ith anticipated potential failures (Görner and

H irzinger, 2010; Jakimovski and Maehle, 2010; Mostafa et al.,

2010; Schleyer and Russell, 2010). For instance, if a hexapod robot

detects that one of its legs is not reacting as expected, it can drop it

and adapt the position of the other legs accordingly (Jakimovski

and Maehle, 2010; Mostafa et al., 2010).

An alternative line of thought is to let the robot learn on its own

the best behavior for the current situation. If the learning pro-

cess is open enough, then the robot should be able to discover

new compensatory behaviors in situations that have not been

foreseen by its designers. Numerous learning systems have been

experimented in robotics (for reviews, see Connell and Mahade-

van (1993); Argall et al. (2009); Nguyen-Tuong and Peters (2011);

Kober and Peters (2012)), w ith different levels of openness and

various a priori constraints. Many of them primarily aim at auto-

matically tuning controllers for complex robots (Kohl and Stone,

2004; Tedrake et al., 2005; Sproew itz et al., 2008; Hemker et al.,

2009) whereas only a handful of these systems has been explicitly

tested in situations in which a robot needs to adapt itself to un-

expected situations (Mahdavi and Bentley, 2003; Berenson et al.,

2005; Bongard et al., 2006).

Finding the behavior that maximizes performance in the cur-

rent situation is a reinforcement learning problem Sutton and Barto

(1998), but classic reinforcement learning algorithms (e.g. TD-

Koos, Cully and Mouret arXiv | 1

ar
X

iv
:1

3
0

2
.0

3
8

6
v

1

[c
s.

R
O

]
 2

 F
eb

 2
0

1
3

Pareto front Space filling Topological optimization MAP-Elites

Topology
generativity

Pareto front topology
(elites / dominated)

Identifies design neighbours Cover functional map with
(weight) optimal artefacts

Find elite gait for each specific
behavioral niche

DP

generativity

Identifies DP for

improved Pareto front

None May help identify new

families of DPs (table legs…)

None

FR

generativity

None Paves the way to new FR,

sensations, emotions

None Explore altearntive behavioral

niche types à resilient design

3428 ICED21

5 CONCLUSION

We analysed GDA in the light of design theory, to better characterize their generative power. Since

these algorithms are based on a parametric of object, their generativity might sound limited to generate

‘varied artefacts’ from the same model, however we show that GDA design topologies of artefacts - ie

large, ordered, structured, actionable sets of artefacts. GDA finally open the field of topological

generativity. We show that GDA tools evolve today to enable more degree of freedom in the topology

design, from the analysis of interdependences to the analysis of independences, leading possibly to

designing resilience or to uncover design rules.

This design-theory based analyses of GDA tools helps uncover some of their critical properties,

identifies some development trends and even suggests ways for further improvement. Conversely, the

analysis invites to deepen design theory: with the help of C-K theory applied to Topos (Hatchuel et al.,

2019) it might be possible to give an enriched account of the design of topologies by GDA tools,

hence better addressing the issues of resilient design and the design of design rules.

REFERENCES

Bernal, M., Haymaker, J. R. & Eastman, C. 2015. On the role of computational support for designers in action.

Design Studies, 41, 163-182.

Bossens, D., M, Mouret, J.-B. & Tarapore, D. Learning behaviour-performance maps with meta-evolution.

GECCO’20 - Genetic and Evolutionary Computation Conf, 2020-07-08 2020 Cancun, Mexico.

Buonamici, F., Carfagni, M., Furferi, R., Governi, L. & Bvople, Y. 2020. Generative Design: An Explorative

Study. Computer-Aided Design and Applications, 18, 144-155.

Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonzalez, R. & Papalambros, P. Y. Estimating and Exploring the Product

Form Design Space Using Deep Generative Models. ASME 2016 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference

Byrne, J., Cardiff, P., Brabazon, A. & O׳Neill, M. 2014. Evolving parametric aircraft models for design

exploration and optimisation. Neurocomputing, 142, 39-47.

Caetano, I., Santos, L. & Leitão, A. 2020. Computational design in architecture: Defining parametric, generative,

and algorithmic design. Frontiers of Architectural Research, 9, 287-300.

Chaszar, A. & Joyce, S. C. 2016. Generating freedom: Questions of flexibility in digital design and architectural

computation. International Journal of Architectural Computing, 14, 167-181.

Chen, X. A., Tao, Y., Wang, G., Kang, R., Grossman, T., Coros, S. & Hudson, S. E. 2018. Forte: User-Driven

Generative Design. Proceedings of the 2018 CHI Conference Montreal QC, Canada: ACM.

Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. 2015. Robots that can adapt like animals. Nature, 521,

503-507.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. 2002. A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182-197.

Draguljić, D., Santner, T. J. & Dean, A. M. 2012. Noncollapsing Space-Filling Designs for Bounded

Nonrectangular Regions. Technometrics, 54, 169-178.

Fontaine, M. C., Lee, S., Soros, L. B., Silva, F. D. M., Togelius, J. & Hoover, A. K. 2019. Mapping hearthstone

deck spaces through MAP-elites with sliding boundaries. Proceedings of the Genetic and Evolutionary

Computation Conference. Prague, Czech Republic: ACM

Gaier, A., Asteroth, A. & Mouret, J.-B. Data-Efficient Exploration, Optimization, and Modeling of Diverse

Designs through Surrogate-Assisted Illumination (GECCO 2017), 2017 Berlin, Germany.

Hatchuel, A., Le Masson, P., Reich, Y. & Subrahmanian, E. 2018. Design theory: a foundation of a new

paradigm for design science and engineering. Research in Engineering Design, 29, 5-21.

Hatchuel, A., Le Masson, P., Reich, Y. & Weil, B. A systematic approach of design theories using

generativeness and robustness. ICED, 2011 Copenhagen, Technical University of Denmark. 12.

Hatchuel, A., Le Masson, P., Weil, B. & Carvajal Perez, D. Innovative design within tradition - injecting topos

structures in C-K theory to model culinary creation heritage, 2019 Delft, Netherlands.

Hatchuel, A. & Weil, B. 2009. C-K design theory: an advanced formulation. Research in Engineering Design,

19, 181-192.

Kazi, R. H., Grossman, T., Cheong, H., Hashemi, A. & Fitzmaurice, G. 2017. DreamSketch: Early Stage 3D

Design Explorations with Sketching and Generative Design. Proceedings of the 30th Annual ACM

Symposium on User Interface Software and Technology. Québec City, QC, Canada.

Khan, S. & Awan, M. J. 2018. A generative design technique for exploring shape variations. Advanced

Engineering Informatics, 38, 712-724.

Koos, S., Cully, A. & Mouret, J.-B. 2013. Fast Damage Recovery in Robotics with the T-Resilience Algorithm.

ArXiv.

ICED21 3429

Kroll, E., Le Masson, P. & Weil, B. 2014. Steepest-first exploration with learning-based path evaluation.

Research in Engineering Design, 25, 351-373.

Le Masson, P., Hatchuel, A. & Weil, B. 2016. Design Theory at Bauhaus: teaching “splitting” knowledge.

Research in Engineering Design, 27, 91-115.

Lehman, J. & Stanley, K. 2011a. Evolving a diversity of creatures through novelty search and local competition,

GECCO’11

Lehman, J. & Stanley, K. O. 2011b. Abandoning objectives: Evolution through the search for novelty alone.

Evol. Comput., 19, 189-223.

Matejka, J., Glueck, M., Bradner, E., Hashemi, A., Grossman, T. & Fitzmaurice, G. 2018. Dream Lens:

Exploration and Visualization of Large-Scale Generative Design Datasets. Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems. Montreal QC, Canada: ACM.

Mccormack, J., Dorin, A. & Innocent, T. Generative design: a paradigm for design research. 2005.

Mountstephens, J. & Teo, J. 2020. Progress and Challenges in Generative Product Design: A Review of

Systems. Computers, 9, 4.

Mouret, J.-B. & Clune, J. 2015. Illuminating search spaces by mapping elites. ArXiv.

Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., Zhao, D. & Benjamin, D. 2017. Project

discover: an application of generative design for architectural space planning. Proceedings of the

Symposium on Simulation for Architecture and Urban Design. Toronto, Canada:

Nguyen, A., Yosinski, J. & Clune, J. Innovation Engines: Automated Creativity and Improved Stochastic

Optimization via Deep Learning. Proc. of the Genetic and Evolutionary Computation Conference. 2015.

Oh, S., Jung, Y., Kim, S., Lee, I. & Kang, N. 2019. Deep Generative Design: Integration of Topology

Optimization and Generative Models. arXiv: Learning.

Pugh, J. K., Soros, L. B. & Stanley, K. 2016. Quality Diversity: A New Frontier for Evolutionary Computation.

Frontiers Robotics AI, 3, 40.

Reich, Y., Hatchuel, A., Shai, O. & Subrahmanian, E. 2012. A Theoretical Analysis of Creativity Methods in

Engineering Design: Casting ASIT within C-K Theory Journal of Eng. Design, 23, 137-158.

Shea, K., Aish, R. & Gourtovaia, M. 2005. Towards integrated performance-driven generative design tools.

Automation in Construction, 14, 253-264.

Umetani, N. 2017. Exploring generative 3D shapes using autoencoder networks. SIGGRAPH Asia 2017

Technical Briefs. Bangkok, Thailand: Association for Computing Machinery.

Woolley, B. G. & Stanley, K. O. On the Deleterious Effects of A Priori Objectives on Evolution and

Representation. Proceedings of the Genetic and Evolutionary Computation Conference., 2011.

Wünsch, A., Schabacker, M. & Vajna, S. 2012. Designing a gearbox for a novel independently controllable

transmission using autogenetic design theory. 9th International Workshop on Integrated Product

Development. Magdeburg, Germany.

