Armand ; Hatchuel

Pascal ; Le Masson
email: pascal.le_masson@mines-paristech.fr

Maxime Thomas

Benoit Weil

Maxime ; Thomas

Benoit Weil

Le Masson

WHAT IS GENERATIVE IN GENERATIVE DESIGN TOOLS? UNCOVERING TOPOLOGICAL GENERATIVITY WITH A C-K MODEL OF EVOLUTIONARY ALGORITHMS

Keywords: C-K theory, generative design algorithms, Design theory, Computational design methods, Design informatics

Generative design algorithms (GDA) is a fast growing field that develops "design approaches that use algorithms to generate designs" [START_REF] Caetano | Computational design in architecture: Defining parametric, generative, and algorithmic design[END_REF]. Advances in CAD software (in particular with the launch of Autodesk so-called generative design [START_REF] Kazi | DreamSketch: Early Stage 3D Design Explorations with Sketching and Generative Design[END_REF]), computing power and new computer science algorithms have contributed to the emergence of various "generative design tools" [START_REF] Buonamici | Generative Design: An Explorative Study[END_REF] with multiple applications. This fast growth leads to critical questions about generative design algorithms from the point of view of design science. What is exactly 'generated' and how? What means progress in the field? And more fundamentally, what can design science say for the theoretical understandings and enhancement of generative algorithms? Design science have also achieved major steps. C-K theory has paved the way to new formalizations of a design process with a high level of generality. Design science is now able to establish conditions and operators that define and enable design generativity and generative power. Such notions are now independent of "what" is designed and of classic technical models. They describe generativity as the transformation of known objects into new ones using a new abstract language which received wide validation in the literature: concepts, generic extensions, restrictive and expansive partitions, identity of objects, independence and splitting structures of knowledge [START_REF] Hatchuel | A systematic approach of design theories using generativeness and robustness[END_REF][START_REF] Le Masson | Design Theory at Bauhaus: teaching "splitting" knowledge[END_REF]. Thus, it is now possible to study Generative design algorithms with the lenses of Design Science in order to reach a deeper and unified understanding of their generative techniques, their differences and, if possible, find new paths for improving their generativity.

This paper develops such study through four steps that correspond to the sections of the article. In the literature review (part 2), we describe a brief state of the art of GDA and applications. In part 3, since any GDA is necessarily a constructive and iterative process, applying C-K theory to such constraints we can predict a general C-K logic for GDA. We define it as a canonical model of GDA that is not dependent of the field of application of the algorithm. This model mainly shows that GDA is generative if and only if it builds, not one single artefact, but a special "topology of artefacts" that allows for design constructability, covering strategies, and functional comparability of designs. In part 4, using the canonical model we compare the generative power of four well documented and most advanced types of GDA, which confirm their capacity to generate a 'topology of artefacts'.

LITERATURE REVIEW: THE VARIETY OF GD ALGORITHMS INVENTIONS

GD definition.

Recent reviews on GDA (Caetano et al., 2020, Mountstephens and[START_REF] Mountstephens | Progress and Challenges in Generative Product Design: A Review of Systems[END_REF] share a definition of GDA: "a design approach that uses algorithms to generate designs" [START_REF] Caetano | Computational design in architecture: Defining parametric, generative, and algorithmic design[END_REF]; GDA is also seen "as the exploration of the principle of generating complex forms and patterns from a simple specification [with an algorithm]" [START_REF] Shea | Towards integrated performance-driven generative design tools[END_REF][START_REF] Mccormack | Generative design: a paradigm for design research[END_REF]. Some authors insist on potential "creative outcomes" [START_REF] Bernal | On the role of computational support for designers in action[END_REF] or "happy accidents" ie "unexpected results" born from "the number of design variations" and "the range of the variations", that positively impact the design process" [START_REF] Chaszar | Generating freedom: Questions of flexibility in digital design and architectural computation[END_REF]. Hence GDA definition focuses on the presence of an algorithm but remains relatively fuzzy on what exactly generativity consists in. The notion of the variety of designs provided by the software is key in GD A, even if the link between design variations and GD generativity is not clearly explained and loosely related to how GDA provokes 'surprises'.

A variety of Generative Design techniques.

GDA is clearly related to algorithmic rule-based processes that mainly refer to evolutionary techniques but are not limited to them [START_REF] Caetano | Computational design in architecture: Defining parametric, generative, and algorithmic design[END_REF] (p. 294) -More specifically, [START_REF] Mountstephens | Progress and Challenges in Generative Product Design: A Review of Systems[END_REF] identifies four generation methods: genetic algorithms, Shape grammars, L-Systems, Swarm intelligence -the authors mention other useful techniques: parametric modeling and topology optimisation. One could also add the recent use of techniques coming from AI like Generative Adversarial Networks (GAN) Variational AutoEncoders (VAE) to enhance topology optimization [START_REF] Oh | Deep Generative Design: Integration of Topology Optimization and Generative Models[END_REF] or to enable shape parameterization for further generation processes (Burnap et al., 2016[START_REF] Umetani | Exploring generative 3D shapes using autoencoder networks[END_REF]. In this paper, we will rely on well-known Multi-Objective Generative Algorithms (also known as Multi-Objective Evolutionary Algorithms -MOEA) -and we will pay a particular attention to a new family of algorithms called quality-diversity, which are particularly relevant for GDA: quality-diversity algorithms [START_REF] Pugh | Quality Diversity: A New Frontier for Evolutionary Computation[END_REF] "evolve an archive of solutions which is, according to a userdefined behaviour space, as diverse as possible while obtaining for each solution a high performance" (Bossens et al., 2020). This family contains for the moment two prototypical algorithms: Novelty-Search with Local Competition (Lehman and Stanley, 2011a) and Multidimensional Archive of Phenotypic Elites (MAP-Elites) [START_REF] Mouret | Illuminating search spaces by mapping elites[END_REF].

Generativity in GD algorithms: a need for clarification and unification.

The field of GDA presents multiple streams of works that develop original algorithms applied to ad hoc design cases. Each software has its applications and illustrates one form of generativity. For instance: -Byrne et al present a multi Objective Evolutionary Algorithm for design exploration and optimisation of a wing profile [START_REF] Byrne | Evolving parametric aircraft models for design exploration and optimisation[END_REF]; -Multi-Objective Genetic Algorithm (in Autodesk) has been used in architectural space planning [START_REF] Nagy | Project discover: an application of generative design for architectural space planning[END_REF], the design of office table [START_REF] Nagy | Project discover: an application of generative design for architectural space planning[END_REF] [START_REF] Chen | Forte: User-Driven Generative Design[END_REF]; -Novelty Search was used to evolve robot controllers into a deceptive maze (Pugh et al., 2016, Lehman andStanley, 2011b) or to design images [START_REF] Woolley | On the Deleterious Effects of A Priori Objectives on Evolution and Representation[END_REF]; -Map-Eliteswas used to design a self-repairing hexapod robot [START_REF] Cully | Robots that can adapt like animals[END_REF] or wing profile [START_REF] Cully | Robots that can adapt like animals[END_REF] as well as in video game [START_REF] Fontaine | Mapping hearthstone deck spaces through MAP-elites with sliding boundaries[END_REF], automated image generation [START_REF] Nguyen | Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning[END_REF], robot morphologies and controllers (Hart et al., 2018); -Autogenetic Design Theory was used for gearbox design [START_REF] Wünsch | Designing a gearbox for a novel independently controllable transmission using autogenetic design theory[END_REF]. This variety of applications calls for a clarification of the design logic associated to each GD software.

2.4

The locus of generativity in GDA: an engine to generate a population of artefacts? Self-evidently, GDA operates on a parametrically defined object with constraints on the parameters, which restrict its use in design processes. [START_REF] Mountstephens | Progress and Challenges in Generative Product Design: A Review of Systems[END_REF] proposed to distinguish between autonomous and interactive generative design: in a parametrically defined solution space, autonomous design might sound quite self-evident and generativity could appear only coming from interaction (capacity to use the GDA in a more or less creative way, at varied moments in the design process). Still, maybe counterintuitively, in this paper we first focus precisely on the specific generativity of the algorithm itself, its capacity to generate a collection of varied artefacts. Even if this generativity might sound limited ('parametric'?), we investigate how a unique property of GDA software lies in its capacity to offer a structured set of alternatives, and, then, how the user might react to this set. In this paper, we focus on the generative logic of GDA such as: MOGA, quality-diversity algorithms, topologic optimisation, particle swarm optimisation, space filling techniques... Qualifying their generativity of these algorithms is not an easy task -and, to our knowledge, no systematic study was done until now. Hence, our research question: how can we characterize formally and systematically the generativity logic of GDA 'engines'? 3 A C-K CANONICAL MODEL TO UNCOVER THE GENERATIVITY OF GDA 3.1 Method: casting GDA in C-K theory. C-K theory [START_REF] Hatchuel | C-K design theory: an advanced formulation[END_REF], is one of the most advanced formulations of a design theory (Hatchuel et al., 2018). C-K theory presents the advantage to be independent of what is designed and can account for very strong forms of generativity [START_REF] Hatchuel | A systematic approach of design theories using generativeness and robustness[END_REF]. Casting a design method in C-K theory has already been done in other papers [START_REF] Reich | A Theoretical Analysis of Creativity Methods in Engineering Design: Casting ASIT within C-K Theory[END_REF][START_REF] Kroll | Steepest-first exploration with learning-based path evaluation[END_REF]. We will follow the same method. We first codify in a canonical model what can make the generativity of a GDA. Based on this analytical model, we analyse the generativity of a sample of published GDA.

A canonical model of GDA: concepts, object model, expansions.

Knowledge base -object model and splitting condition

A GDA operates on an initial state of knowledge 𝐾 0 which contains an object model 𝑀 0 with:

ICED21

-Variables that can be assimilated to 'design parameters' or also called 'genotypical parameters' -parameters that are considered as directly actionable by the designer, noted 1 in X = .

-Variables that can be assimilated to functional (or behavioural or phenotypical) features, j φ . They are not directly actionable; their value is computed in the object model: 1j φ in X = → . -One artefact is a point value 1 in x = that has the features j 1 m φ = . GDA apply in situations where:

-The object model M0 is not invertible: given specific j 1 m φ = , the object model 0 M doesn't enable to find even one 1 in X = that meets j 1 m φ = in finite reasonable time (see H1 below). -The object model M0 is not derivable not continuous, which means that a small change in one i X can provoke strong changes in j 1 m φ = and conversely a small change in j φ can correspond to a strong change in 1 in X = . In particular, this means that it is not possible, for a known object

1 j 1 m (, φ in X =  = ),
to know what is its neighbourhood in terms of genotype and (even less) in term of phenotype -so that in this kind of K0, there is no self-evident solution to a problem of optimisation, ie finding an object that, at least locally, phenotypically dominates the others. Design theory leads us to wonder whether this initial knowledge base K0 is splitting [START_REF] Le Masson | Design Theory at Bauhaus: teaching "splitting" knowledge[END_REF], ie non-modular and non-deterministic. Modularity would mean that some design parameters could be added without effect on phenomenology. As we just mentioned, initially, in K0, the design parameters are supposed to influence phenomenology. Determinism would mean that some design parameters would determine the phenomenological behaviour: again, as we just mentioned, initially, in K0, one can't say that such deterministic law exist. So in usual contexts, we have: Property P1: usually GDA operates on a knowledge base that meet the splitting condition, hence GDA is compatible with a generative process.

Concepts as departures of a GDA:

Following C-K theory, any GDA that aims to design some X begins necessarily with a concept of the form "X that fulfils P(X)", P(X) being a series of properties of X such that:

-P(X) are undecidable in K0 ie. there is no constructive rule that allows to design such X with K0 (of course, since we want to describe the mechanism of the GDA 'engine' following the C-K operators, the 'engine' itself is not in K; otherwise it would appear as a constructive rule and the design is finished) -P(X) will be constructible, true and compatible in some established Kn state of K. It has to be underlined that here is a specific feature of GDA: GDA actually work to generate a collection of artefacts, ie in the concept {X, P (X)}, X actually refers to a collection of artefacts; and P actually refers to a property of this collection: in the concept "the set of wing profiles that form a Pareto front", we want to generate a collection (X) of wing profiles, and this collection has the property to form a Pareto front (this is a property of the population, and not of a lone artefact). Hence a second property: P2: usually GDA designs a collection of artefacts with specific property, this property can make that it is undecidable whether it is possible or impossible to get a population with property P. P has to be interpretable (hence it is in K0) and just needs to make X undecidable in K0. Illustration:

-"a collection of N artefacts": it can be generated by instantiating M0 N-times. It is not a concept.

-"a collection of N artefacts generated by random variation of genotype": it can easily be generated as soon as one knows of random number generator. This is not a concept. -"a collection of N artefacts generated by variation of phenotype": if the object model is noninvertible, this is a concept.

Expansion in space K and concepts partition in space C

C-K theory models Concept partitions and expansions through tree structured sequences of nested partitions. They describe a constructive refinement of C0 that should lead to the design of X; each of ICED21 3423 these steps may activate space K, hence creating a knowledge expansion. At least, the last refinement produces an acceptable design that is integrated as a new true object in space K.

In the case of GDA, the algorithm is parameterized to produce knowledge and concept expansions. In a genetic algorithm, this is done by variation-selection. But the partitions can't be easily followed.

When successive partitions can't be easily followed, it is possible to evaluate the expansions:

-If the initial proposition {X, P(X)} was a concept and has become knowledge (in C-K terms: there was an initial disjunction and there is a final conjunction), then there was C-expansion. -By comparing the knowledge base before (K0) and after the GD process (Kfinal), one can estimate K-expansion.

P3: a criteria to evaluate the generativity of a GD is twofold: a-is there a conjunction after an initial disjunction? b-what is the knowledge expansion between K0 and Kfinal?

P1, P2, P3 are the main properties of a canonical model of GDA in C-K framework (Fig. 2)

Variation and selection in GDA: the combinatorial trap

GDA raise a critical question for design theory: in which way can an algorithm be generative in the sense of C-K theory? Usual applications of C-K theory consider that K-space contains propositions (that are true or false) as well as propositions that can be logically deducted one from the otherhence not every new proposition is a K-expansion. Hence the knowledge base contains an internal "knowledge production engine" and one considers that there is expansion only if one goes 'beyond' this internal knowledge production engine. In the case of a GDA, our hypothesis is:

H1: we consider that classical computations techniques in finite time are available in K and their results are not considered as K-expansions. The algorithm that is under investigation is not in K.

Generativity in GD: the emergence of a topology of artefacts.

Building on properties P1 to P3 and hypothesis H1, what does C-K predict on GDA generativity? -According to P1 and H1: even GDA-knowledge base is purely made of combinatorial knowledge, the knowledge base is splitting and enables generativity -According to P2 and H1: concepts in GDA are related to specific properties associated to a collection of artefacts -the concept doesn't come from the number of entities (because of H1); hence the concepts comes from the structure and descriptors of this collection. -According to P3: expansions can be evaluated by analysing initial and final C and final Kexpansion. In the end of a GDA process, one gets a collection of artefacts that meet the structural property P. So that the generativity is in this new structure of the collection of artefacts. At first sight, GDA appears trapped into a closed world of combinatorial designs. To avoid such trap, C-K theory calls for thorough examination of all knowledge produced by the algorithm. Clearly this knowledge is much more extended than the single artefacts that are designed. We have to recognize that the GDA not only explores single designs but compares them, positions them one to another, creating structures in the collection of artefacts. GDA provides new knowledge on the topology of Xis.

ICED21

The expansion comes from the emergence of a 'geometry', a space in which artefacts can be relatively positioned. This new structure is a topology on the model of objects, in the sense that:

-GDA expresses each object in all its dimensions ()

1 j 1 m , φ in X =  = 
. Hence this space is multidimensional, linking genotypic dimensions and phenotypic dimensions.

-GDA enables to distinguish certain objects -each object of the final collection is carefully separated (in singletons). -GDA also enables to not distinguish other objects: all the 'dominated' artefacts are considered in the same "neighbourhood" -In this topology, the object model can be inverted (almost) everywhere: for each point of the topology, one relevant artefact can be associated (with respect to the criteria P). It means that in the resulting topology the knowledge base is not splitting anymore.

How topological knowledge provides a source of generativity for the user

For sure, there is a circular logic here: the topology that emerges is dependent of the iterative algorithm and another GDA technique would produce a different topology. Conversely, the information on the topology of designs can improve the GDA. counts for the generativity of GDA is the type of new knowledge extracted from the topology that appeared. Information linked to this topology helps to explore dimensions of expansion predicted by canonical model Fig. 1: -The topology can be extended by extending adding or deleting some i X , changing range, or modifying j 1 m φ = . -The topology of the

1 j 1 m , φ in X =  =  ,
1 j 1 m , φ in X =  = 
revealed by the population of designs can help to compute some property P that will be introduced to change the iteration rules. E.g an algorithm can use the density of designs in some areas of the Xis to evolve the selection rules.

GDA: TOPOLOGIES AND COMPARING GENERATIVITY

We now have analytical tools (canonical model) and clear predictions (GDA tools generate topology of artefacts). We test them on a sample of most recent GDA. This sample was built on GDA recent reviews (Caetano et al., 2020, Mountstephens and[START_REF] Mountstephens | Progress and Challenges in Generative Product Design: A Review of Systems[END_REF]. We hence selected the following methods:

-MOEA (with one particular illustrative use case: (Byrne et Generativity analysed within the canonical model:

the designer designs a Pareto front (not a single aircraft). We have a clear topology: single artefacts along the front, dominated artefacts below the front, no artefacts beyond. -Modifying the design parameters to be varied, the designer gets several topologies (in case 1, the designer only evolved the wing profile, in case 2, the designer also evolved the fuselage).

Space-filling generative design

Khan & Awan [START_REF] Khan | A generative design technique for exploring shape variations[END_REF] give (among others) an simple illustration "generative design technique for exploring shape variation", based on space-filling technique. In GD canonical model (see Fig. 3 below): in K, the designer disposes of a parameterized CAD-model (here a lamp, with two design parameters). The concept is: a map that represents the diversity of possible CAD shapes. To this end, the designer selects mapping criteria P: either space-filling (the criteria pushes to maximise the distance between shapes), or non-collapsing criteria (avoiding too different shapes [START_REF] Draguljić | Noncollapsing Space-Filling Designs for Bounded Nonrectangular Regions[END_REF])) or both. Powered also by MOES NSGA-II, the GD tool generates a map of CAD shapes. Generativity analysed within the canonical model:

the designer designs a map (not a single CAD shape) -hence a topology of artefacts.

-Formally speaking, the only difference with Pareto front case is that the former relies on mapping criteria whereas Pareto case, the mapping criteria are the function themselves.

Topological optimization algorithm

Matejka et al. present an example of topological optimization GDA for "exploration and visualization of large-scale generative design data set" [START_REF] Matejka | Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets[END_REF]. In GD canonical model (see Fig. 4 below): in K, the designer has defined functions of the object (an office table) and the design parameters are only the presence or absence of matter. The concept can be formulated as "a large variety of (possibly surprising) office tables". To design one office table (CAD shape), the designer can fix a level to each of the constraints and use a topological optimization algorithm, optimizing the That an evolutionary approach did not outperform a brute force approach could be the result of the constrained nature of the representation. Each of the thr ee airfoil sections had tw o variables.

Although each individual w as encoded by 30 int egers, the range of each variable w as limited to viable designs. Such a representation could generat e good solutions purely by random variation, indicating that it is too constrained. This conclusion w ould be supported by the fact that both approaches generat ed paret o optimal designs that outperformed the original model. A sample of individuals from the paret o front is show n in Fig. 9. Limiting the ev olvable repr esentation to the airfoils produced optim ised solutions that maintained the same overall design as the BWB aircr af t.

A scatter plot of wing and airfoil optimisation is sh own in Fig. 8(b). Again the original model is sh ow n in black and the evolved and brute force solutions are shown in red an d green resp ectively. Th e graph sh ow s how w ell the desi gn maximised lift on the x-axis and how w ell it reduced drag on the y-ax is. solutions ar e shown in red and green respectively with a line connecting individual on the paret o front. Over all the pareto front of the ev olved solutions is eq uivalent to the randomly generated solutions, indicating that no bene t was provided by the genetic information.

That an evolutionary approach did not outperform a brute force approach could be the result of the constrained nature of the representation. Each of the three airfoil sections had two variables. Although each individual was encoded by 30 int egers, the range of each variable was limited to viable designs. Such a representation could generat e good solutions purely by random variation, indicating that it is too constrained. This conclusion would be supported by the fact that both approaches generat ed pareto optimal designs that outperformed the original model. A sample of individuals from the pareto front is shown in Fig. 9. Limiting the ev olvable representation to the airfoils produced optim ised solutions that maintained the same overall design as the BWB aircraf t.

A sc atter plot of wing and airfoil optimisation is sh own in Fig. 8(b). Again the original model is sh own in black and the evolved and brute force solutions are shown in red an d green resp ectively. Th e graph sh ows how well the desi gn maximise d lift on the x-axis and how well it reduced drag on the y-ax is.

C

narrow down the design space and larger variation of designs may not be achieved. Therefore, the decision on the selection of appropriate design parameters should be carefully made. One strategy, which the designer can follow, is to fi rst detect the important features of a given model and then these features can be parametrized with a relatively higher number of parameters and designs can be generated with these parameters. Later, after some trials, the designer can detect quixotic parameters and eliminate them by directly modifying the CAD model. Such capability of the generative design system is recognized as 'designerly' method, which allows designers to modify the model under consideration and use its generative capabilities at any phase of the design process [START_REF] Hatchuel | Innovative design within tradition -injecting topos structures in C-K theory to model culinary creation heritage[END_REF] . After exploring the designs based on the important features, later, if required, design space can be explored based on its nominal features.

Formulation of design space

As stated before, the design space for any CAD model isformed by the number of the design parameters and their bounds. The dimensionality of the design space depends on the number of design parameter used to defi ne the CAD model and the limits of the design space are set by defi ning the upper and lower bounds for each design stage and based on these specifi cations the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to coarsely form the design space as a percentage of the initial parameter values of the design. This formulation happens when no primary understanding of the design specifi cations are available in the conceptual phase. The autonomous formulation gives a good initial guess of suitable space limits. With this formulation, the designer can fi rst inadequately build up an initial map of promising regions of the design space and then explore designs in that space. Afterward, the designer can further reform the design space based on the previous exploration results. There can be some infeasible designs in the autonomously formalized space, but this can be overridden by implementing geometric constraints.

Interactive Formulation: In the interactive formulation of the design space, the designer creates multiple spaces and gradually proceeds to a fi nal design. First, the designer can autonomously form an initial design space around the given CAD model and creates designs in this space. Afterward, the designer can select a design and then formalize an autonomous space around that design. In this way, the designer can interactively proceed by selecting designs and forming the design spaces until he/ she achieves a fi nal desired design. For example, Fig. 3 gives the illustration of the interactive formulation of the design space. In which initial space (design space 1) is formed around the

S. Khan, M.J. Awan

narrow down the design space and larger variation of designs may not be achieved. Therefore, the decision on the selection of appropriate design parameters should be carefully made. One strategy, which the designer can follow, is to fi rst detect the important features of a given model and then these features can be parametrized with a relatively higher number of parameters and designs can be generated with these parameters. Later, after some trials, the designer can detect quixotic parameters and eliminate them by directly modifying the CAD model. Such capability of the generative design system is recognized as 'designerly' method, which allows designers to modify the model under consideration and use its generative capabilities at any phase of the design process [START_REF] Hatchuel | Innovative design within tradition -injecting topos structures in C-K theory to model culinary creation heritage[END_REF] . After exploring the designs based on the important features, later, if required, design space can be explored based on its nominal features.

Formulation of design space

As stated before, the design space for any CAD model is formed by the number of the design parameters and their bounds. The dimensionality of the design space depends on the number of design parameter used to defi ne the CAD model and the limits of the design space are set by defi ning the upper and lower bounds for each design stage and based on these specifi cations the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to coarsely form the design space as a percentage of the initial parameter values of the design. This formulation happens when no primary understanding of the design specifi cations are available in the conceptual phase. The autonomous formulation gives a good initial guess of suitable space limits. With this formulation, the designer can fi rst inadequately build up an initial map of promising regions of the design space and then explore designs in that space. Afterward, the designer can further reform the design space based on the previous exploration results. There can be some infeasible designs in the autonomously formalized space, but this can be overridden by implementing geometric constraints.

Interactive Formulation: In the interactive formulation of the design space, the designer creates multiple spaces and gradually proceeds to a fi nal design. First, the designer can autonomously form an initial design space around the given CAD model and creates designs in this space. Afterward, the designer can select a design and then formalize an autonomous space around that design. In this way, the designer can interactively proceed by selecting designs and forming the design spaces until he/ she achieves a fi nal desired design. For example, Fig. 3 gives the illustration of the interactive formulation of the design space. In which initial space (design space 1) is formed around the

S. Khan, M.J. Awan

narrow down the design space and larger variation of designs may not be achieved. Therefore, the decision on the selection of appropriate design parameters should be carefully made. One strategy, which the designer can follow, is to fi rst detect the important features of a given model and then these features can be parametrized with a relatively higher number of parameters and designs can be generated with these parameters. Later, after some trials, the designer can detect quixotic parameters and eliminate them by directly modifying the CAD model. Such capability of the generative design system is recognized as 'designerly' method, which allows designers to modify the model under consideration and use its generative capabilities at any phase of the design process [START_REF] Hatchuel | Innovative design within tradition -injecting topos structures in C-K theory to model culinary creation heritage[END_REF] . After exploring the designs based on the important features, later, if required, design space can be explored based on its nominal features.

Formulation of design space

As stated before, the design space for any CAD model isformed by the number of the design parameters and their bounds. The dimensionality of the design space depends on the number of design parameter used to defi ne the CAD model and the limits of the design space are set by defi ning the upper and lower bounds for each design stage and based on these specifi cations the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to coarsely form the design space as a percentage of the initial parameter values of the design. This formulation happens when no primary understanding of the design specifi cations are available in the conceptual phase. The autonomous formulation gives a good initial guess of suitable space limits. With this formulation, the designer can fi rst inadequately build up an initial map of promising regions of the design space and then explore designs in that space. Afterward, the designer can further reform the design space based on the previous exploration results. There can be some infeasible designs in the autonomously formalized space, but this can be overridden by implementing geometric constraints.

Interactive Formulation: In the interactive formulation of the design space, the designer creates multiple spaces and gradually proceeds to a fi nal design. First, the designer can autonomously form an initial design space around the given CAD model and creates designs in this space. Afterward, the designer can select a design and then formalize an autonomous space around that design. In this way, the designer can interactively proceed by selecting designs and forming the design spaces until he/ she achieves a fi nal desired design. For example, Fig. 3 gives the illustration of the interactive formulation of the design space. In which initial space (design space 1) is formed around the Var iat ions on n=2 param narrow down the design space and larger variation of designs may no be achieved. Therefore, the decision on the selection of appropriate design parameters should be carefully made. One strategy, which the designer can follow, is to fi rst detect th important features of a given model and then these features can b parametrized with a relatively higher number of parameters and de signs can be generated with these parameters. Later, after some trials the designer can detect quixotic parameters and eliminate them b directly modifying the CAD model. Such capability of the generativ design system is recognized as 'designerly' method, which allows de signers to modify the model under consideration and use its generativ capabilities at any phase of the design process [START_REF] Hatchuel | Innovative design within tradition -injecting topos structures in C-K theory to model culinary creation heritage[END_REF] . After exploring th designs based on the important features, later, if required, design spac can be explored based on its nominal features.

Formulation of design space

As stated before, the design space for any CAD model isformed b the number of the design parameters and their bounds. The di mensionality of the design space depends on the number of design parameter used to defi ne the CAD model and the limits of the design space are set by defi ning the upper and lower bounds for each design parameter. However, formulation of a suitable design space isa decisiv task as the performance of a technique in term of creating better design alternatives mainly depends on it. Setting up the design space should b carefully done in order to achieve the maximum performance of the Sf GDT and should have su fficient high potential region. If design space i too narrow then Sf-GDT will result in the creation of similar/ same de signs. On the other hand, a vast design space can result in the waste o computational effort in exploring undesirable regions of the design space. Typically, a design space is set up by defi ning the upper and lower bounds of the design parameters. Where each parameter re presents a dimension in the design space. Defi ning the upper and lower S. Khan, M.J. Awan ICED21 office table weight while meeting the functional requirements -depending on optimization parameters (eg voxel size). By varying the functional levels and the optimization parameters, the designer gets a variety of shapes. Generativity analysed within the canonical model:

the designer designs a variety of tables (Xi, Fj), on a functional map. Hence a topology.

the object model is different: in MOEA case, design parameters determine functions; here the model can be punctually inverted: for one functional definition, topological optimization determines the design parameters (matter or not matter in each voxel). Still the model is only punctually invertible and so the topology is a concept. -This GDA tool seems different from MOEA -but formally it leads to quite similar results: a set of ordered according to functional dimensions, with parameters for each artefact.

MAP-Elites Quality-Diversity (QD) algorithm

MAP-Elites QD algorithm was used in a large variety of problems. One good illustration is the mapping of gaits of a hexapod robot [START_REF] Cully | Robots that can adapt like animals[END_REF][START_REF] Koos | Fast Damage Recovery in Robotics with the T-Resilience Algorithm[END_REF]. In GDA canonical model (see Fig. 5 below): the designer has a model of an hexapod described by 24 parameters, which create numerous gaits, from purely quadruped gait to classic tripod gait. The gait is a phenotype that can be described in several ways. For instance, one phenotype dimension can be 1=the speed in forward-axis -to be maximized. The concept can be formulated as: a map of gaits that present an optimal 1. This map is unknown and the designer can work on the space in which she will design these gaits. She has to propose a mapping criteria 2. She can map the 1-optimal gaits according to the y-axis speed -and this will probably result in a Pareto front. She can choose to map the gaits according to another phenotype dimension such as the fraction of time that each of the 6 legs touches ground (6-dimensional map).

Based on 1 and 2, the MAP-Elites algorithm constructs an elite for each 2 niche. Generativity analysed within the canonical model:

-The design process results in a topology of artefacts. Compared to Pareto front GDA, user relies on a phenotype feature that is not functional; compared to space-filling GDA, user defines his/her own phenomenological feature. Hence mapping criteria is a free parameter of the tool. -The map can be seen as a generalization of topological optimization GDA tools: map dimensions are made by a phenomenological feature 2 and there is 1-optimized genotype (in topological space: for each set of functional levels, there is a shape that minimizes the weight). [START_REF] Cully | Robots that can adapt like animals[END_REF][START_REF] Koos | Fast Damage Recovery in Robotics with the T-Resilience Algorithm[END_REF]

Characterizing the generativity of GDA tools: the design of topologies

We can synthesize the results just obtained above: 1. We confirm that GDA tools don't generate one artefact but generate a topology of artefacts which is the locus of the generative power of the algorithm. 2. In this topology design process, GDA tools differ (at least!) by the degree of freedom they offer for building the topology. Pareto front GDA tools maximize correlated functions; space filling techniques maximize phenotypic distances; topological optimization paves functional space with weight optimal artefacts; Map-Elites has the interesting (generic) property to be free in term of phenomenological and genotypical features. 3. As predicted, the GDA tools also open diverse directions for design expansions Each GDA tool generates a specific topology which impacts DP's or FR's generativity (see table below). One can predict the emergence of complementary GDA algorithms to work on the relevant 1 in X = , explore the j 1 m φ = and evolve the resulting 0 . M [START_REF] Gaier | Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted Illumination[END_REF], Bossens et al., 2020). One can also predict the emergence of algorithms with double generativity (on DPs and FRs). 4. Analysing GDA as tools for designing topologies has several consequences for understanding their generativity, their value and their use:

-GDA tools help analyse interdependences between functions, not only correlation -as in Pareto front MOEA-but also independences -as in QD algorithm. -The capacity to map independences can't be underestimated in engineering design: this is precisely the capacity required to design resilient systems, capable of being independent of external events. Hence GDA tools might actually be useful for designing resilience. -Mapping phenotypes to genotypical elites, GDA tools also contribute to "invert" usual models that compute functional requirements from design parameters. The maps generated by GDA tools gives a genotype for each phenotype niche. Doing so, GD A tool actually contributes to uncover general laws and models linking phenotypes to their genotypical roots. Hence it contributes to establish design rules. Mac Cormack [START_REF] Mccormack | Generative design: a paradigm for design research[END_REF] considered that GDA tools would lead designers to focus on the design of design rules and GDA tools would then generate artefacts based on these new design rules. Fifteen years later, one could rather say that GDA tools could be an essential tool to uncover design rules and hence improves the generativity of users.

Table 1. Expansion directions opened by GD-generated topology

Introduction

A utonomous robots ar e inherently complex machines that have to cope w ith a dynamic and often hostile environment. They face an even more demanding context w hen they operate for a long time w ithout any assistance, w hether w hen exploring remote places (Bellingham and Rajan, 2007) or, more prosaically, in a house w ithout any robotics expert (Prassler and Kosuge, 2008). Asfamously pointed out by Corbato (2007), w hen designing such complex systems, " [w e should not] w onder if some mishap may happen, but rather ask what one w ill do about it w hen it occurs" . In autonomous robotics, this remark means that robots must be able to pursue their mission in situations that have not been anticipated by their designers. Legged robots clearly illustrate this need to handle the unexpected: to be as versatile as possible, they involve many moving parts, many actuators and many sensors (Kajita and Espiau, 2008); but they may be damaged in numerous different w ays. These robots w ould therefore greatly benefi t from being able to autonomously fi nd a new behavior if some legs ar e ripped off, if a leg is broken or if one motor is inadvertently disconnected (Fig. 1).

Fault tolerance and resilience ar e classic topics in robotics and engineering. The most classic approaches combine intensive testing w ith redundancy of components (Visinsky et al., 1994;Koren and Krishna, 2007). These methods undoubtedly proved their usefulness in space, aeronautics and numer ous complex systems, but they also ar e expensive to operate and to design. M ore importantly, they require the identifi cation of the faulty subsystems and a procedure to bypass them, w hereas both operations ar e diffi cult for many kinds of faultsfor example mechanical failures. A nother classic approach to fault tolerance isto employ robust controllers that can w ork in spite of damaged sensors or hardw are Figure 1: Examples of situations in w hich an autonomous robot needs to discover a qualitatively new behavior to pursue its mission: in each case, classic hexapod gaits cannot be used. The broken leg example (c) is a typical damage that is hard to diagnose by direct sensing (because no actuator or sensor isdamaged).

ineffi ciencies (Goldberg and Chen, 2001;Caccavale and Villani, 2002;Qu et al., 2003;Lin and Chen, 2007). Such controllers usually do not require diagnosing the damage, but this advantage is tempered by the need to integrate the reaction to all faults in a single controller. Last, a robot can embed a few pre-designed behaviors to cope w ith anticipated potential failures (G örner and H irzinger, 2010;Jakimovski and M aehle, 2010;M ostafa et al., 2010;Schleyer and Russell, 2010). For instance, if a hexapod robot detects that one of its legs isnot reacting as expected, it can drop it and adapt the position of the other legs accordingly (Jakimovski and M aehle, 2010;M ostafa et al., 2010). An alternative line of thought is to let the robot learn on its own the best behavior for the current situation. If the learning process is open enough, then the robot should be able to discover new compensatory behaviors in situations that have not been foreseen by its designers. N umerous learning systems have been experimented in robotics (for review s, see Connell and M ahadevan (1993);Argall et al. (2009); N guyen-Tuong and Peters (2011); Kober and Peters (2012)), w ith different levels of openness and various a priori constraints. M any of them primarily aim at automatically tuning controllers for complex robots (Kohl and Stone, 2004;Tedrake et al., 2005;Sproew itz et al., 2008;H emker et al., 2009) w hereas only a handful of these systems has been explicitly tested in situations in w hich a robot needs to adapt itself to unexpected situations (M ahdavi and Bentley, 2003;Berenson et al., 2005;Bongard et al., 2006).

Finding the behavi or that maximizes performance in the current situation is a reinforcement learning pr oblem Sutton and Barto (1998), but classic reinforcement learning algorithms (e.g. TD-

CONCLUSION

We analysed GDA in the light of design theory, to better characterize their generative power. Since these algorithms are based on a parametric of object, their generativity might sound limited to generate 'varied artefacts' from the same model, however we show that GDA design topologies of artefacts -ie large, ordered, structured, actionable sets of artefacts. GDA finally open the field of topological generativity. We show that GDA tools evolve today to enable more degree of freedom in the topology design, from the analysis of interdependences to the analysis of independences, leading possibly to designing resilience or to uncover design rules. This design-theory based analyses of GDA tools helps uncover some of their critical properties, identifies some development trends and even suggests ways for further improvement. Conversely, the analysis invites to deepen design theory: with the help of C-K theory applied to Topos [START_REF] Hatchuel | Innovative design within tradition -injecting topos structures in C-K theory to model culinary creation heritage[END_REF] it might be possible to give an enriched account of the design of topologies by GDA tools, hence better addressing the issues of resilient design and the design of design rules.

Figure 1 .

 1 Figure 1. A canonical model of GD algorithms in C-K. P1: object model is non-invertible, a priori non continuous (hence splitting); P2: Property P is undecidable; P3: generativity is measured on disjunction-conjunction and K-expansions (a topology on object model M0) 3.3 Avoiding the combinatorial trap in GDA: C-K conditions for generativity and the emergent topology of designs.

A

 populat ion (= 1… , φ j= 1…m) with proper ty P Based on some param et er s (initial dat a, computat ion param …) object model Rules to compute: x = 1… → φ j

 and/or the model object 0 M :

Figure 2 .

 2 Figure 2. Pareto front GDA tool (MOEA NSGA-II), from Byrne et al 2014. Parametric object model in K. GDA generates the topology associated to a Pareto front.

Figure 3 .

 3 Figure 3. Space-filling GD tool (MOEA-NSGA-II) fromKhan et al. 2014

A

 Pareto Front on (m ax Lift ; min Drag) , From a subset of 3 paramet er s { From a subset with more paramet er s { } solutions ar e show n in red and green respectively w ith a line connecting individ ual on the paret o front. Over all the paret o front of the ev olved solutions is eq uivalent to the randomly gener ated solutions, indicating that no bene t w as provided by the genetic information.

Fig. 9 .

 9 Fig. 9. Airfoil optim isation in the order of increasing lift (and increasing drag) from top lef t to bott om right. The overall shape of the design rem ains the sa m e.

Fig. 10 .

 10 Fig. 10. The change in aver age lift/drag during the course of the run: (a) av erage lift m axim isation and (b) av erage drag m inim isation.

Fig. 11

 11 Fig. 11. W ing optim isation in the order of increasing lift (and increasing drag) from the top lef t to the bott om right. The incr eased num ber of variables result ed in different w ing con gurations.

Fig. 12 .

 12 Fig. 12. The Cessna 182 m odel. The optim ised sections are highlighted in red.(For interpret ation of the referen ces to colour in this gure caption, the reader is referr ed to the w eb version of this paper .)

Fig. 9 .

 9 Fig. 9. Airfoil optimisation in the order of increasing lift (and increasing drag) from top left to bott om right. The overall shape of the design remains the sa me.

Fig. 10 .

 10 Fig. 10. The change in average lift/drag during the course of the run: (a) av erage lift maximisation and (b) av erage drag minimisation.

Fig. 11 .

 11 Fig. 11. Wing optimisation in the order of increasing lift (and increasing drag) from the top left to the bott om right. The increased number of variables result ed in different w ing con gurations.

Fig. 12 .F

 12 Fig. 12. The Cessna 182 model. The optimised sections are highlighted in red. (For interpret ation of the referen ces to colour in this gure caption, the reader is referr ed to the w eb version of this paper.)

Fig. 2 .

 2 Fig. 2. Design alternatives for a 3D CAD model with two design parameters (a) are obtained in 2D spaces considering; (b) only space-fi lling criterion, (c) only non-collapsing criterion, and both space-fi lling and non-collapsing criteria using Sf-GDT (d). Design alternatives for the same CAD model with three parameters (e) are generated in 3D design space using Sf-GDT while considering both space-fi lling and noncollapsing criteria (f).

Fig. 2 .

 2 Fig. 2. Design alternatives for a 3D CAD model with two design parameters (a) are obtained in 2D spaces considering; (b) only space-fi lling criterion, (c) only non-collapsing criterion, and both space-fi lling and non-collapsing criteria using Sf-GDT (d). Design alternatives for the same CAD model with three parameters (e) are generated in 3D design space using Sf-GDT while considering both space-fi lling and noncollapsing criteria (f).

Fig. 2 .

 2 Fig. 2. Design alternatives for a 3D CAD model with two design parameters (a) are obtained in 2D spaces considering; (b) only space-fi lling criterion, (c) only non-collapsing criterion, and both space-fi lling and non-collapsing criteria using Sf-GDT (d). Design alternatives for the same CAD model with three parameters (e) are generated in 3D design space using Sf-GDT while considering both space-fi lling and noncollapsing criteria (f).

Figure 4 .

 4 Figure 4. Topological algorithm GD tool coded in C-K -based on[START_REF] Matejka | Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets[END_REF]

AFigure 5 .

 5 Figure5. Map-Elitesalgorithm GD tool, from[START_REF] Cully | Robots that can adapt like animals[END_REF][START_REF] Koos | Fast Damage Recovery in Robotics with the T-Resilience Algorithm[END_REF]

 algorithm) find the "fitness potential" for each combination features elites of the search space best of the family = solution with similar features (niche) Sylvain Koos, A ntoine Cully and Jean-Baptiste M ouret ⇤ D amage recovery is critical for autonomous robots that need to operate for a long time without assistance. M ost current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for ef ficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the selfmodeling algorithm proposed by Bongard al. The behavior the robot isassessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches.

⇤

 Sylvain Koos, A ntoine Cully and Jean-Baptiste M ouret ar e w ith the ISIR, Universit é Pierre et M arie Curie-Paris 6, CN RS UM R 7222, F-75252, Paris Cedex 05, France. Contact: mouret@isir.upmc.fr (a) N ormal state. (b) Twolegs ripped out. (c) One broken leg. (d) Twounpow ered motors.

 Koos, Cully and Mouret arXiv | 1 arXiv:1302.0386v1 [cs.RO] 2 Feb 2013

		Pareto front	Space filling	Topological optimization	MAP-Elites
	Topology	Pareto front topology	Identifies design neighbours	Cover functional map with	Find elite gait for each specific
	generativity	(elites / dominated)		(weight) optimal artefacts	behavioral niche
	DP	Identifies DP for	None	May help identify new	None
	generativity	improved Pareto front		families of DPs (table legs…)	
	FR	None	Paves the way to new FR,	None	Explore altearntive behavioral
	generativity		sensations, emotions		niche types à resilient design
	3428				ICED21