Asymmetrical Bi-RNNs, 3rd place solution at the ICCV Trajnet++ Challenge

Raphaël Rozenberg1,2, Joseph Gesnouin2,3 & Fabien Moutarde2

1École Normale Supérieure, Université PSL
2MINES ParisTech, Université PSL, Centre de Robotique
3Institut VEDECOM

October 17, 2021
Modern approaches specifically focused on the presence of social interactions.

We focus on the encoding part of the trajectories of individual people.

1[Kothari et al., 2021], ”Human trajectory forecasting in crowds: A deep learning perspective”

2[Alahi et al., 2016] ”Social lstm: Human trajectory prediction in crowded spaces”
A better encoder? From RNNs & Bi-RNNs to U-RNNs

The data has a **preferred direction** in time: the forward direction.

→ We accumulate information while knowing which part of the information will be useful in the future.

\(^1\) [Xue et al., 2017], ”Bi-prediction: pedestrian trajectory prediction based on bidirectional LSTM classification.”
Results on Trajnet++ real world dataset

<table>
<thead>
<tr>
<th>Model (Encoder - Decoder)</th>
<th>Interaction</th>
<th>ADE (m) ± 0.01 m</th>
<th>FDE (m) ± 0.01 m</th>
<th>Col-I (%) ± 0.5%</th>
<th>Col-II (%) ± 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant velocity</td>
<td>None</td>
<td>0.68</td>
<td>1.42</td>
<td>14.3</td>
<td>15.2</td>
</tr>
<tr>
<td>None - GRU</td>
<td>Dir.</td>
<td>0.63</td>
<td>1.33</td>
<td>6.9</td>
<td>12.1</td>
</tr>
<tr>
<td>LSTM - LSTM</td>
<td>Occ.</td>
<td>0.58</td>
<td>1.23</td>
<td>11.5</td>
<td>13.9</td>
</tr>
<tr>
<td>U-LSTM - LSTM</td>
<td>Occ.</td>
<td>0.57</td>
<td>1.22</td>
<td>10.2</td>
<td>14.9</td>
</tr>
<tr>
<td>GRU - GRU</td>
<td>Dir.</td>
<td>0.58</td>
<td>1.24</td>
<td>6.5</td>
<td>12.4</td>
</tr>
<tr>
<td>Bi-GRU - GRU</td>
<td>Dir.</td>
<td>0.59</td>
<td>1.26</td>
<td>6.7</td>
<td>11.7</td>
</tr>
<tr>
<td>U-GRU - GRU</td>
<td>Dir.</td>
<td>0.58</td>
<td>1.25</td>
<td>6.5</td>
<td>11.7</td>
</tr>
<tr>
<td>reversed U-GRU - GRU</td>
<td>Dir.</td>
<td>0.58</td>
<td>1.25</td>
<td>6.5</td>
<td>11.0</td>
</tr>
<tr>
<td>LSTM - LSTM</td>
<td>Dir.</td>
<td>0.58</td>
<td>1.25</td>
<td>6.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Bi-LSTM - LSTM</td>
<td>Dir.</td>
<td>0.59</td>
<td>1.28</td>
<td>6.2</td>
<td>11.9</td>
</tr>
<tr>
<td>U-LSTM - LSTM</td>
<td>Dir.</td>
<td>0.56</td>
<td>1.22</td>
<td>5.2</td>
<td>11.9</td>
</tr>
<tr>
<td>reversed U-LSTM - LSTM</td>
<td>Dir.</td>
<td>0.58</td>
<td>1.26</td>
<td>6.6</td>
<td>11.1</td>
</tr>
<tr>
<td>LSTM - LSTM</td>
<td>Soc.</td>
<td>0.55</td>
<td>1.18</td>
<td>6.9</td>
<td>12.7</td>
</tr>
<tr>
<td>Bi-LSTM - LSTM</td>
<td>Soc.</td>
<td>0.53</td>
<td>1.15</td>
<td>6.5</td>
<td>11.5</td>
</tr>
<tr>
<td>U-LSTM - LSTM</td>
<td>Soc.</td>
<td>0.53</td>
<td>1.14</td>
<td>5.3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

1[1]([Liu et al., 2021], "Social NCE: Contrastive Learning of Socially-aware Motion Representations")
Conclusion

- A new sequence encoder.
- Interactions are **NOT** the only aspect on which pedestrian trajectory prediction can progress.
- Could be used to significantly **improve current trajectory prediction algorithms**:
 - TrouSPI-Net [Gesnouin et al., 2021]
 - (GO)-Home [Gilles et al., 2021a, Gilles et al., 2021b]

 → [Rozenberg et al., 2021], "Asymmetrical Bi-RNN for pedestrian trajectory encoding", https://arxiv.org/abs/2106.04419
Social Lstm: Human trajectory prediction in crowded spaces.
In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

TrouSPI-Net: Spatio-temporal attention on parallel atrous convolutions and U-GRUs for skeletal pedestrian crossing prediction.

Gohome: Graph-oriented heatmap output for future motion estimation.

Home: Heatmap output for future motion estimation.

Human trajectory forecasting in crowds: A deep learning perspective.
IEEE Transactions on Intelligent Transportation Systems.

Social nce: Contrastive learning of socially-aware motion representations.

Asymmetrical bi-rnn for pedestrian trajectory encoding.

Bi-prediction: pedestrian trajectory prediction based on bidirectional lstm classification.