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HOME: Heatmap Output for future Motion Estimation

Thomas Gilles1,2, Stefano Sabatini1, Dzmitry Tsishkou1, Bogdan Stanciulescu2, Fabien Moutarde2

Abstract— In this paper, we propose HOME, a framework
tackling the motion forecasting problem with an image output
representing the probability distribution of the agent’s future
location. This method allows for a simple architecture with
classic convolution networks coupled with attention mechanism
for agent interactions, and outputs an unconstrained 2D top-
view representation of the agent’s possible future. Based on
this output, we design two methods to sample a finite set of
agent’s future locations. These methods allow us to control the
optimization trade-off between miss rate and final displacement
error for multiple modalities without having to retrain any part
of the model. We apply our method to the Argoverse Motion
Forecasting Benchmark and achieve 1st place on the online
leaderboard.

I. INTRODUCTION

Forecasting the future motion of surrounding actors is an
essential part of the autonomous driving pipeline, necessary
for safe planning and useful for simulation of realistic
behaviors. In order to capture the complexity of a driving
scenario, the prediction model needs to take into account
the local map, the past trajectory of the predicted agent
and the interactions with other actors. Its output needs to
be multimodal to cover the different choices a driver could
make, between going straight or turning, slowing down
or overtaking. Each modality proposed should represent a
possible trajectory that an agent could take in the immediate
future.

The challenge in motion prediction resides not in having
the absolute closest trajectory to the ground truth, but rather
in avoiding big failures where a possibility has not been
considered, and the future is totally missed by all modalities.
An accident will rarely happen because most predictions are
offset by half a meter, but rather because of one single case
where a lack of coverage led to a miss of more than a few
meters.

A classic way to obtain k modalities is to design a model
that outputs a fixed number of k future trajectories [6, 20,
21, 14], as a regression problem. This approach has however
significant drawbacks, as training predictions all together
leads to mode collapse. The common solution to this problem
is to only train the closest prediction to the ground truth, but
this diminishes the training data allocated to each predicted
modality as only one is learning at each sample.

Later methods adapt the model to the multi-modal problem
by conditioning the prediction to specific inputs such as
lanes [11] or targets [34]. Finally, recent methods use the
topological lane graph itself to generate trajectory for each
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Fig. 1: Summary of our approach. The yellow/red heatmap
is our predicted probability distribution and the blue points
are the sampled final point predictions.

node [32]. However each of these model constrains its
prediction space to a restricted representation, that may be
limited to represent the actual diversity of possible futures.
For example, if the predicted modalities are constrained to
the High Definition map graph, it becomes very hard to
predict agent breaking traffic rules or slowing down to park
at the side of the road.

In this paper, following the same principle as recent state
of the art method, which is that a future trajectory can
be almost fully defined by its final point [34, 32], we
reformulate the prediction problem in three steps. We first
represent the possible futures distribution by a 2D probability
heatmap that gives an unconstrained approximation of the
probability of the agent position. This heatmap is represented
as a squared image and it naturally accommodates for
multimodal predictions where each pixel represent a possible
future position of the target agent. It also enables to fully
describe the future uncertainty in a probability distribution,
without having to choose its modes or means. In a second
step, we sample from the heatmap a finite number of possible
future locations with the possibility to choose which metric
we want to optimize without retraining the model. Finally,
we build the full trajectories based on the past history and
conditioned on the sampled final points.

Our contributions are summarized as follow:
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Fig. 2: HOME pipeline. a) Context map, target agent (blue) and neighbor (green) trajectories are given as input to the
network. b) Heatmap output of the network. c) Sampled final points. d) Trajectories are built for each final point

• We present a simple model architecture made of a
convolutional neural network (CNN), a recurrent neu-
ral network (RNN) and an Attention module, with a
heatmap output allowing for easy and efficient training.

• We design two sampling algorithms from this heatmap
output, optimizing MRk or minFDEk respectively.

• We highlight a trade-off between both metrics, and show
that our sampling algorithm allows us to control this
trade-off with a simple parameter.

II. RELATED WORK

Deep learning has brought great progress to the motion
forecasting results [22]. A classic CNN architecture can be
applied to a rasterized map to predict 2D coordinates [6].

In order to model interactions better between driving
agents, attention has been introduced in multiple methods.
The approach of [20] encodes separately agents and center-
lines with 1D CNN and LSTM and then applies multi-head
attention from actors to other actors and lines. MHA-JAM
[21] concatenates agent features to a CNN-encoded map at
their specific coordinates, and then applies attention on this
joint representation. The work of [17] also uses attention
between agents for interactions, and parallely applies an
attention head on encoded lane to obtain lane probabilities
and generate a modality for each given lane. mmTransformer
[16] applies a general Transformer [30] architecture to fuse
history, map and interactions.

Another family of methods use a pool of anchor trajecto-
ries, predefined [4] or model-based [23, 28], and rank them
with a learned model. This allows to avoid any mode collapse
and assert realistic trajectories, but removes the ability to tune
the trajectories accurately to the current situation.

Multimodality can also be obtained using generative ap-
proaches that model the actual future probability distribution
[12, 19, 29, 24, 25]. However, generative models require
multiple independent sampling at inference time without any
optimization of coverage or average distance.

More recently, methods have started to leverage the graph
obtained from HD-map in order to better represent lane
connectivity. VectorNet [9] encodes both map features and

agent trajectories as polylines then merge them with a global
interaction graph. LaneGCN [14] treats actor past and the
lane graph separately, and then fuse them with a series of
attention layers between lane and actors.

Other methods then use the graph to structure their mul-
timodal outputs. TNT [34] builds from the VectorNet back-
bone and combines it with multiple target proposals sampled
from the lanes in order to diversify the prediction points.
GoalNet [33] also identifies possible goals and applied a
prediction head for each on a localized raster in order to
base the modalities on reachable lanes. WIMP [11] matches
possible polylines to the past trajectory and uses them as
conditional input to their model. LaneRCNN [32] adds actor
features from the start to sampled nodes on the lanes, and
then predicts a future point for each node along a probability.

Grid-based outputs have already been used in pedestrian
behavior prediction such as [13, 7, 18, 10, 26]. Their model
architecture, training and sampling strategies however differ
greatly from ours. The work of [27] produces a future grid
occupancy output prediction for each vehicle class in order
to plan from it, but it is not instance-based and doesn’t allow
for individual vehicle prediction.

III. METHOD

We describe our general pipeline in Fig. 2. Our method
takes as input a rasterized image of the agent environment,
and outputs a probability distribution heatmap representing
where the agent could be at a fixed time horizon T in the
future. A finite set of possible locations are then extracted
from the heatmap to ensure appropriate coverage. Future
locations are sampled to minimize either rate of misses or
final displacement errors. Finally for each sampled future
location, a trajectory representing the motion of agent from
the initial state to the future location is computed.

The aim of motion estimation is to predict the fu-
ture positions of the target agent a for T timesteps
{(xta, yta) for t in [[1, T ]]}. The model is given the past H
timesteps {(xta, yta) for t in [[−H, 0]]} for the target agent
a and the N neighbor agents a′. Supplementary context
informations are available in the shape of a graph High
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Fig. 3: Example of input and output data for our model with brief description of architecture

Definition Map (HD map). We will focus in this paper on
the prediction of the final points (xTa , y

T
a ), and then regress

the whole trajectory conditioned on the end point.

A. Encoding history and local context information

1) Map and past trajectory encoding: The local context
is available as a High Definition Map centered on the target
agent. We rasterize the HD-Map in 5 semantic channels:
drivable area, lane boundaries and directed center-lines with
their headings encoded using HSV on 3 channels. We also
add the target agent trajectory as a moving rectangle on 20
history channels and the other agents history on 20 more
channels. The final input is a (224, 224, 45) image with a 0.5
x 0.5 m² resolution per pixel. This image is processed by a
classic CNN model alternating convolutional layers and max-
pooling for downscaling to obtain a (14, 14, 512) encoding
Eraster as illustrated in the top-left part of Fig. 3.

The scalar history of the agents is also taken as input to
the model as a list of 2D coordinates. Missing timesteps are
padded with zeros and a binary mask indicating if padding
was applied is concatenated to the trajectory, as well as the
timestamps for each step, so to obtain a (H, 4) input for each
agent. Each agent trajectory goes through a 1D convolutional
layer followed by a UGRU[8] recurrent layer. The weights
are shared for all agents except the target agent.

2) Inter-agent attention for interaction: Similar to [20,
21, 17], we use attention [30] to model agent interaction. A
query vector is generated for the target agent, while key and
value vectors are created for the other actors. The normalized
dot product of query and keys creates an attention map from
the target agent to the other agent, then used to pool their
value features into a context vector. The context vector is
then added to the target vehicle feature vector through a
residual connection followed by LayerNormalization [2]. The
obtained trajectory encoding Etrajectory is then repeated to
match the context encoding Eraster dimensions. The final

encoding Econtext is the result of the concatenation of both
encodings Eraster and Etrajectory .

3) Increased output size for longer range: Due to high
speed, some cars may go through a greater range in the
time horizon T that is covered by the input range of 56m.
However, simply increasing input size would greatly add
to the computational burden while not necessarily bringing
useful information. We therefore want to increase the output
size while retaining the spatial correspondences through the
layers. In order to do so, we apply Tranpose Convolutions
with stride 1 and kernel size 3. Since 1 input pixel is
connected to a grid of 3x3 output pixels, the edge pixels
generate a new border of pixels around them, increasing the
encoding size by 1 in each direction. We apply 2 of these
layers, resulting in a (18, 18, 512) augmented encoding so
that once upscaled the decoded image output will be of size
(288, 288), corresponding to a 72m range.

B. Heatmap output

The final part of the model is a convolutional decoder
alternating transpose convolutions for upscaling and classic
convolutions, topped with a sigmoid activation. We output
an image Ŷ with similar resolution as the raster input (0.5
x 0.5 m² / pixel). The output target is an image Y with
a Gaussian centered around the ground truth position. This
image is trained with a pixel-wise focal loss inspired from
[35], averaged over the total P pixels p of the heatmap:

L = − 1

P

∑
p

(Yp − Ŷp)2f(Yp, Ŷp)

with f(Yp, Ŷp) =

{
log(Ŷp) if Yp=1
(1− Yp)4 log(1− Ŷp) else

(1)

where the non-null pixels around the Gaussian center serve
as penalty-reducing coefficients, and the square factor of



(a) MR sampling (b) FDE sampling

Fig. 4: Illustration of sampling methods

error allows the gradient to focus on poorly-predicted pixels.
We use a standard deviation of 4 pixels for the Gaussian.

C. Modality sampling

Our aim is here to sample the probability heatmap in order
to optimize the performance metric of our choice. In most
datasets such as Argoverse [5] and NuScenes [3], two main
metrics are used for the final predicted point: MissRate (MR)
and Final Displacement Error (FDE). MissRate corresponds
to the percentage of prediction being farther than a certain
threshhold to the ground truth, and FDE is simply the mean
of l2 distance between the prediction and the ground truth.
When the output is multimodal, with k predictions, minimum
Final Displacement Error minFDEk and Miss Rate over the
k predictions MRk are used.

1) Optimizing Miss Rate: We design a sampling method
in order to optimize the Miss Rate between the predicted
modalities and the ground truth. A case is defined as missed
if the ground truth is further than 2m from the prediction.
For a given area A, the probability of the ground truth Y
being in this area is equal to the integral of the probability
distribution p under this ground truth.

P (Y ∈ A) =
∫
x∈A

p(x)dx (2)

Therefore, for k predictions, given a 2D probability distri-
bution, the sampling minimizing the expected MR is the one
maximizing the integral of the future probability distribution
under the area defined as 2m radius circles around the k
predictions:

E(1mink‖ck−Y ‖>2) = 1−
∑
k

∫
‖ck−x‖<2

p(x)dx (3)

We therefore process in a greedy way as described in
Algo. 1, and iteratively select the location with the highest
integrated probability value in its 2m circle. Once we obtain

such a point, we set to zero the heatmap values under the
defined circle and move on to selecting the next point with
the same method.

Algorithm 1: MR Sampling Algorithm
input: Probability map p(x)

K number of predictions
R threshhold for Miss Rate

for k = 1..K do
Find ck maximizing

∫
‖ck−x‖<R

p(x)dx

Set p(x) = 0 for all x such that ‖ck − x‖ < R
end

The result is illustrated in Fig. 4a. We see that each
sampled point can be surrounded by a circle of radius 2m
that barely overlaps with other circles. Each point is sampled
almost equidistant to the others, as setting the probability
under previous points to zero sets a very strict limit to the
minimum distance between points.

For implementation, we process the covered area for each
point using a convolution layer with kernel weights fixed so
to approximate a 2m circle. In practice, we don’t actually use
a radius of 2 meters, but a 1.8 meters one as we found out it
to yield better performance. We also upscale the heatmap to
0.25 x 0.25 m2 per pixel with bilinear interpolation to have
a more refined prediction location.

2) Optimizing Final Displacement Error: We inspire our-
selves from KMeans to optimize minFDEk. The image out-
put can be represented as a discrete probability distribution
(xi, pi) where xi represents the pixel centers and pi the asso-
ciated probability value. Optimizing the Final Displacement
Error over k predictions means finding k centroids ck that
minimize the following quantity:

minimizec
∑
i

pi‖c− xi‖ (4)

To do so we design our sampling algorithm for FDE
optimization detailed in Algo. 2.

We replace the classic weighted average
∑

i pixi for each
centroid ck by

∑
i
pi

dk
i

xi where dki is the distance between
point xi and centroid ck to be more robust to outliers and
take into account the optimisation of l2 norm instead of its
square.

In essence, we update each prediction as a weighted
average of its local neighborhood in a radius of 3m. The
coefficient mi

dk
i

, with mi the distance between point xi and
its closest centroid allows for flexible partition boundaries
compared to KMeans (where we would use 1dk

i <=mi
in-

stead): when xi is in the partition of prediction k, its value
is 1, while when it’s outside it decreases, so as to be 0 when
at the exact position of another prediction k′, where it could
never be improved by a displacement of k.

We initialize the centroids with the results of the Miss
Rate optimization algorithm and use the number of iterations
L as a parameter to tune the trade-off between Miss Rate
and FDE: when L is zero, Miss Rate is optimized while



Algorithm 2: FDE Sampling Algorithm
input: Set of points xi with probability weight pi

L number of iterations to run the algorithm
Initialization of K centroids ck

for l = 1..L do
Compute dki the matrix of distance of point xi to
each centroid ck

Compute mi the distance of point xi to the
closest centroid ck

for k = 1..K do
Compute new centroid coordinates :

ck =
1

N

∑
i

1dk
i <=3

pi
dki

mi

dki
xi

with N =
∑

i 1dk
i <=3

pi

dk
i

mi

dk
i

end
end

when L increases MR is sacrificed to get better FDE. The
output of the algorithm is illustrated in Fig. 4b, where is it
can be observed that centroids are brought closer together,
sacrificing total coverage but getting closer to areas with
high probabilities to reduce the expected distance. Results
of this trade-off are illustrated further in Sec. IV-C.2, where
we show in Fig. 6 that every iteration of Algo. 2 diminishes
minFDE6 and increases MR6.

D. Full trajectory generation

We use a separate model to generate full trajectories
connecting the initial agent position to all sampled locations.
This model applies a fully-connected layer to encode the
target agent history into a vector of 32 features, which is
then concatenated with the (x, y) coordinates of the target
future location. Another fully-connected layer is then applied
to obtain a 64 feature vector, which is then transformed
through a last fully-connected layer to a set of locations
representing the intermediate position of the agent in the time
frame [[1, T ]]. The probability of a trajectory is the integral of

the probability heatmap under the circle of radius 2m around
the end point of the trajectory.

IV. EXPERIMENTS

A. Experimental settings

1) Dataset: We use the Argoverse Motion Forecasting
Dataset [5]. It is a car trajectory prediction benchmark
with 205942 training samples, 39472 validation samples and
78143 test samples. Each sample contains the position of all
agents in the scene in the past 2s as well as the local map,
and the labels are the 3s future positions of one target agent
in the scene.

2) Metrics: We report the previously defined metrics MRk

and minFDEk for k=1,6, completed by the minimum Average
Displacement Error minADEk which is the average l2 error
over all successive trajectory points. We also report the
metrics p-minFDE6 and p-minADE6 for the test set, where
− log(p) is added to the metric, p being the probability
assigned to the best (closest to ground-truth) predicted tra-
jectory. These later metrics allow to measure the quality of
the probability distribution assigned to the predictions.

3) Implementation details: We train all models for 16
epochs with batch size 32, using Adam optimizer initialized
with a learning rate of 0.001. Each sample frame is centered
on the target agent and aligned with its heading. We divide
learning rate by half at epochs 3, 6, 9 and 13. We augment
the training data by dropping each raster channel with a prob-
ability of 0.1 and rotating the frame by a uniform random
angle in [−π/4, π/4] in 50% of the samples. All convolution
layers are CoordConv [15] with a kernel of size 3x3 (3 for 1D
Convs) and are followed by BatchNormalization and ReLU
activation.

B. Comparison with State-of-the-art

We show in Tab. I our results compared to other methods
on the Argoverse motion forecasting test set. The benchmark
is ranked by MR6, where we rank first and significantly
improve on previous results, demonstrating that having the
heatmap output enables the best coverage with respect to
the prior art. We also outperform other methods on both

TABLE I: Results on Argoverse Motion Forecasting Leaderboard [1] (test set)

K=1 K=6
minADE minFDE MR minADE minFDE p-minADE p-minFDE MR

WIMP [11] 1.82 4.03 62.9 0.90 1.42 2.69 3.21 16.7
LaneGCN [14] 1.71 3.78 59.1 0.87 1.36 2.66 3.16 16.3
Alibaba-ADLab 1.97 4.35 63.4 0.92 1.48 2.64 3.23 15.9
TPCN [31] 1.64 3.64 58.6 0.85 1.35 2.61 3.11 15.9
HIKVISION-ADLab-HZ 1.94 3.90 58.2 1.21 1.83 3.00 3.62 13.8
TNT [34] 1.78 3.91 59.7 0.94 1.54 2.73 3.33 13.3
Jean [20] 1.74 4.24 68.6 1.00 1.42 2.79 3.21 13.1
TMP [16] 1.70 3.78 58.4 0.87 1.37 2.66 3.16 13.0
LaneRCNN [32] 1.69 3.69 56.9 0.90 1.45 2.70 3.24 12.3
SenseTime_AP 1.70 3.76 58.3 0.87 1.36 2.66 3.16 12.0
poly (3rd) 1.70 3.82 58.8 0.87 1.47 2.67 3.28 12.0
PRIME (2nd) [28] 1.91 3.82 58.7 1.22 1.56 2.71 3.04 11.5
Ours-HOME (FDE L=4) 1.72 3.73 58.4 0.92 1.36 2.64 3.08 11.3
Ours-HOME (MR) (1st) 1.73 3.73 58.4 0.94 1.45 2.52 3.03 10.2



TABLE II: Ablation study on output representation
(Argoverse validation set)

Bottleneck Output K=1 K=6
minFDE MR minFDE MR

Scalar Regression 3.81 61.7 1.26 13.0
Scalar Heatmap 3.07 51.9 1.30 8.0
Image Heatmap 3.02 50.7 1.28 6.8

p-minFDE6 and p-minADE6, demonstrating superior mod-
elling of the probability distribution between predictions.
Another interesting observation is that methods performing
very well on minFDE6 such as LaneGCN [14] and TPCN
[31] have a worse MR6 as drawback. PRIME [28] has
the closest MR6 to ours but a much higher minFDE6 in
comparison. We show the results of both our sampling
optimized for MR and minFDE with the same trained model.
Our FDE sampling with L = 4 sacrifices 1.1 points of
MR6 for 9 cm of minFDE6, which gets us second best on
minFDE6 while still being good enough for 1st position on
the leaderboard.

C. Ablation studies

We discuss the importance of our difference contributions,
starting by comparing our output representation to the tradi-
tional scalar coordinates output, then decomposing our model
architecture and sampling strategies. All metrics are reported
on the Argoverse validation set. If not specified otherwise,
MR sampling is used.

1) Heatmap output: We show the effect of output repre-
sentation in Tab. II by using the same encoding backbone and
replacing the image decoder with a global pooling followed
by a regression head of 6 coordinate modalities. We train the
regression output with a winner-takes-all l1 regression loss
similar to [21, 14, 11, 31, 6] and a classification loss where
target is obtained through a softmax on distances between
predictions and ground-truth, as in [34, 28]. Since the global
pooling leads to loss of spatial information from the image,
for fair comparison we also include a model with "scalar bot-
tleneck" where pooling is also applied on the image encoding
and is then reshaped to form an image on which is applied
the heatmap decoder. We observe that heatmap outputs yields
much better Miss Rate, and that having a scalar pooling
bottleneck diminishes performance as it creates information
loss, but not significantly. Interestingly, the regression out-
put reaches better minFDE6 when compared to the MR-
optimized sampled image output models, but is still worse
than FDE-optimized model, as this scalar coordinates output
doesn’t leave room for any post-processing optimization.

We also show the effect of adding more modalities to a
regression output in Fig 5 : even if the MRk improves for the
total number of modalities as k increases, the performance
for a fixed k such as 1 or 6 worsens. [11] and [33] notice
a similar trend, obtaining much better results for lower k
metrics when training less modalities. Furthermore, for a
regression output model a new training is required each
time to accommodate the maximum number of modalities,
whereas with heatmap output any number of modalities can

Fig. 5: Effect of maximum number k of modalities trained
on metrics of lower fixed modality numbers. Full lines are
results of regression output model. Dashed lines are result of
our heatmap output model. We show the Miss Rate for total
number of predicted modalities k (blue) and fixed number
of modalities 1 (orange), 3 (green) and 6 (red).

be obtained at will with the same training, and the lower k
numbers are not impacted by the total number of modalities
extracted, as showed by the dashed horizontal lines displayed
for MR1, MR3 and MR6. Finally, our model heatmap output
scales better with the number of k modalities, converging to
a 0% MR faster that the regression output model.

2) Trajectory sampling: We show in Fig. 6 the results of
our trade-off between MR6 and FDE6 on the Argoverse test
set thanks to the parameter L of Algo. 2. We also include
points for the other top 10 methods of the leaderboard for
comparison. Our method reaches best possible MR6, and

Fig. 6: FDE6 - MR6 trade-off. Lower-left is better. Points of
the curve (blue) are obtained increasing number of iteration
L of Algorithm 2 from 0 to 7. Points for other top-10
leaderboard methods are also included (orange).



TABLE III: Ablation study on trajectory sampling
(Argoverse validation set)

Bottleneck K=1 K=6
minFDE MR minFDE MR

Pixel ranking with NMS 3.07 51.0 1.21 10.7
KMeans 3.06 51.6 1.23 9.3
Ours (MR) 3.02 50.7 1.28 6.8
Ours (FDE L=6) 3.01 50.5 1.16 7.4

allows to improve FDE6 to second-best while still being first
in MR6 (fourth curve point obtained with L = 4)

We highlight our sampling results in Tab III and compare
them to other possible sampling strategies: we try ranking
pixels by probability and select them in decreasing order
while removing overlapping pixels that are closer than a
1.8m radius following a classic Non-Maximum Suppression
method. We also try KMeans as is used in [18].

D. Qualitative results

We show supplementary qualitative results in Fig. 7. We
highlight examples of straight line, overtaking, curve road,
going outside the map and intersections. Our model heatmap
output makes use and usually follows the prior from the
context map, but it is also able to divert from it based on

interactions, realistic observations and hints of divergence
from history.

V. CONCLUSION

We have presented HOME, a novel representation for
multimodal trajectory prediction. It is based on predicting the
future final point position on a 2D top-view grid, decoding
then this final point into a full trajectory. This heatmap output
represents the complete future probability distribution and its
uncertainties, from which we design two prediction sampling
methods. Sampling directly from the heatmap distribution
enables a more optimized coverage, achieving state-of-the-
art performance on the Argoverse Motion Forecasting bench-
mark.
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