
HAL Id: hal-03337138
https://minesparis-psl.hal.science/hal-03337138v4

Submitted on 2 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observer Design for Continuous-Time Dynamical
Systems

Pauline Bernard, Vincent Andrieu, Daniele Astolfi

To cite this version:
Pauline Bernard, Vincent Andrieu, Daniele Astolfi. Observer Design for Continuous-Time Dynamical
Systems. Annual Reviews in Control, 2022, �10.1016/j.arcontrol.2021.11.002�. �hal-03337138v4�

https://minesparis-psl.hal.science/hal-03337138v4
https://hal.archives-ouvertes.fr


Observer Design for Continuous-Time Dynamical Systems

Pauline Bernarda, Vincent Andrieub, Daniele Astolfib
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Abstract

We review the main design techniques of state observer design for continuous-time dynamical systems, namely algorithms which
reconstruct online the full information of a dynamical process on the basis of partially measured data. Starting from necessary condi-
tions for the existence of such asymptotic observers, we classify the available methods depending on the detectability/observability
assumptions they require. We show how each class of observer relies on transforming the system dynamics in a particular normal
form which allows the design of an observer, and how each observability condition guarantees the invertibility of its associated
transformation and the convergence of the observer. Finally, some implementation aspects and open problems are briefly discussed.

Keywords: observer design, observability, detectability, normal forms, Kalman observers, Kalman-like observers, observability
Gramian, extended Kalman filter, high-gain observers, homogeneous observers, triangular forms, KKL observers, nonlinear
Luenberger observers

Contents

1 Introduction 1

2 Problem statement 2
2.1 Observation problem . . . . . . . . . . . . . . 2
2.2 Approaches for real-time state estimation . . . 2
2.3 Asymptotic observers . . . . . . . . . . . . . . 3
2.4 Desired observer properties . . . . . . . . . . . 3
2.5 Observers for linear autonomous systems . . . 4

3 Necessary conditions and a general sufficient condi-
tion for observer design 5
3.1 Necessary conditions for asymptotic observers . 5
3.2 Sufficient condition for observer design . . . . 7

4 Observers from detectability conditions 8
4.1 Finsler-like relaxation of differential detectability 8
4.2 A local observer assuming strong differential

detectability . . . . . . . . . . . . . . . . . . . 8
4.3 Toward regional observer assuming convexity

of the output map . . . . . . . . . . . . . . . . 9
4.4 The case of an Euclidean metric describing de-

tectability . . . . . . . . . . . . . . . . . . . . 9
4.5 Finding an Euclidean metric to obtain a con-

traction . . . . . . . . . . . . . . . . . . . . . 9

5 Observers from observability Gramian 10
5.1 Observability Gramian . . . . . . . . . . . . . 10
5.2 Kalman or Kalman-like observers . . . . . . . 11
5.3 Extended Kalman Filter . . . . . . . . . . . . . 12
5.4 Linearization by output injection . . . . . . . . 12

6 Observers from differential observability 13
6.1 Differential observability and normal forms . . 13
6.2 High-gain observers . . . . . . . . . . . . . . . 14
6.3 Homogeneous correction terms . . . . . . . . . 16
6.4 Pure differentiators . . . . . . . . . . . . . . . 18
6.5 Use of interconnection . . . . . . . . . . . . . 18

7 Observers from backward distinguishability 19
7.1 Autonomous systems . . . . . . . . . . . . . . 20
7.2 Time-varying/controlled systems . . . . . . . . 20
7.3 Computation of the transformation . . . . . . . 21

8 About the implementation of an observer 21
8.1 The left-inversion problem . . . . . . . . . . . 21
8.2 Taking into account state constraints . . . . . . 22
8.3 Tuning and characterization of performances . . 22
8.4 Output sampling and continuous-discrete ob-

servers . . . . . . . . . . . . . . . . . . . . . . 23
8.5 Adaptive observers . . . . . . . . . . . . . . . 24
8.6 Disturbance observers and extended state ob-

servers . . . . . . . . . . . . . . . . . . . . . . 24
8.7 Use of observers in feedback control . . . . . . 24

9 Conclusions 24

1. Introduction

In many applications, knowing the current state of a dynami-
cal system is crucial either to build a controller or to obtain real
time information on the system for decision-making or moni-
toring, see, e.g., [193, 128, 186] and references therein. A com-
mon way of addressing this problem is to place some sensors on
the physical system in order to have access to such information.
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In practice, however, not all the state variables are directly mea-
surable: either because we want to reduce the number of sensors
to reduce costs, due to physical constraints, or simply because
such a sensor does not exist. In this case, an estimation algo-
rithm is thus needed to process the incomplete and imperfect
information provided by the sensors and thereby reconstruct a
reliable estimate of the whole system state. The number and
quality of sensors being often limited in practice due to cost
and physical constraints, such estimation algorithms play a de-
cisive role in a lot of applications. See, as a few examples, the
problems of estimating the state of the charge of a battery [59],
the position of sensorless permanent magnet synchronous ma-
chines [161, 49] or the size of the crystals in a crystallization
process [68].

In this paper, we restrict our attention to systems modelled
by finite-dimensional continuous-time dynamics and look for
an estimation algorithm under the form of a dynamical system,
denoted as asymptotic observer, that takes as input the sensor
measurements (and possible known control actions) and pro-
duces an estimate which asymptotically converges to the plant
state. This framework is detailed in Section 2.

Of course, such an algorithm can exist only if the mea-
surements somehow contain enough information to determine
uniquely (asymptotically) the state of the system, namely if
the system is detectable. Then, some additional requirements
(finite-time convergence, stability of the estimation error, tun-
ability, etc.) typically lead to a very wide range of detectabil-
ity/observability properties, which all represent necessary con-
ditions for the existence of certain classes of estimation algo-
rithms. These are reviewed in Section 3.

Then, it comes the question of actually designing such an
algorithm. As we shall see, this problem has been solved in
a general and constructive way for systems modelled by linear
dynamics, while only for particular classes of nonlinear dynam-
ics. Therefore, observer design usually consists in looking for a
change of coordinates that transforms the dynamics into one of
these normal forms where an observer design is available. Exis-
tence and invertibility of such a transformation typically involve
the observability conditions that characterize each “family” of
designs. The goal of this paper is therefore to gather a large part
of the huge amount of contributions scattered throughout the lit-
erature and classify them according to the “type” of observabil-
ity properties they require. This is done throughout Sections 4
to 7. A recapitulative table is given in Table 1 at the end of the
paper.

Finally, even when such a design has been achieved, some
issues may need to be addressed before an actual implementa-
tion can be carried out. These include inverting the change of
coordinates, tuning the observer to ensure some desired perfor-
mances, taking into account unknown parameters/disturbances,
state constraints, or the sampling of the output, etc. Such is-
sues and some of the corresponding solutions available in the
literature are briefly reviewed in Section 8.

Notation. R (resp. N) denotes the set of real numbers (resp.
integers) and R≥0 := [0,+∞), N>0 := N \ {0}. A map ρ :
R≥0 → R≥0 is a K-map if ρ(0) = 0 and ρ is continuous and

increasing, and a K∞-map if it is also unbounded. A map β :
R≥0 × R≥0 → R≥0 is a KL-map if for all t ∈ R≥0, r 7→ β(r, t)
is a class-K map and for all r ∈ R≥0, t 7→ β(r, t) is decreasing
with limt→∞ β(r, t) = 0. For a matrix M, He(M) := M + M>,
and for a positive definite matrix P ∈ Rn×n, ‖ · ‖P denotes the
norm associated to P, namely ‖x‖P :=

√
x>Px for x ∈ Rn.

2. Problem statement

2.1. Observation problem
We consider a general plant described by finite-dimensional

continuous-time nonlinear dynamics of the form

ẋ = f (x, t) , y = h(x, t) , (1)

with state x ∈ Rnx , output (or measurement) y ∈ Rny and maps
f : Rnx ×R→ Rnx , h : Rnx ×R→ Rny sufficiently regular, with
nx, ny ∈ N>0. This paper aims at reviewing existing methods
available in the literature to estimate online the full state x(t) of
a solution to system (1) at time t, based on the knowledge of the
plant model described by the functions f , h, and of the output
y up to time t. Generally in applications, we are interested in
estimating only physically relevant solutions which are known
to remain in a certain set X, often taken compact and modelling
known physical bounds on the states. Hence, the following as-
sumption holds throughout the paper.

Standing Assumption. We consider sets X0 ⊆ X ⊆ Rnx such
that any solution of (1) initialized in X0 is defined on [0,+∞)
and remains in X at all positive times.

The set X0 does not need to be known for design, but will be
used in the theorem statements to refer to the plant solutions that
need to be estimated. On the other hand, the knowledge of X
may actively be used to design the estimation algorithms. Note
that we restrict our attention to solutions defined on [0,+∞)
because we will mainly review asymptotic estimation methods.
Otherwise, the estimate needs to converge in finite time, before
solutions cease to exist.

The system (1) encompasses a large variety of systems
among which autonomous systems

ẋ = f (x) , y = h(x) , (2)

and systems with (known) input

ẋ = f (x, u) , y = h(x, u) , (3)

with u : R→ Rnu , although the treatise of (3) may present sub-
tle differences compared to (1) in terms of causality and unifor-
mity with respect to inputs.

2.2. Approaches for real-time state estimation
A first naive approach would be to simulate (1) simultane-

ously for a set of initial conditions and progressively removing
from the set those producing an output trajectory “too far” from
the witnessed y(t) (with the notion of “far” to be defined). If
the output y determines a unique possible solution asymptoti-
cally, then the set of possible initial conditions shrinks to only
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one possible asymptotically. Otherwise, a certain distribution
of possible initial conditions remains. However, the trade off

between amount of computations and estimation precision is
typically not reachable, and the open-loop numerical integra-
tion of (1) is often not reliable in the presence of disturbances
and model uncertainties. This path has nevertheless aroused a
lot of research:

- either through stochastic approaches, considering random
processes in the plant model (1), and following the proba-
bility distribution of the possible values of the state (see, e.g.,
[123]);

- or in a deterministic way, considering the presence of
bounded disturbances in the dynamics (1), and producing a
“set-valued observer” (see, e.g., [152]), “interval observer”
(see, e.g., [107, 134, 167, 85]), or “norm observers” (see, e.g.,
[222]), guaranteed to contain the plant state.

Another natural approach is to proceed by a minimization
approach (see, e.g., [242]), namely to solve online at each time

x̂(t) = argminx̂ f

∫ t

0

∣∣∣∣Y(x̂ f , t; τ) − y(τ)
∣∣∣∣2dτ

or rather with finite memory

x̂(t) = argminx̂ f

∫ t

t−t̄

∣∣∣∣Y(x̂ f , t; τ) − y(τ)
∣∣∣∣2dτ ,

where Y(x̂ f , t; τ) denotes the output at time τ of the solution to
(1) going through x̂ f at time t. Some methods have been devel-
oped to solve this optimization problem online, in spite of its
non-convexity and the presence of local minima (see, e.g., [7]
for a survey of existing algorithms). Such algorithms are often
denoted as finite-horizon observers and the theory is usually de-
veloped in the discrete-time context.

In this paper, the path we choose to follow is rather to look
for a dynamical system, called an observer, using the current
value of the output y(t) and whose state is guaranteed to provide
(at least asymptotically) enough information to asymptotically
reconstruct the state of (1).

2.3. Asymptotic observers

An asymptotic observer takes the form

˙̂z = F (ẑ, y, t) , x̂ = T (ẑ, y, t) , (4)

with state ẑ ∈ Rnz for nz ∈ N>0 and maps F : Rnz × Rny × R →
Rnz , T : Rnz × Rny × R → Rnx chosen such that the following
holds.

Definition 2.1. The system (4) is an asymptotic observer for the
system (1) if there exists Z0 ⊂ Rnz such that for any solution
t 7→ x(t) to (1) defined on [0,+∞) with x(0) ∈ X0, any1 solution

1We say “any solution” because F may only be continuous, or even set-
valued, and may admit several solutions. This is not a problem as long as any
such solution verifies the required convergence property.

t 7→ ẑ(t) to (4) with ẑ(0) ∈ Z0 and input y(t) = h(x, t), is defined
on [0,+∞) and verifies

lim
t→+∞

∣∣∣x̂(t) − x(t)
∣∣∣ = 0 (5)

with x̂(t) = T (ẑ(t), y(t), t).

In other words, x̂(t) is an estimate of the current plant state
and the error made with this estimation asymptotically con-
verges to 0 as time goes to infinity.

In the next paragraph and in the rest of the paper, we will see
that ẑ typically estimates a certain function of the state T (x, t),
which is injective with respect to x, and with T representing
its left-inverse. In the favorable case where T is the identity
or a mere projection from Rnz to Rnx , namely x̂ can directly be
read from nx components of ẑ, we say that the observer is in the
given coordinates.

The time-dependence in the mappings F (·, ·, t) and T (·, ·, t)
allows to take into account the time dependence of the functions
f and h in (1). It may be removed for an autonomous system
(2). In case of a system with input (3), we will see that this time
dependency may appear through the value u(t) at time t, or a
certain number of time derivatives of t 7→ u(t) at time t, or more
generally model a dependence on the whole past trajectory of
u.

The output dependence in the mapping T (·, y, ·) enables to
cover the case where the knowledge of the output is used (ex-
plicitly or implicitly) to build the estimate x̂ from the observer
state ẑ. This sometimes allows to reduce the observer dimen-
sion, thus obtaining a reduced-order observer, see, e.g., [73].
An example is the so-called Immersion & Invariance approach
(“I&I”) developed in [26, 129]. A drawback of those ap-
proaches is that the estimate x̂ then depends directly on y and is
therefore more affected by measurement noise, while it is typi-
cally filtered through F in ẑ. We remark also that, under some
mild conditions, the equivalence between the existence of a full-
state observer and a reduced-order observer is well established,
see, e.g., [217, 210]. In other words, when one obtains a full-
state observer, then a reduced-order observer may be derived,
and vice-versa.

Finally, we highlight that this article considers full-state ob-
servers in which the whole state x needs to be reconstructed
from ẑ. When only a certain part/function of the state needs
to be estimated, one may consider the so-called functional ob-
servers, see, e.g., [125, 136].

2.4. Desired observer properties

Depending on the specifications, different additional proper-
ties can be imposed on the observer.

Exponential observer: If system (4) is an asymptotic observer
and equation (5) is replaced by∣∣∣x̂(t) − x(t)

∣∣∣ ≤ c
(
ẑ(0), x(0)

)
exp(−λt) (6)

where c is a continuous positive function which estimates
the overshoot of the observer and λ is the convergence rate.
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Note that c
(
ẑ(0), x(0)

)
may not always be written as a func-

tion of |x̂(0) − x(0)|, namely there is not necessarily stabil-
ity/uniformity with respect to the initial estimation error.

Uniformly asymptotically stable observer: If system (4) is
an asymptotic observer and equation (5) is replaced by∣∣∣x̂(t) − x(t)

∣∣∣ ≤ β(|x̂(0) − x(0)|, t
)

(7)

where β is a KL-map. The observer is said to be
uniformly exponentially stable if the class KL-map is
β(r, t) = cr exp(−λt) for some positive real numbers c and
λ. Besides the attractivity described in (5), property (7) re-
quires stability of the estimation error, namely the fact that
for any ε > 0, there exists δ > 0 such that∣∣∣x̂(0) − x(0)

∣∣∣ ≤ δ =⇒
∣∣∣x̂(t) − x(t)

∣∣∣ ≤ ε ∀t ≥ 0 ,

namely the estimation error remains arbitrarily small dur-
ing the transient if the initial error is sufficiently small. Ac-
tually, (7) also requires the attractivity and stability to be
uniform for any initial condition in (x(0), ẑ(0)) ∈ X0 ×Z0.
This property is quite strong and may be relaxed in differ-
ent ways depending on the context. In any case, remark
that the stability imposes that the 0-error set x = x̂ is in-
variant by the dynamics. We will see that such stability
properties may sometimes hold in certain well-chosen co-
ordinates, and not in the initial x-coordinates.

Finite time observer: If system (4) is an asymptotic observer
and equation (5) is replaced by∣∣∣x̂(t) − x(t)

∣∣∣ = 0 , ∀t ≥ tc(ẑ(0), x(0)) , (8)

where tc is the convergence time depending on the initial-
ization of the system and observer in X0 ×Z0.

Uniform finite time observer: If system (4) is a finite time
observer and tc is the convergence time uniform for all
(x(0), ẑ(0)) ∈ X0 ×Z0.

Tunable observers: If we know a family of observers able to
provide an arbitrarily small estimation error in an arbitrar-
ily short time. More precisely, it implies that there exists
a set of asymptotic observers such that for all ε > 0 and
for all td > 0, one of those observers (in this set) (F ,T )
ensures that any solution t 7→ (x(t), ẑ(t)) to (1), (4) defined
on [0,+∞) with (x(0), ẑ(0)) ∈ X0 ×Z0 verifies∣∣∣x̂(t) − x(t)

∣∣∣ ≤ ε , ∀t ≥ td , (9)

Robust observer: If system (4) is an asymptotic observer and
admits an asymptotic gain in presence of disturbances on
the plant dynamics (1). More precisely, there exist ν̄ ∈
R≥0 ∪ {+∞} and a K-map ρ such that, for any measurable
disturbance ν = (νx, νy) : R→ Rnx×Rny such that |ν(t)| ≤ ν̄
for almost all t ≥ 0, and for any solution t 7→ x(t) to

ẋ = f (x, t) + νx , y = h(x, t) + νy ,

defined on [0,+∞) and with x(0) ∈ X0, the corresponding
solution t 7→ ẑ(t) to (4), with ẑ(0) ∈ Z0 and input y, is
defined on [0,+∞) and verifies

lim sup
t→+∞

∣∣∣x̂(t) − x(t)
∣∣∣ ≤ ρ (

lim sup
t→+∞

|ν(t)|
)
. (10)

Again, more or less restrictive robustness properties may
be stated depending on the context, such as non-uniformity
of ρ with respect to initial conditions, or input-to-state-
stability (ISS) conditions (see, e.g., [216, 221, 27]). Note
that a uniformly asymptotically stable observer is a robust
observer.

All in all, the role of an observer is to estimate in real time
the plant state based on the knowledge of its output. This
means that this signal somehow contains enough information
to determine uniquely the whole state of the system. This
brings us to the notions of observability or detectability, which
characterize the necessary conditions that the plant must ver-
ify in order for an observer to exist. We will see in Section
3 that the strength of those conditions depend on the conver-
gence/stability/robustness properties that are required from the
observer.

2.5. Observers for linear autonomous systems

Before treating the observer problem for general nonlinear
systems, we start by recalling how the problem is solved for
linear autonomous systems

ẋ = Ax + Bu , y = Cx (11)

as a way of introducing the challenges appearing with nonlin-
earity and time dependence.

First, a necessary condition for the existence of an observer
is that the output y should contain enough information to deter-
mine uniquely the trajectory at least asymptotically. This means
that any pair of solutions t 7→ xa(t) and t 7→ xb(t) giving the
same output y = Cxa = Cxb, i.e., indistinguishable from the
output, should at least converge to each other asymptotically.
This property is called detectability and its necessity extends to
the nonlinear context as will be detailed in Section 3. If there
does not even exist such indistinguishable pairs of solutions, we
speak of observability.

A peculiarity of linearity is that for any indistinguishable pair
of solutions, the difference δx = xa − xb is solution to

δ̇x = Aδx , Cδx = 0 (12)

meaning that observability/detectability properties can be char-
acterized considering only trajectories with output constantly
equal to 0 and independently from the input u. This is no longer
true for nonlinear systems where incremental properties need to
be considered and some inputs may destroy observability. The
class of uniformly observable systems, i.e., observable for any
input, will be studied in Section 6 with the triangular forms.
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Detectability of (11) thus means that any solution to (12)
asymptotically converges to 0. This is equivalent to the so-
called Hautus test

rank
([
λ Id−A

C

])
= nx ∀λ ∈ C : <(λ) ≥ 0 (13)

which means that any eigenvector of A corresponding to a non-
negative eigenvalue cannot be in the kernel of C. This neces-
sary condition is actually also sufficient to design an asymp-
totic observer for (11). Indeed, one can show that there exists
L ∈ Rnx×ny such that A − LC is Hurwitz and an asymptotic ob-
server is therefore given by

˙̂x = Ax̂ + Bu + L(y −Cx̂) , (14)

whose estimation error follows the Hurwitz dynamics

d
dt

(x̂ − x) = (A − LC)(x̂ − x)

and asymptotically converges to 0 for any initial conditions x(0)
and x̂(0). More precisely, the observer is uniformly exponen-
tially stable, with a decreasing rate λ related to the eigenvalues
of A − LC. The fact that a global observer of dimension nx

can be designed under a mere detectability condition and in the
form (14) actually relies on very stringent metric constraints
that happen to be verified by linear systems as will be seen in
Section 4. On the other hand, when such constraints are not
verified, nonlinear observers typically require a prior change
of coordinates, transforming the dynamics into specific forms
possibly of larger dimension nz ≥ nx where an observer can be
written. Besides, the existence/invertibility of such a transfor-
mation typically relies on stronger observability conditions and
is not always globally valid.

Beyond detectability, system (11) is actually observable if it
does not admit any indistinguishable pairs, i.e., if the only so-
lution to (12) is the constant solution δx = 0. One can show in
this case that the eigenvalues of A − LC can be arbitrarily as-
signed and the observer is thus tunable. Actually, for linear
systems, observability is equivalent to instantaneous observ-
ability or even differential observability, namely the fact that
the knowledge of the output and its derivatives at a single time
is enough to determine the state. Indeed, having Cδx(t) = 0 on
an arbitrarily small interval [t0, t0 + ε) is equivalent to having it
for all times, and to having δx(t0) in the kernel of the observ-
ability matrix

O := col[C,CA, . . . ,CAnx−1] . (15)

Hence observability for linear systems is equivalent to O being
full rank, which is also equivalent to the Hautus test (13) being
valid for any λ ∈ C (see [73, Theorem 6.O.1]). For nonlinear
systems, observability, instantaneous observability and differ-
ential observability are no longer equivalent but we will see in
Section 3 that the link between tunability of the observer and
instantaneous observability remains. Besides, the property of
differential observability can be extended and exploited in the
so-called high-gain observer designs presented in Section 6.

By solving (12), another equivalent way of seeing observ-
ability is to say that for any t0 and any ε > 0,

C exp(At)δx(t0) = 0 ∀t ∈ [t0, t0 + ε) =⇒ δx(t0) = 0 ,

and therefore, integrating ‖C exp(At)δx(t0)‖ in time,

δx(t0)>
[∫ t0+ε

t0
exp(At)>C>C exp(At)dt

]
δx(t0) = 0

=⇒ δx(t0) = 0 .

Observability is thus equivalent to the invertibility of the so-
called observability Gramian (see [73, Theorem 6.O.1]). The
advantage of such a characterization is that it extends to time-
varying linear systems, i.e., with A(t) and C(t), as long as
exp(At) is replaced by the corresponding transition matrix. This
will be detailed in Section 5.

Finally, it is interesting to know that D. Luenberger initially
obtained in [157] the observer (14) for observable autonomous
linear systems by linearly transforming (11) into an Hurwitz
form with output injection and showing the invertibility of this
transformation thanks to observability. Unlike the direct de-
sign of (14), this method can actually be extended to nonlin-
ear systems leading to the so-called nonlinear Luenberger or
Kazantzis-Kravaris/Luenberger (KKL) observers presented in
Section 7.

3. Necessary conditions and a general sufficient condition
for observer design

3.1. Necessary conditions for asymptotic observers

3.1.1. Detectability notions
As explained in Section 2.5, a detectability property is nec-

essary for the existence of an observer. See also [157, 73] for
linear systems. This property is defined for general systems as
follows.

Definition 3.1. The system (1) is asymptotically detectable if
any pair of solutions t 7→ xa(t) and t 7→ xb(t) to (1) initialized
in X0 and defined on [0,+∞) such that

h(xa(t), t) = h(xb(t), t) , ∀t ≥ 0 , (16)

verifies
lim
t→∞

∣∣∣xa(t) − xb(t)
∣∣∣ = 0 . (17)

The property of asymptotic detectability says that when two
solutions are not distinguishable from the output, they neces-
sarily converge to each other asymptotically. This ensures one
obtains a “good” asymptotic estimate no matter which initial
condition we pick. The following result, which can be found
for instance in [15], shows that asymptotic detectability is nec-
essary for the existence of an asymptotic observer.

Lemma 3.1. If there exists an asymptotic observer for the sys-
tem (1), then the system (1) is asymptotically detectable.
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Proof. This result follows from the fact that a solution ẑ of (4)
with input h(xb, t) is also a solution with input h(xa, t), and
x̂(t) = T (ẑ(t), h(xa(t), t), t) = T (ẑ(t), h(xb(t), t), t) must thus
converge both to xa and xb, which implies (17) by triangular
inequality.

We could see in the same way that a finite time observer re-
quires a finite time detectability, and that an asymptotically sta-
ble observer requires an asymptotically stable detectability, in
the sense of the distance between two solutions with same out-
put. On the other hand, a so-called differential detectability has
been introduced in [208] (see also [231] for a constant metric
case) and can be given (in its stronger version) as the following.

Definition 3.2. The system (1) is differentially detectable if
there exists three positive real numbers 0 < p ≤ p and q and a
C1 matrix function P : Rnx 7→ Rnx×nx such that

p I ≤ P(x) ≤ p I , ∀x ∈ Rnx , (18a)

and2

δ>x L f P(x, t)δx ≤ −qδ>x P(x)δx ,

∀(x, δx, t) ∈ X × Rnx × R≥0 such that
∂h
∂x

(x, t)δx = 0 . (18b)

As studied in [208], this property establishes that the vector
field f is contracting for a Riemaniann distance (associated to
the quadratic form δx 7→ δxP(x)δx) in the direction tangent to
the level set of h. Picking δx 7→ δ>x P(x)δx as a Lyapunov func-
tion, it establishes that complete solutions to

ẋ = f (x, t) , δ̇x =
∂ f
∂x

(x, t) δx , (19)

initialized in X0 × Rnx and verifying

∂h
∂x

(x(t), t) δx(t) = 0 , ∀t ≥ 0 , (20)

satisfy
lim

t→+∞
|δx(t)| = 0 . (21)

It is shown in [16, 15] that this property is linked to the exis-
tence of an observer giving exponential stability of some error
set. Actually, for autonomous systems (2) with X = X0 = Rnx ,
differential detectability is necessary for the existence of an ex-
ponentially stable observer of the form

˙̂z = F (ẑ, y, t) = f (ẑ) + k(ẑ, y) , x̂ = T (ẑ, y, t) = ẑ , (22)

made of a copy of the dynamics and an extra correction term.

Lemma 3.2 ([16]). If there exists a uniformly exponentially sta-
ble observer for the system (2) in the form (22) with Z0 = Rnx

and with ( f , h, k) having bounded first and second order deriva-
tives then the system (1) is differentially detectable.

2Given a C1 matrix function P : Rnx 7→ Rnx×nx , and a C1 vector field
f : Rnx × R → Rnx , L f P denotes the Lie derivative in the direction of f of the
quadratic form P, i.e.

L f P(x, t) = lim
h→0

(I + h ∂ f
∂x (x, t))>P(x + h f (x, t + h))(I + h ∂ f

∂x (x, t)) − P(x)
h

,

with coordinates (L f P(x, t))i, j =
∑

k

[
2Pik

∂ fk
∂x j

(x, t) +
∂Pi j
∂xk

(x) fk(x, t)
]
.

3.1.2. Observability notions
As recalled in Section 2.5 for linear systems, the ability to

design an observer with arbitrary pole placement imposes an
instantaneous observability property. Various notions of ob-
servability can be defined for nonlinear systems. In its weak-
est version, “observability” means that (16) must actually im-
ply xa = xb rather than asymptotic convergence in (17), and
“instantaneous observability” means that having (16) on an ar-
bitrarily small interval is enough to imply the equality.

Definition 3.3. The system (1) is instantaneously observable if
for all td > 0, any pair of solutions t 7→ xa(t) and t 7→ xb(t) to
(1) initialized in X0 and defined on [0,+∞) such that

h(xa(t), t) = h(xb(t), t) , ∀0 ≤ t < td , (23)

verifies xa(·) = xb(·).

The following result can be found in [15] for autonomous
systems but extends readily to time-varying systems.

Lemma 3.3. If there exists a tunable observer for the system
(1), then the system (1) is instantaneously observable.

In the particular case where f and h are analytical, the output
y is an analytical function of time and the notions of observ-
ability and instantaneous observability are actually equivalent
because two analytical functions which are equal on some inter-
val are necessarily equal on their maximal interval of definition.
Besides, for any initial condition, there exists td such that

y(t) =

+∞∑
k=0

y(k)(0)
k!

tk , ∀t ∈ [0, td) ,

and observability is thus closely related to the notion of differ-
ential observability defined in Section 6, which roughly says
that the state is uniquely determined by the value of the output
and of its derivatives (up to a certain order).

Actually, in observer design, one is more interested in esti-
mating the current state x(t), based on the past measurements,
than estimating its initial condition. Therefore, notions of back-
ward distinguishability (sometimes also called constructibility
or determinability) typically appear as in Section 7, requiring
that the current state be uniquely determined by the past out-
puts. Both are equivalent of course when solutions are unique,
but not generally.

3.1.3. Structural property on the observer
To summarize, the following implication can be obtained:

Observer ⇒ Detectability.
Unif. exp. stable observer ⇒ Differential detectability.
Tunable observer ⇒ Instantaneous observability

In this survey, we will thus classify the observer designs avail-
able in the literature depending on the type of observability
properties they require of the plant.

In order to justify the common spirit in which they are devel-
oped, it is interesting to recall another necessary condition from
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[15]. Indeed, for an autonomous system (2), if there exists an
asymptotic observer (4) (without time-dependence) for (2) and
a compact subset of Rnx ×Rnz which is invariant by the dynam-
ics ( f ,F ), then there exist compact subsets Cx of Rnx and Cz of
Rnz , and a closed set-valued map T defined on Cx such that the
set

E =
{
(x, ẑ) ∈ Cx × Cz : ẑ ∈ T (x)

}
(24)

is invariant, attractive, and verifies

∀(x, ẑ) ∈ E , T (ẑ, h(x)) = x . (25)

In other words, the pair made of the plant state x (following the
dynamics f ) and the observer state ẑ (following the dynamics
F ) necessarily converges to the graph of some set-valued map
T , and T is a left-inverse of this mapping. Note that this injec-
tivity is of a peculiar kind since it is conditional to the knowl-
edge of the output, namely “x 7→ T (x) is injective knowing
h(x)”. This result justifies the usual methodology of observer
design for autonomous systems which consists in transforming,
via a function T , the system into a form for which an observer
is available, then designing the observer in those new coordi-
nates z (i.e., find F ), and finally deducing an estimate in the
original coordinates via inversion of T (i.e., find T ). Actu-
ally, it follows that some observer properties such as stability
or exponential convergence are obtained in the z-coordinates,
namely on the error ẑ − T (x), but are not necessarily preserved
in the x-coordinates through the left-inversion of T , unless T
satisfies appropriate extra conditions (uniform injectivity, dif-
feomorphism, etc). However, this is generally acceptable since
the crucial properties such as attractivity and robust asymptotic
gain are typically preserved in the x-coordinates.

Note that in most approaches, the observer is designed from a
(maybe time-varying) single-valued map T because it is simpler
to manipulate than a set-valued map. In the designs based on
some contraction property presented in Section 4, T is simply
taken as the identity. For the high-gain observers/differentiators
presented in Section 6, T (x, t) is obtained from the successive
Lie derivatives of the output map h. In the case of the KKL
observers presented in Section 7, T is selected to transform the
plant dynamics (1) into a particular Hurwitz form, namely as a
solution to a PDE

∂T
∂x

(x, t) f (x, t) +
∂T
∂t

(x, t) = ΛT (x, t) + Γh(x, t)

where Λ is a Hurwitz matrix.

3.2. Sufficient condition for observer design

Inspired by the previous section, we introduce the following
sufficient condition on which all the designs presented in this
paper are based on. See [45, Theorem 1.1] for its proof.

Theorem 3.1. Assume there exist an integer nz, a C1 map T :
Rnx ×R→ Rnz , and continuous maps F : Rnz ×Rny ×R→ Rnz ,
H : Rnz × R→ Rny and F : Rnz × Rny × R→ Rnz such that

a) T transforms the plant dynamics (1) into3

ż = F(z,H(z, t), t) , y = H(z, t) , (26)

i.e. for all x in X and all t ∈ [0,+∞),

∂T
∂x

(x, t) f (x, t) +
∂T
∂t

(x, t) = F(T (x, t), h(x, t), t) ,

h(x, t) = H(T (x, t), t) .
(27)

b) x 7→ T (x, t) becomes uniformly injective on cl(X) after a
certain time t̄ ≥ 0, namely there exists a concaveK function
ρ such that for all (xa, xb) in cl(X) × cl(X) and all t ≥ t̄,

|xa − xb| ≤ ρ
(
|T (xa, t) − T (xb, t)|

)
. (28)

c) The system
˙̂z = F (ẑ, y, t) (29)

is an asymptotic observer for (26).

Then, there exists a map T : Rnz × R → Rnx such that for all
t ≥ t̄, z 7→ T (z, t) is uniformly continuous4 and such that

T (T (x, t), t) = x , ∀x ∈ cl(X) .

Besides, (4) defined with the maps (F ,T ) is an asymptotic ob-
server for system (1).

This result formalizes the design methodology presented in
the previous section which consists in finding a (maybe time
varying) uniformly injective change of coordinates z = T (x, t)
transforming (1) into a normal form (26), then designing an
observer (29) for (26), and finally find a left-inverse of x 7→
T (x, t) to recover an estimate in the initial x-coordinates.

Remark 3.1. Without the assumption of concavity of ρ in (28),
it is still possible to show that x 7→ T (x, t) admits a continuous
left-inverse T defined on Rnz . But, as shown in [216, Example
4], continuity of T is not enough to deduce the convergence of
x̂ from that of ẑ : uniform continuity is necessary. Note that
if X is bounded, the concavity of ρ is no longer a constraint,
since a concave upper-approximation can always be obtained
by saturation of ρ (see [168] for more details).

Remark 3.2. By imposing stronger constraints on the mapping
T and on the observer (29) for (26), the properties that have
been listed previously may be stated for the observer (4) ob-
tained for system (1).

• If the observer (29) for (26) is uniformly asymptotically
stable then the observer (4) for (1) is robust.

3The expression of the dynamics under the form F(z,H(z, t), t) can appear
strange and abusive at this point because it is highly non unique and we should
rather write F(z). However, we will see how specific structures of dynamics
F(z, y, t) allow the design of an observer (29).

4A function γ is uniformly continuous if and only if limn→+∞ |xn − x′n | = 0
implies limn→+∞ |γ(xn) − γ(x′n)| = 0.
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• If the injectivity property (28) is strengthened into

|xa − xb| ≤ c|T (xa, t) − T (xb, t)|

for some positive real number c and if (29) is an exponen-
tial observer for (26) then the observer (4) is an exponen-
tial observer for (1).

• If a uniform continuity condition on T is added to the in-
jectivity property (28), namely

ρ (|T (xa, t) − T (xb, t)|) ≤ |xa − xb| ≤ ρ (|T (xa, t) − T (xb, t)|)

for some concaveK-maps (ρ, ρ) and (29) is a stable (resp.
uniformly asymptotically stable) observer for (26) then the
observer (4) is a stable (resp. uniformly asymptotically
stable) observer for (1) when the observer initialization
set verifiesZ0 ⊂ T (X).

In this review paper, we attempt to make a list of the nor-
mal forms (26) available in the literature and their associated
observer (29). We classify them depending of the kind of ob-
servability properties they require and the corresponding class
of systems (1) that can be transformed into each form. All this
is summed up in Table 1 at the end of the paper.

4. Observers from detectability conditions

In this section, observer designs based on the differential de-
tectability condition are considered. Such observers are typi-
cally asymptotically stable and written directly in the given co-
ordinates in the form (22), where the correction term k is such
that k(x, h(x, t), t) = 0. We thus rewrite it directly in a more
conventional way

˙̂x = f (x̂, t) + k(x̂, y, t) , (30)

or sometimes
˙̂x = F(x̂, y, t) + k(x̂, y, t) , (31)

when F(x, h(x), t) = f (x, t) and we employ an output injection
directly in observer dynamics. The whole question is now to
find means of designing the correction term k to ensure the ob-
server convergence. This is the purpose of this section.

4.1. Finsler-like relaxation of differential detectability
To understand how the differential detectability property may

be employed to design an observer, it is enlightening to consider
the case in which system (1) is linear, i.e., is in the form

ẋ = Ax , y = Cx

with A and C of appropriate dimension. The differential de-
tectability property (see Definition 3.2) implies (when consid-
ering constant metric without loss of generality) the existence
of a positive definite matrix P in Rnx×nx and a positive real num-
ber q such that for any positive definite R in Rny×ny ,

δ>x [PA + A>P]δx ≤ −q δ>x Pδx ,

∀δx ∈ Rnx such that δ>x C>RCδx = 0 . (32)

By Finsler’s lemma, given R, this implication is equivalent to
the existence of a positive real number k such that

PA + A>P − kC>RC < 0 . (33)

In other words, the matrix A − kP−1C>RC is stable and conse-
quently

˙̂x = Ax̂ + kP−1C>R(y −Cx̂)

defines an asymptotic observer. We recover the well-known Lu-
enberger observer for detectable linear systems. In this section,
our aim is to follow the same route to obtain converging ob-
servers.

4.2. A local observer assuming strong differential detectability

For nonlinear systems, the differential detectability property
also implies the existence of an observer. However, without fur-
ther assumptions, the obtained observer is local. Indeed, going
from the differential detectability property, i.e., the implication
(18b), toward a property in the form of (33) is possible but with
a state and time dependent parameter. More precisely, assum-
ing (18b), it is possible to show the existence of a continuous
function ρ : Rnx × R≥0 7→ R such that

L f P(x, t) ≤ −ρ(x, t)
∂h
∂x

(x, t)>
∂h
∂x

(x, t) − qP(x) ,

∀(x, t) ∈ X × R≥0 . (34)

When particularizing the result of [210] to the case in which
there is only one output, the following result may be obtained
for strongly differentially detectable autonomous system in the
form (2).

Theorem 4.1. Consider an autonomous system in the form (2)
with ny = 1. Assume that the couple ( f , h) is differentially de-
tectable with X = X0 = Rnx and assume that the function ρ
in (34) is independent from time and there exists κ such that
κ ≥ ρ(x) for all x. Assume moreover that h has bounded first
and second order derivatives. Then, (30) with

k(x̂, y) =
1
2
κP(x̂)−1 ∂h

∂x
(x̂)>(y − h(x̂)) , (35)

is a local observer in the sense that there exists c0 such that for
all solutions defined on [0,+∞), if |x̂(0) − x(0)| ≤ c0 then (5) is
satisfied.

Differential detectability thus only provides a local observer,
i.e., the initial error needs to be sufficiently small to ensure the
observer convergence. In other words, it is not an asymptotic
observer in the sense of Definition 2.1.

Remark 4.1. Note also that the result in [210] is more general
since a multidimensional output is considered. Moreover, the
case in which X is only a subset of Rnx is considered, requiring
a convexity property on X. Moreover, the upper bounds on P
and first and second derivatives of h are replaced by a bound-
edness assumption on the Riemaniann hessian matrix of h.
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4.3. Toward regional observer assuming convexity of the output
map

In [208], a further assumption is made allowing to obtain
a semi-global observer. In order to introduce this one, notice
that a C1 function P which satisfies (18a) defines a complete
Riemannian metric on Rnx for which we can define geodesics5

(straight line for Euclidean metrics).

Definition 4.1. Given y in R, the set {x ∈ Rnx : h(x) = y} is
said to be totally geodesic if any geodesic γ satisfying

h(γ(0)) = y ,
dh ◦ γ

ds
(0) = 0 ,

satisfies
h(γ(s)) = y ,

for all s in the maximal time domain of definition of γ.

This assumption is related to a geodesic convexity property
of these level sets (see [208]). It is satisfied if for instance the
output map is linear and P is constant (see next subsection).
With this assumption, the following result is obtained in [208].

Theorem 4.2. Consider an autonomous system in the form (2)
with ny = 1. Assume that X is bounded. Assume moreover that
the pair ( f , h) is differentially detectable and that the level sets
of h are totally geodesic (4). Then, picking Z0 = X0, there
exists a positive real number κ such that (30) with (35) defines
a uniformly asymptotically stable observer.

Remark 4.2. Again, the result in [208] is more general since a
multidimensional output is considered and X is closed weakly
geodesically and not necessarily bounded. However the result
is semi-global in terms of the initial error: κ has to be taken
sufficiently large depending on the initial estimation error.

4.4. The case of an Euclidean metric describing detectability

A case which has been deeply studied in the literature is the
case in which the output map is linear

h(x) = Cx , (37)

for some matrix C of appropriate dimension. In that case, to
apply the former results, it suffices to find a constant matrix P
in Rnx×nx such that the system is differentially detectable with
respect to this matrix P, i.e. such that

δ>x

[
P
∂ f
∂x

(x, t) +
∂ f
∂x

(x, t)>P
]
δx ≤ −qδ>x Pδx ,

∀(x, δx) ∈ Rnx × Rnx such that δ>x C>Cδx = 0 . (38)

5When P is C2, geodesics are curves in Rnx γ defined on an open time
domain of R and solution to the geodesic equation which in coordinates reads

d
ds

(
dγ
ds

(s)>P(γ(s))
)

=
1
2
∂

∂x

(
dγ
ds

(s)>P(x)
dγ
ds

(s)
)∣∣∣∣∣∣

x=γ(s)
. (36)

Indeed, in that case, since P is constant (Euclidean case), the
level sets of y = Cx are totally geodesic. Consequently, the
former theorem applies and an observer may be obtained for
a bounded X. This result was previously published in the au-
tonomous case in [155]. Assuming furthermore a global Lips-
chitz property (uniformly with respect to time) on f , it is possi-
ble to show that there exists κ such that

P
∂ f
∂x

(x, t) +
∂ f
∂x

(x, t)>P − κC>C ≤ −qP , (39)

and an observer may be obtained forX = Rnx as shown in [231].
The observer obtained is in the form (30) with

k(x̂, y, t) =
1
2
κP−1C>(y −Cx̂) . (40)

Hence, one of the means of designing an observer for nonlinear
systems with linear measured output is to construct P such that
(39) holds.

Note that in this case and as shown in [56], a reduced-order
observer may be constructed (see also [210] for a Riemaniann
version of this result).

4.5. Finding an Euclidean metric to obtain a contraction
With (38), it can be noticed that (30) with (40) satisfies

He

{
P

[
∂ f
∂x

(x, t) +
∂k
∂x

(x, y, t)
]}
≤ −qP , ∀(y, x, t) . (41)

We recognize here the Lohmiller-Slotine condition given for in-
stance in [153]. It establishes that (30) defines an exponential
contraction in the sense that any two trajectories of the observer
are exponentially converging to each other. Actually, contrac-
tion analysis is a common approach to design the correction
term k as summarized in the following theorem in which a time-
varying metric is allowed.

Theorem 4.3. Consider a (possibly time-varying or controlled)
system in the form (1) which satisfies

f (x, t) = F(x, h(x), t) , (42a)

for some smooth function F. If there exist C1 functions P : R 7→
Rnx×nx and k : Rnx ×Rny ×R 7→ Rnx , and positive real numbers
(q, p, p) such that

k(x, h(x), t) = 0 , ∀(x, t) ∈ Rnx × R , (42b)

Ṗ(t) + He

{
P(t)

[
∂F
∂x

(x̂, y, t) +
∂k
∂x̂

(x̂, y, t)
]}
≤ −qP(t) ,

∀(y, x̂, t) ∈ Rny × Rnx × R ,
(42c)

p I ≤ P(t) ≤ p I , ∀t ∈ R . (42d)

Then (31) defines a uniformly exponentially stable observer.

Proof. Let V(t) = 1
2 (x(t)− x̂(t))>P(t)(x(t)− x̂(t)). Its time deriva-

tive is computed as

V̇(t) =
1
2

(x − x̂)>Ṗ(t)(x − x̂)

+ (x − x̂)>P(t)
[
F(x, y, t) − F(x̂, y, t) − k(x̂, y, t)

]
,
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where the time-dependence of the variables x, x̂ and y has been
omitted for compactness. Furthermore, with (42b), we have for
all (x, t) in Rnx × R

F(x, y, t) − F(x̂, y, t) − k(x̂, y, t)

=

(∫ 1

0

∂F
∂x

(x̂ + s(x − x̂), y, t) +
∂k
∂x

(x + s(x̂ − x), y, t))ds
)

× (x − x̂) ,

for y = h(x). This gives, with (42c),

V̇(t) ≤ −qV(t) ,

from which, using (42d), the conclusion holds.

Note that a similar proof of the former theorem can be found
in [162]. Theorem 4.3 is the core of most of the publications
related to observers, as shown in the forthcoming examples.

4.5.1. Designs based on LMI
In [24], is considered the case in which the dynamical system

(1) is in the form

f (x) = Ax + Gφ(ζ, y, t) , h(x) = Cx , ζ = Mx, (43)

where (A,G,M,C) are matrices of appropriate dimensions and
φ is a smooth function with ζ in Rdζ . The observers considered
in [24] take the form

˙̂x = Ax̂ + K(y −Cx̂) + Gφ(ζ̂, y, t)

ζ̂ = Mx̂ + E(y −Cx̂) ,
(44)

where E,K are matrices in Rnζ×ny and Rnx×ny respectively. We
recognize an observer in the form (31). A sufficient condition
to guarantee the convergence of the observer is to select the
matrices E and K to ensure that the observer defines a uniform
(with respect to (y, t)) contraction in the sense of Theorem 4.3.
In other words, the goal is to find P, K, E and q satisfying

He

{
P

[
A − KC + G

∂φ

∂ζ
(ζ, y, t)(M − EC)

]}
≤ −qP ,

P > 0 , q > 0 , (45)

for all (ζ, y, t). This is an infinite dimensional matrix inequal-
ity since it has to be satisfied for all (ζ, t, y). But imposing some
constraints on ϕ allows to rephrase this infinite dimensional ma-
trix inequality into a finite dimensional LMI.

For instance, in [197], under the globally Lipschitz condition∣∣∣∣∣G∂φ

∂ζ
(ζ, y, t)M

∣∣∣∣∣ ≤ b , ∀(ζ, y, t) ,

for some positive real number b, a sufficient condition to obtain
inequality (45) is to find P > 0 and R such thatA

>P + PA − R>C −C>R + I P

P −
1

b
I

 ≤ 0

with the gain of the observer (44) selected as K = P−1R> and
E = 0. In this case, the resulting observer is uniformly expo-
nentially stable. Based on different generalized globally Lips-
chitz conditions, other LMI-based designs can be obtained. We
refer, for instance, to [227, 196, 197, 239, 119, 118, 234]. An
early formulation can also be found in [135].

Also, in [24] is considered the case in which each component
φi of the map φ satisfies

(ζa − ζb)
[
φi(ζa, y, t) − φi(ζb, y, t)

]
≥ 0 , ∀(ζa, ζb, y, t) .

Then, as shown in [24] (see also [93]), the inequality (45) is ver-
ified if there exist P > 0, E and q > 0 satisfying the following
LMI[

(A − KC)>P + P(A − KC) + qI PG + (M − EC)>W
G>P + W(M − EC) 0

]
≤ 0 ,

for some (fixed) diagonal matrix W > 0. In such a case, the ob-
server (44) with K, E satisfying the previous inequality is uni-
formly exponentially stable for system (1) with f , h of the form
(43).

4.5.2. Structured nonlinearities
Finally, the conditions of Theorem 4.3 can be satisfied by

imposing some structures on the nonlinearities. For instance,
some approaches aim at finding coordinates in which ϕ depends
only on the measured output. This is the so-called linearization
by output injection, see Section 5.4.

A different approach is based on assuming that the nonlin-
earities satisfy an upper triangular structure, resulting in the so-
called high-gain observer approach, see Section 6.

5. Observers from observability Gramian

In this section, we consider the class of state-affine normal
forms

ż = A(y, t) z + ϕ(y, t) , y = C(t) z , (46)

where A : Rny × R → Rnz×nz , ϕ : Rny × R → Rnz and C : R →
Rny×nz . Note that (46) is not really affine in z, since y depends
on z, but it is written so in order to highlight the dependency on
the known signal y that is available for observer design. That is
why the process of transforming a system into (46) is called in
the literature linearization by output injection.

5.1. Observability Gramian

As observed in Section 2.5, when analysing the observability
of a system of the form (46), one naturally comes across the
notion of observability Gramian. See, e.g., [73].

Definition 5.1. For a given signal t 7→ y(t), the observability
Gramian associated to (46) on an interval [t0, t1] ⊂ [0,+∞) is
the positive symmetric matrix defined by

Gy(t0, t1) =

∫ t1

t0
Ψy(τ, t0)>C(τ)>C(τ)Ψy(τ, t0)dτ ,
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where Ψy is the transition matrix associated to the linear dy-
namics χ̇ = A(y, t) χ, namely the unique solution to

∂Ψy

∂τ
(τ, t) = A(y(τ), τ)Ψy(τ, t)

Ψy(t, t) = I .

Indeed, consider a pair of solutions za and zb to system (46)
having same output y for all t ∈ [0, t̄] for some t̄ > 0. Then,
their difference δz = za − zb verifies

δ̇z = A(y, t) δz , C(t) δz(t) = 0 , ∀t ∈ [0, t̄] ,

and thus

δz(t) = Ψy(t, 0) δz(0) = Ψy(t, 0) (za(0) − zb(0))

‖C(t) δz(t)‖2 = 0 ∀t ∈ [0, t̄] ,

It follows that

(za(0) − zb(0))> Gy(0, t̄) (za(0) − zb(0)) = 0 .

This implies that za(0) = zb(0) and thus za = zb, namely (46) is
observable in time t̄, if and only if Gy(0, t̄) is invertible. In other
words, the invertibility of Gy(0, t̄) for each output trajectory t 7→
y(t) characterizes the observability of (46) in time t̄.

When A is independent from y, so is the Gramian, and any
observability property is valid for any initial condition. Other-
wise, one must take care to require uniformity with respect to
any possible output signal y.

Putting aside the dependency on y, several observability
properties can be defined depending on the “amplitude”, “uni-
formity”, “persistence”, etc of the Gramian invertibility. For
instance, assuming A is bounded , Kalman’s well-known uni-
form complete observability [127] requires the existence of
α1, α2 > 0 and t̄ > 0 such that

α1I ≤ G(t − t̄, t) ≤ α2I ∀t . (47)

The existence of α2 being guaranteed as long as A and C are
bounded, this property is mainly about α1, namely the unifor-
mity of the Gramian invertibility over intervals of length t̄. See
Theorem 5.1 below. If the time dependency of A and C comes
through an input u, then such observability properties depend
on this particular input. For instance, an input is said to be reg-
ularly persistent if it guarantees the existence of α1 at least after
a certain time. See [64] for more details.

5.2. Kalman or Kalman-like observers

The most famous observer used for state-affine systems is
Kalman’s and Bucy’s observer presented in [127] in a stochas-
tic context, for linear time-varying systems with independent
white-noise disturbances impacting the initial condition, the dy-
namics and the output. Their approach was to find an optimal
estimate ẑ(t) of z(t) minimizing at each time t the conditional
expectation E

(
|ẑ(t) − z(t)|2 | y[0,t]

)
assuming known the covari-

ance of each noise process.

On the other hand, parallel to the Kalman school, Kalman-
like observers were introduced as an optimal solution to a de-
terministic optimisation problem [65, 113]. More precisely, at
each time t, the estimate ẑ(t) is chosen as ẑ(t) = Ψy(t, 0)ẑO,
where

ẑO = argmin e−λt‖ẑ0 − ẑO‖Π−1
0

+

∫ t

0
e−λ(t−τ)‖y(τ) −C(τ)Ψy(τ, 0)ẑO‖R−1 , (48)

for some positive matrices Π0 and R.
In both cases, the miracle of linearity makes it possible to

produce the optimal trajectory ẑ(t) as the solution to an observer
of the form

˙̂z = A(y, t) ẑ + ϕ(y, t) + ΠC(t)>R−1(t) (y −C(t)ẑ) (49a)

Π̇ = A(y, t)Π + ΠA(y, t)> − ΠC(t)>R−1(t)C(t)Π
+ λΠ + D(t)Q(t)D(t)> (49b)

or, equivalently, with P−1 = Π,

˙̂z = A(y, t) ẑ + ϕ(y, t) + P−1C(t)>R−1(t) (y −C(t)ẑ) (50a)

Ṗ = −PA(y, t) − A(y, t)>P + C(t)>R−1(t)C(t)
− λP − PD(t)Q(t)D(t)>P

(50b)

with

- in a Kalman design, λ ≥ 0, Π(0) = P−1(0) (resp. Q(t), resp.
R(t)) the covariance matrix of the initial condition (resp. of
the model noise, resp. of the output noise), and D(t) the ma-
trix describing how the model noise enters the dynamics at
time t;

- in a Kalman-like design, Q = 0, λ > 0 modelling a (stabi-
lizing) forgetting factor, Π(0)−1 = P(0) (resp R−1) describing
the weight of the initial error and the output error in the op-
timized cost (48), and thus the confidence in our initial guess
and the output comparatively.

The main advantage of the Kalman-like design with Q = 0
is that it makes the dynamics of P = Π−1 linear and explicitly
solvable, with the expression of P directly related to the ob-
servability (or more precisely determinability/constructibility)
Gramian. This allows to derive lower- and upper-bounds on
P and to follow a Lyapunov analysis with Lyapunov function
V = (ẑ − z)>P(ẑ − z) under a regular persistence assumption.

Theorem 5.1 (Kalman-like design). Assume that there exist
a ≥ 0, α > 0, t̄ > 0 and t0 ≥ t̄ such that for any trajectory
t 7→ z(t) of (46) defined on [0,+∞) with output y, t 7→ A(y(t), t)
is bounded by a and Gy(t − t̄, t) ≥ αI. Then, for any λ > 2a and
any positive definite matrices Π(0) and R, (49) with Q = 0 is an
asymptotic observer for (46), with exponential convergence of
the estimation error ẑ − z after time t0.

For a Kalman design, [127] similarly requires boundedness
of A and uniform complete observability of the pair (A,C), but
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additionally requires uniform complete controllability of the
pair (A,D) and R,Q being positive definite with uniform upper-
and lower bounds.

As discussed in Section 2.5, when the matrices A and C are
constant, the invertibility of the observability Gramian is equiv-
alent to the observability of the pair (A,C), namely the fact that
the matrix O := col[C,CA, . . . ,CAnx−1] is full-rank [73]. In that
case, one can implement the observer dynamics (49a) with a
constant gain K = Π∞C>R−1, where Π∞ is the asymptotic equi-
librium of (49b), which makes A − KC Hurwitz. Note that this
linear observer with constant gain is also often called “Luen-
berger observer”, but we choose to keep this name for observers
designed along Luenberger’s initial method [157] described in
Section 7.

On the other hand, when the time-dependence in A and C
comes from an input u, this input may be actively chosen to en-
sure the Gramian condition and maximise observability, leading
to the literature of active sensing [117, 116, 102, 203], to name
a few. The position of the sensors itself may also be optimized,
as in the literature of sensor positioning [233].

5.3. Extended Kalman Filter

The appeal of the Kalman filter mainly lies in its robustness
and simplicity, since it is made of a copy of the dynamics and
a correction gain obtained from a dynamic Riccati equation,
whose parameters can be linked to physical quantities like noise
covariance. That is why a very popular method in the industry
(especially in the discrete-time formulation) consists in apply-
ing the Kalman filter also to nonlinear systems (1), by using
the linearizations of f and h along the estimate x̂ in the Riccati
equation. Such an approach is commonly denoted as Extended
Kalman Filter (EKF) and takes the form

˙̂x = f (x̂, t) + ΠC(x̂, t)R−1 (y − h(x̂, t)) (51a)

Π̇ = A(x̂, t)Π + ΠA(x̂, t)> + Q + λΠ

− ΠC(x̂, t)>R−1(t)C(x̂, t)Π

(51b)

initialized at Π(0) = Π(0)> > 0, with A,C defined as

A(x, t) =
∂ f
∂x

(x, t), C(x, t) =
∂h
∂x

(x, t).

and Q some positive definite matrix.
Unfortunately, apart from particular uniformly observable

triangular structures ([139, 105], see Theorem 6.3 below), only
local convergence of the estimation error x̂− x is ensured, under
the additional ad-hoc assumption that the solution Π of the Ric-
cati equation (51b) is uniformly bounded in time, namely there
exist p, p > 0 such that

pI ≤ Π(t) ≤ pI ∀t ≥ 0 . (52)

See [199] for λ > 0 and [63] for λ = 0. However, the trajectory
of Π depends on that of x̂ itself and the assumption (52) cannot
be in general checked “a priori”, introducing therefore a loop
in the stability analysis (the same issue appears in the discrete-
time context [67, 220, 198]). An exception is [114], where an

infinitesimal observability assumption is made on the plant, and
not along the estimate. But convergence is still only local.

Recent contributions though, suggest that for controlled sys-
tems, the input could be actively chosen online to maximize
the Gramian associated to (A(x̂, t),C(x̂, t)), namely sufficiently
excite the observability of the linearization along the known es-
timate trajectory x̂, in order to guarantee (52) holds and obtain
semi-global convergence [206, 48].

5.4. Linearization by output injection

Once the community knew how to build an observer for the
form (46), researchers attempted to characterize the class of
nonlinear systems that could be transformed into such a form.

5.4.1. Constant observable pair (A,C)
The problem of (locally) transforming a nonlinear system

into a linear one of the form (46) with a constant observable
pair (A,C) via a diffeomorphism (with nz = nx) was first in-
vestigated in [141] for autonomous systems (2) and [138] for
systems with inputs (3). [66] then gave conditions for the ex-
istence of a local (and global) immersion with nz ≥ nx in the
particular case of control affine systems. A vast literature fol-
lowed on the subject, either developing algebraic algorithms to
check the existence of a transformation or tools to explicitly
find the transformation.

Actually, as noticed in [126], a system (1) can be transformed
into (46) with constant observable pair (A,C) if and only if it
can be transformed into

ż1 = z2 + ϕ1(z1, t)
...

żi = zi+1 + ϕi(z1, t)
...

żm = ϕm(z1, t)

y = z1 ,

if ny = 1 or blocks of this form otherwise. This is therefore
more restrictive than the triangular forms of Section 6 where
each ϕi is allowed to depend on z1, ..., zi. In particular, for au-
tonomous systems, [126, 40] show that this is equivalent to find-
ing for each output, a change of output ψ : R→ R and maps ϕi

solution to the characteristic equation

Lnz
f h̃k = Lnz−1

f ϕ1 ◦ h̃ + Lnz−2
f ϕ2 ◦ h̃ + . . . + L fϕnz−1 ◦ h̃ + ϕnz ◦ h̃

with h̃ = ψ ◦ h, which does not always admit solutions.
Along the history of linearization, we may also mention some

generalizations such as [131], where the function ϕ is allowed
to depend on the derivatives of the input and later on the deriva-
tives of the output in [181], or [108, 200] where it is proposed to
use an output-depending time-scale transformation. But gener-
ally the existence of the transformation is difficult to check and
involves tedious symbolic computations, which do not always
give the transformation itself. Even when they do, its validity is
often local and its injectivity on X not guaranteed.
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5.4.2. Time-varying pair (A,C)
In parallel, [100] studied the linearization problem by allow-

ing A and C in (46) to depend on time/the input. This led
to the restrictive finiteness criterion of the observation space,
which roughly says that the linear space containing the succes-
sive derivatives of the output along any vector field of the type
f (·, u) is finite. Later, [112, 55] also allowed A to depend on the
output y to broaden the class of concerned systems. But those
systems remain difficult to characterize because there are often
many possible parametrizations via the output.

6. Observers from differential observability

6.1. Differential observability and normal forms
Consider an autonomous single-output system of the form

(2), i.e.,
ẋ = f (x) , y = h(x) , (2)

x ∈ Rnx , y ∈ R, in which the maps f , h are supposed to be
sufficiently differentiable. We have the following definition of
differential observability, which is based on the analysis of y
and its time-derivatives ẏ, ÿ, . . . , y(k), k ≥ n − 1,

Definition 6.1. The system (2) is said to be:

• weakly differentially observable if there exists nz ∈ N such
that the mapping T : Rnx → Rnz ,

T (x) =


h(x)

L f h(x)
...

Lnz−1
f h(x)

 (53)

is injective on X;

• strongly differentially observable if the previous condition
holds, and moreover the mapping T is full rank for all x ∈
X.

Remark 6.1. For a linear system, the mapping T defined in
(53) with nz = nx is given by T (x) = Ox where O is the ob-
servability matrix defined in (15). Weak and strong differential
observability therefore coincide with the standard rank test for
the matrix O.

Under weak differential observability, if T defined in (53) is
uniformly injective on X in the sense of Theorem 3.1, for in-
stance if X is compact, then T admits a uniformly continuous
left-inverse T defined on Rnz . Then, a direct consequence is
that system (2) can be transformed, using z = T (x), into a sys-
tem of the form

ż = Az + ϕ(z) , y = Cz , (54)

with z ∈ Rnz , ϕ(z) =
(
0, . . . , 0, ϕnz (z)

)>
,

A =


0 1 0
...

. . .

1
0 · · · 0

 , C =
(
1 0 · · · 0

)
, (55)

and the continuous function ϕnz : Rnz → R is defined as
Lnz

f h◦T . The triplet (A, ϕ,C) is often said to be in prime form. A
system of the form (54) is also said to be in canonical observ-
ability form, or phase-variable form or simply normal form.
See, e.g., [105]. One of the peculiarities of such a normal form
is its lower-triangular structure and in particular its chain of in-
tegrators in which each i-th component of the state z represents
the (i − 1)-th time derivative of the measured output y. As we
shall see in Section 6.2, the interest of such lower-triangular
forms relies on the systematic design of differentiatiors able to
reconstruct the state z with an arbitrarily fast exponential rate
of convergence (in this case, we talk about high-gain observers,
see Section 6.2) or finite-time convergence (following sliding-
mode or homogeneous approaches, see Section 6.3).

While for autonomous systems, Definition 6.1 provides suf-
ficient and necessary conditions to obtain a normal form, the
extension to time-varying systems (1), resp. controlled systems
(3), is more involved because the presence of time t, resp. in-
puts u, may destroy the observability properties of the system.
Indeed, starting from [103], a lot of work has been done in order
to establish the existence of state transformations, dependent or
independent from the input t, resp. u, to obtain generalized
lower-triangular forms for which high-gain theory may be ap-
plied. See, e.g., [237, 99, 188, 204, 52] and references therein.
For instance, one can allow the state transformation (53) to be
t dependent (resp. u, u̇, ü, . . . dependent), so that to obtain an
injective map Tt(x) (resp. Tu(x)), uniform in time (resp. in u
and its derivatives) transforming the time varying system (1)
(resp. controlled system (3)) into a system of the form (54) in
which the function ϕ is now t (resp. u) dependent. See, e.g.,
the phase-variable form in [237] or [105, Section 2.2]. A simi-
lar equivalent notion is also the complete uniform observability
introduced in [225].

This paper being focused on the design of observers, we state
the following definition that generalizes the form (54) for time-
varying systems (1).

Definition 6.2. The system (1) admits a triangular normal form
if there exists a mapping T : Rnx ×R→ Rnz , (uniformly) injec-
tive in X, transforming system (1) in the sense of Theorem 3.1
into a system of the form (26) with an output map depending
only on z1 and time, i.e., of the form

y = H(z1, t) (56a)

and where the dynamics F = (F1, . . . , Fnz ) have a lower tri-
angular structure, with each Fi depending only on z1, . . . , zi+1,
i.e., with

∂Fi

∂z j
(z, y, t) = 0 , j > i + 1 , ∀(z, y, t) . (56b)

for all i = 1, . . . , nz.

Note that for controlled systems (3), it suffices to replace t in
(56) with u (and possibly its time-derivatives u̇, ü, . . .), see, e.g.,
[105, Section 3.2].

For input-affine systems of the form

ẋ = f (x) + g(x)u , y = h(x) , (57)
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with scalar input u ∈ R and output y ∈ R, necessary and suf-
ficient conditions to admit an autonomous transformation into
a triangular normal form (without output injection) have been
given in [103, Section 4] or Theorem 4.1 in [105, Section 3.4].
In particular, if (57) is observable for any input (uniform ob-
servability) and the pair ( f , h) is strongly differentially observ-
able of order nx, then T defined in (53) transforms (57) into a
triangular form verifying (56) with H(z1, t) = z1 and with maps
Fi that are input-affine and Lipschitz. The possibility of extend-
ing this result to any uniformly observable system in the form
(57) with higher order of differential observability and less reg-
ularity of F has been studied in [52] but is still not fully char-
acterized.

Another special case of (56) is when the system can be writ-
ten in the form

F(z, y, t) = A(y, t)z + ϕ(y, z, t)
y = C(t)z + D(t) (58)

where the functions A, ϕ have the structure

A(y, t) =


0 a1(y, t) 0
...

. . .

anz−1(y, t)
0 · · · 0

 ,

ϕ(z, t) =


ϕ1(y, t)
ϕ2(y, z2, t)

...
ϕnz (y, z2, . . . , znz , t)

 .

See, for instance, [57].
We finally remark that extensions to the multiple-output case

allow to obtain block-triangular forms in which each block has
a triangular form satisfying (56b). For compactness, we refer,
for example, to [103, 237, 99, 204, 188, 57] and we limit the
exposition of Section 6 to the single-output case.

6.2. High-gain observers

6.2.1. General construction

The use of high-gain observers for state-estimation of non-
linear systems first appeared at the end of the 80’s in a different
number of contemporary works [86, 228, 89, 82]. One of the
main features of high-gain observers is their “tunability prop-
erty” which is typically controlled by one single scalar parame-
ter. Such a fundamental property allowed this class of observers
to address the problem of output feedback stabilization (see also
Section 8.7). We refer to [132] and references therein for an ex-
tensive bibliography on the topic.

The high-gain observer construction is based on the fact that
for the triangular normal form, it is possible to follow the strat-
egy described in Section 4.5 and Theorem 4.3 to construct an
observer. More precisely, it is possible to construct a metric

P : R 7→ Rnz×nz and a smooth correction term k such that

k(z,H(z), t) = 0 , ∀(z, t) ∈ Rnz × R , (59a)

Ṗ(t) + He

{
P(t)

[
∂F
∂z

(z, y, t) +
∂k
∂z

(z, y, t)
]}
≤ −qI ,

∀(y, z, t) ∈ Rny × Rnz × R ,
(59b)

p I ≤ P(t) ≤ p I , ∀t ∈ R . (59c)

With Theorem 4.3, it implies that

˙̂z = F(ẑ, y, t) + k(ẑ, y, t) , (60a)

is a uniformly exponentially stable observer in the z coordi-
nates. Hence, with

x̂ = T (ẑ, t) (60b)

where T is a uniformly continuous left inverse of T , (60) de-
fines an asymptotic observer for the given coordinates from
Theorem 3.1.

Various results have been obtained to construct P and k such
that (59) holds. They are all based on the same two-step design.
First of all, assuming F differentiable, let us denote

ai(z, y, t) =
∂Fi

∂zi+1
(z, y, t) , 1 ≤ i ≤ nz ,

bi j(z, y, t) =
∂Fi

∂z j
(z, y, t) , 1 ≤ j ≤ i ,

c1(z, t) =
∂H
∂z1

(z1, t) .

(61)

We have the decomposition

∂F
∂z

(z, y, t) = A(z, y, t) + B(z, y, t) ,
∂H
∂z

(z1, t) = C(z1, t) (62)

where (forgetting the dependence in (z, y))

A(t) =


0 a1(t) 0
...

. . .

anz−1(t)
0 · · · 0

 ,

B(t) =


b11(t) 0 0
b21(t) b22(t) 0 0
...

. . .

bnz1(t) . . . bnznz (t)

 ,
C(t) =

(
c1(t) 0 . . . 0

)
.

(63)

The two design steps for high-gain observer construction can
be described as follows.

Step 1: Construct a preliminary correction term k0 only for A.
The problem reduces to finding P and k0 such that (59a)
and (59c) hold and also

Ṗ(t) + He

{
P(t)

[
A(t) +

∂k0

∂z
(z, y, t)

]}
≤ −qI ,

∀(y, z, t) . (64)
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For instance, if A is constant (as in the prime form or
the uniformly observable context), this step can be sim-
ply solved by selecting P constant and k0 linear via pole
placement.

Step 2: Increase the robustness via high-gain scaling. If one
compare (64) and (59b), the difference comes from the B
term which is lower triangular according to (63). As it
will be shown in the following, a typical global Lipschitz
property allows to modify k0 (and also P) to cope with this
extra term. Note that if X is bounded and if the system
admits a locally Lipschitz triangular normal form, it may
be possible to extend it into a globally Lipschitz triangular
normal form outside of T (X). In practice, this extension is
obtained by saturation.

Two main types of methods have been developed, both of
them following this two-step design: the case in which the
metric P is constant (also called Luenberger-like high-gain
observers) and the case in which P is time varying (also
called Kalman-like high-gain observer or Extended-Kalman-
like high-gain observer).

6.2.2. With a constant metric P
For step 1: The case of a constant metric is the most popular

one (see [86, 228, 89, 104, 82]). When the A matrix in
(63) is constant, namely takes the form (55), it suffices to
select K = (k1, . . . , knz )

>, with ki coefficients of a stable
polynomial, so that the matrix

A − KC =


−k1 1 0
...

. . .

1
−knz · · · 0


is Hurwitz, and P solution of the Lypaunov equation
He{P(A − KC)} ≤ −qI. In its most general form, namely
for non-constant matrices A, the following lemma due to
W. Dayawansa can be found in [105, Lemma 2.1 p. 96]
and in [122, Section 7.4].

Lemma 6.1 ([105]). Consider A and C defined in (63).
Suppose there exist 0 < a < a and 0 < c < c such that

a < |ai(t)| < a , c < |c1(t)| < c , ∀t . (65)

Then, there exists a vector K in Rnz and a positive definite
matrix P in Rnz×nz , both depending only on (a, a, c, c), such
that

He {P [A(t) − KC(t)]} ≤ −qI , ∀t . (66)

For step 2: Employing a high-gain scaling defined with

D` := diag(`, `2, . . . , `nz ) , (67)

where ` is the so-called high-gain parameter6, it is possible
to amplify the robustness of the correction terms to cope
with Lipschitz nonlinearities. Based on this approach, the
following theorem is obtained, see, e.g., [105].

6In the literature, the high-gain parameter is sometimes denoted ` = 1
ε with

ε taken small enough, see, e.g., [132].

Theorem 6.1. Assume that the system (1) admits a trian-
gular normal form in the sense of Definition 6.2, with the
maps F and H satisfying for all (z, y, t) in Rnz × Rny × R

a <
∣∣∣∣∣ ∂Fi

∂zi+1
(z, y, t)

∣∣∣∣∣ < a , c <
∣∣∣∣∣∂H
∂z1

(z, y, t)
∣∣∣∣∣ < c , (68a)∣∣∣∣∣∣∂Fi

∂z j
(z, y, t)

∣∣∣∣∣∣ < b , j ≤ i , (68b)

for some positive real numbers (a, a, c, c, b). Then, with K
in Rnz obtained from Lemma 6.1, there exists `∗ ≥ 1 such
that for all ` > `∗, the system (60) is a tunable asymptotic
observer with

k(ẑ, y, t) = D`K[y − H(ẑ1, t)] (69)

and D` defined as in (67). Furthermore, if there exists d̄
such that ∣∣∣∣∣∂F

∂y
(z, y, t)

∣∣∣∣∣ < d (70)

for all (z, y, t) in Rnz ×Rny ×R, then the observer is robust.

Equation (68b) implies that the mapping Fi is globally Lips-
chitz with respect to the variable z. The main feature of observer
(60a) with (69) is that the high-gain parameter ` ≥ 1 is chosen
large enough compared to the Lipschitz bound (68b) (see, e.g.,
[132, Section 3]). The following bound then holds for the esti-
mation error in the z coordinates

|z(t) − ẑ(t)| ≤ c`nz−1 exp(−`λt)|z(0) − ẑ(0)| , ∀t , (71)

for some constants c, λ independent from `. From this inequal-
ity, we obtain that the high-gain observer (60a) with (69) is uni-
formly exponentially stable in the z coordinates. It is more-
over robust and a tunable observer in the given coordinates (see
Section 2.4 and Remark 3.2) since its convergence rate can be
arbitrarily increased by augmenting the high-gain parameter `.
Note, however, that a typical drawback of such a construction is
the fact that the overshoot increases in `nz−1. This fact is usually
referred to as “peaking phenomenon”.

Combining Lipschitz conditions, an LMI-design mixing the
aforementioned paradigm and the results in Section 4.5 can also
be obtained in order to obtain less restrictive conditions by fol-
lowing [240].

When the mapping F is no longer Lipschitz, the high-gain
observer no longer ensures asymptotic convergence, but practi-
cal convergence may be guaranteed under some conditions on
the Hölder powers or boundedness of each nonlinearity, see,
e.g., [50]. Otherwise, more general homogeneous correction
terms can be used, as detailed in Section 6.3.

6.2.3. Kalman-like high-gain observers
For step 1: Another approach to design a correction term for A

is to follow the approach obtained from the observability
Gramian given in Section 5. In order to do so, one needs
to consider the particular case in which A and C depend
only on known signals (i.e., y and t or u but not z) and can
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be employed to update dynamically P. Moreover, the pair
(A,C) needs to be observable in the sense that the observ-
ability Gramian Gy of the system (see Definition 5.1)

χ̇ = A(y, t)χ , y = C(t)χ ,

needs to be lower bounded in a particular manner. We have
the following result, see, e.g., [54].

Lemma 6.2. Assume that there exists a positive real num-
ber a such that |A(y, t)| ≤ a for all y, t. Assume moreover
that there exists `∗ that for all ` > `∗ and all t ≥ 1

`

Gy

(
t −

1
`
, t
)
≥ c`D−2

` ,

with D` defined as in (67). Then, for any λ ≥ 2a, there
exist p and p such that for all ` > `∗ the solution to

Ṗ(t) = `
(
−λP(t) − A(y, t)>P(t) − P(t)A(y, t) + C(t)>C(t)

)
(72)

initialized at P(0) = P(0)> > 0 satisfies (59c).

The Gramian condition may be referred to as instanta-
neous uniform complete observability, since it requires
lower boundedness of the Gramian in arbitrarily short
time.

For step 2: Again, for the second step, assuming a global Lip-
schitz property, it is possible to cope with the nonlineari-
ties.

Theorem 6.2. Assume that the system (1) admits a trian-
gular normal form with a vector field F such that A and C
given in (62), (63) are independent of z, (68b) holds and
the assumptions of Lemma 6.2 hold, then there exists `∗

such that for all ` > `∗, the system (60a), (60b), (72) is a
robust tunable asymptotic observer with

k(ẑ, y, t) = D`P(t)−1C(t)>(y −C(t)ẑ) (73)

andD` defined as in (67).

As highlighted in Theorem 6.2, the gain of the high-gain ob-
server (60a), (60b), is obtained from the solution of a differen-
tial Lyapunov matrix equation (72) similar to the one of (50).
In the case in which A,C in (72) are constant, we recall also the
works [74, 120] and the early work [104] in which the asymp-
totic solution to (72), P∞ = limt→∞ P(t) is employed.

In [105], another version of the Kalman-like high-gain ob-
server is given in which the matrix function B is also employed
in the update law of P and where A and C are assumed to be
constant. We briefly recall the main result.

Theorem 6.3. Assume that the system (1) admits a triangular
normal form with a vector field F such that A and C given in
(62), (63) are constant and of the form (55) and (68b) holds
then there exists `∗ such that for all ` > `∗, the system (60a),
(60b) is a robust tunable asymptotic observer with

k(ẑ, y, t) = P(t)−1C>(y −Cẑ) (74)

where

Ṗ(t) = −
(
A> + B(ẑ, t)

)>
P(t) − P(t)

(
A> + B(ẑ, t)

)
+

C>C − P(t)D2
`P(t) , (75)

initialized at P(0) = P(0)> > 0, andD` defined as in (67).

In that case, the design of the gain (74) of the high-gain ob-
server (60a), (60b) is obtained from the solution of a differen-
tial Riccati matrix equation (75) which is exactly the same as
the Extended Kalman Filter. For this reason, this observer is
named the Extended Kalman like High-gain Observer.

6.2.4. Adapting the high-gain parameter and dynamics scaling
The idea of dynamically updating the high-gain parameter

has been investigated by many researchers. The motivation for
this is twofold: for qualitative purpose to reduce the size of
the gain (see for instance [97]), or to allow unknown or time-
dependant Lispchitz constants.

• For instance, Lipschitz bounds of the form∣∣∣∣∣∣∂Fi

∂z j
(z, y, t)

∣∣∣∣∣∣ < b(y, t) , j ≤ i , (76)

where now b(y, t) is a continuous function have been con-
sidered in [185] or [143]. In that case the prototypical
high-gain parameter updating law takes the form

˙̀ = `(c1(c2 − `) + c3b(y, t)) , `(0) > c2 ,

for some positive real numbers (c1, c2, c3). The idea behind
such a design is that ` dynamically adapts to the Lipschitz
bound (76) with a Riccati differential equation.

• In [69, 146, 8] the Lipschitz bound is unknown. The idea
is then to employ a strictly increasing high-gain parameter.
Note that in this case, the obtained observer may not be
robust.

• Adaptation has also been employed in combination with
the Kalman-like high-gain observer given in Theorem 6.3,
see, e.g. [60].

6.3. Homogeneous correction terms
6.3.1. Homogeneity to allow non locally Lipschitz normal form

High-gain observers may also be designed to cope with non-
Lipschitz triangular forms. Indeed, it is possible to relax this
regularity condition if we employ homogeneous observers (also
known as sliding-mode observers in some cases). These type of
observers already have an old history which can be traced back
to the work of Arie Levant [147, 148] and has been followed by
many other researchers (see, e.g., [236, 149, 189, 191, 20, 178,
19, 21, 50]).

The homogeneous correction terms of degree r in [−1, 1
nz−1 )

denoted kHom = (kHom,1, . . . , kHom,nz ) take the form

kHom,i(s) = µi sign(s) |s|
ri+1
r1 , ri = 1 − r(nz − i) . (77)
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where µi are gains to be tuned and sign is a set-valued map
defined as

sign(s) =


{1} if s > 0 ,
[−1, 1] if s = 0 ,
{−1} if s < 0 ,

(78)

which is upper semi-continuous with nonempty, compact and
convex values. In (77), r = (r1, . . . , rnz+1) is a vector in Rnz+1,
called weight vector. For instance, for r = −1 and nz = 2, we
obtain

kHom,1(s) = µ1 sign(s)|s|
1
2 , kHom,2(s) = µ2 sign(s), (79)

recovering the gains of the well-known two-order sliding-mode
observer, see, e.g., [147, 14] and references therein. For the
case r = −1, the observer dynamics with the correction term
(77) must be understood as a differential inclusion. When
r = 0, we recover a linear correction terms as the one given
in Lemma 6.1.

The construction strategy in the homogeneous case is the
same two steps design as the one previously given. However,
since we may not have differentiable nonlinearities in the trian-
gular form, we do not follow the differential framework. So in
the following, we simply assume the system (1) admits a con-
tinuous triangular normal form in the form (58) with constant
matrices C and A.

Step 1 Homogeneous: When employing homogeneous cor-
rection terms, the following result has been obtained for
a constant matrix A and C in [80] and [50, Lemma 1] (see
also [147] for the case r = −1)

Lemma 6.3. Consider A and C defined in (63) and assume
A and C are constant and of the form (55). Then, there
exist real numbers (µ1, . . . , µnz ) in Rnz , such that the origin
of

ė = Ae − kHom(Ce) , e ∈ Rnz (80)

is globally asymptotically stable.

The system (80) being homogeneous and its origin being
asymptotically stable, when r < 0, trajectories are con-
verging to the origin in finite time.

Step 2 Homogeneous: Employing the robustness property of
homogeneous systems, the following result have been ob-
tained in [50].

Theorem 6.4. Assume that the system (1) admit a con-
tinuous triangular normal form as in (58) with constant
vectors A and C of the form (55) and with the mappings
ϕ which satisfy for all i in {1, . . . , nz}, for all (y, za, zb) in
R × Rnz × Rnz and t > 0,

|ϕi(y, z2a, . . . , zia, t) − ϕi(y, z2b, . . . , zib, t)| ≤

b
i∑

j=2

|z ja − z jb|
αi j , (81)

with
1 + (nz − i − 1)

1 + (nz − j)
≤ αi j < 1 , j ≤ i ≤ nz . (82)

Then, there exists r < 0 and `∗ > 0 such that for all
` > `∗, the system (60a), (60b), (77) is a robust finite-time
observer with

k(ẑ, y, t) = D`kHom(y −Cẑ) (83)

whereD` is defined in (67) and kHom in Lemma 6.3.

The homogeneous degree r is typically chosen depending on
how far the αi j are from their lower-bound in (82) (see [50]).
In the limit case where the lower-bounds of (82) are actually
equalities, we take r = −1 and no restriction is imposed on ϕnz

besides boundedness. We recognize the well-known robustness
property of the sliding mode observer.

Note also that the use of more involved correction terms may
give uniform finite time converging observer (see [22, 154]).

6.3.2. Homogeneity to allow non-globally Lipschitz normal
form

Another result which has been obtained is to consider the
case in which the normal form is locally Lipschitz but not glob-
ally Lipschitz. Employing homogeneous in the bi-limit correc-
tion terms (see [19]) in combination with dynamics high-gain
scaling, the following result have been obtained in [20]. Note
that in that case the observer provides a converging estimation
only for bounded trajectories.

Theorem 6.5. Assume that for all x(0) in X0 the solution t 7→
x(t) is bounded for all positive time. Assume that the system (1)
admit a triangular normal form as in (58) with C constant and
when the matrix function A and the mappings ϕi which satisfy
for all (z, y, t) in Rnz × R × R and for all i in {1 . . . , nz}

0 < a < ai(y, t) < a , (84)

|ϕi(y, . . . , zia, t) − ϕi(y, . . . , zib, t)|

≤ b0(y, za, t)
i∑

j=2

|z ja − z jb| + b∞
i∑

j=2

|z ja − z jb|
αi j ,

(85)

with

b0(y, z, t) ≤ Γ(y, t)

1 +

nz∑
j=2

∣∣∣z j

∣∣∣v j

 , 0 ≤ v j ≤
1

j − 1
, (86)

1 ≤ αi j <
i

j − 1
, (87)

for some locally Lipschitz function Γ. Then there exists a cor-
rection term kbiHomo and three positive real numbers (c1, c2, c3)
such that for all ` > `∗, the system (60a) - (60b) is an asymptotic
observer with

k(ẑ, y, t) = D`kbiHom(y −Cẑ1) (88)

withD` defined as in (67), and

˙̀ = `(c1(c2 − `) + c3b0(y, ẑ, t)) , `(0) > c2 .

As shown in [20], this observer is robust.
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6.4. Pure differentiators

In many works, researchers focused on the problem of esti-
mating the derivatives (up to a certain order) of a time-varying
output y. Such a problem can be recast as the problem of
state-observation for dynamical systems (1) that can be put into
the form (54), (55), in which the function ϕnz is possibly t-
dependent. Following the prescriptions of Section 6.2, one can
simply design a high-gain observer of the form

˙̂z = Aẑ +D`K(y −Cẑ) (89)

in which the copy of the term ϕnz is ignored in the observer
dynamics. The observer (89) is also often denoted as dirty-
derivative observer, see, e.g., [225]. In this case, practical con-
vergence can be obtained if the state z evolves in a compact set
(but output feedback stabilization at the origin can be achieved
for controlled systems, see, e.g.,[187, 19]).

Similarly, one can also implement an observer following the
homogeneous approach in Section 6.3, that is of the form

˙̂z = Aẑ +D`kHom(y −Cẑ) (90)

with kHom selected as in in (77), and still neglecting ϕnz . In
this case, under the same boundedness assumption of the state
z, exact finite-time convergence is obtained for ` large enough
and for r = −1 (see, e.g., [72]).

6.5. Use of interconnection

An interesting development in the context of observer design
for systems in triangular normal form (see Definition 6.2) is the
use of interconnection and cascades of low-order differentia-
tors. The main motivations may be summarized as follows:

• to improve the performances of high-gain observers (e.g.,
in terms of peaking phenomenon and sensitivity to mea-
surement noise);

• to improve the limitations of homogeneous approaches
when the homogeneity conditions (81) or (85) are not sat-
isfied.

Concerning the performances of high-gain observers, recall
that when the measured output y is affected by some measure-
ment noise, namely y = H(z1, t)+νy in place of (56a), the bound
(71) is then modified into

|z(t) − ẑ(t)| ≤ c`nz−1 exp(−`λt)|z(0) − ẑ(0)| + ρ`nz−1 sup
s∈[0,t]

|νy(s)|

(91)
for all t ≥ 0 and for some ρ > 0 independent of `. The in-
equality (91) highlights, as previously discussed, the peaking
phenomenon and the important effect of the measurement noise
νy on the asymptotic estimation. Furthermore, it can be proved
that for high-frequency measurement noise the asymptotic gain
behaves actually as `nz , see [30]. Such considerations motivate
for the use of more sophisticated designs, based on the use of
an interconnection of lower-dimensional observers in order to
increase the relative degree between the measurement noise νy

and the estimates ẑ, and at the same time, to relax the homo-
geneity conditions (81) or (85) in the context of homogeneous
theory. Different techniques that can be also employed in the
context of performances improvements are also discussed in
Section 8.3.

The main idea of a cascade structure for triangular nor-
mal forms consists in employing a cascade of nz − 1 lower-
dimensional differentiators of order 2, each of them feeding the
successive differentiator. The observer takes the form

˙̂zii = Fi
(
y, t, ẑ12, ẑ23, . . . , ẑi(i+1)

)
− `iki,1

(
ẑii − ẑ(i−1)i

)
˙̂zi(i+1) = Fi+1

(
y, t, ẑ12, ẑ23, . . . , ẑ(i+1)(i+2)

)
− `2

i ki,2
(
ẑii − ẑ(i−1)i

)
i = 1, . . . , nz − 1,

(92)
with the conventions ẑ01 = y and ẑnz(nz+1) = 0, and where the
`i’s are positive real numbers that will be selected later on. The
overall state dimension of the observer is 2nz−2. The indexes of
the observer variables are selected with the convention that ẑii is
the first state-component of the i-th block providing an estimate
of the variable zi, and ẑi(i+1) is the second state-component of
the i-th block providing an estimate of the variable zi+1. As a
consequence, for each variable zi, with i = 2, . . . , nz − 1, we
have two different estimates.

Depending on the design employed for the functions ki,1, ki,2,
we obtain two different classes of observers.

Linear gains: By selecting the gains ki, j in (92) linearly,
namely

ki j(s) = µi, js , ∀i = 1, . . . , nz − 1, j = 1, 2 , (93)

we obtain the so-called low-power high-gain observer
which provides an extension of Theorem 6.1, see, e.g.,
[235, 29] with the following result.

Theorem 6.6. Assume that the system (1) admits a trian-
gular normal form (see Definition 6.2) with the mappings
F and H satisfying (68) for all (z, y, t) in Rnz ×Rny ×R for
some positive real numbers (a, a, c, c, b). Then, there exist
positive real numbers µi, j, i = 1, . . . , nz − 1, j = 1, 2, and
`∗ ≥ 1 such that, for all ` > `∗, the system (92), (93) is
a robust tunable asymptotic observer with `i = ` for all
i = 1, . . . , nz − 1.

In particular, the observer (92) is able to recover the same
type of ISS bound as the one given in (91). However, since
the relative degree between the output y and the estimate zi

is larger than one (in particular, when y in ϕi is substituted
with ẑ11), the sensitivity with respect to high-frequency
measurement noise is improved, see, e.g., [31]. Further-
more, by adding some saturation functions between the
interconnections of each block, the peaking phenomenon
can be removed when the state z of the plant evolves in a
known compact set, see [31].

Different versions of the low-power high-gain observer for
systems in the prime form (54), (55) are the one proposed
in [226] in which each block is implemented as a reduced-
order high-gain observer (thus recovering an observer of
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total dimension nz − 1), and the cascade high-gain ob-
server proposed in [133], in which all but the first block
are reduced-order observers (thus obtaining an observer of
total dimension nz).

Nonlinear gains: As proposed in [14] the gains ki, j in (92) can
be designed following a mixed linear/homogeneous ap-
proach as{

ki,1(s) = q(κs),
ki,2(s) = sign(s) + q(κs), q(s) = sign(κs)|s|

1
2 + s.

(94)
As explained at the beginning of the Section 6.3, the ob-
server dynamics must be understood as a differential in-
clusion. The following result can be stated.

Theorem 6.7. Assume that the system (1) admits a contin-
uous triangular normal form as in (58) with constant vec-
tors A and C as in (55) and with the mappings ϕ which sat-
isfy for all i in {1, . . . , nz}, for all (y, za, zb) in R×Rnz ×Rnz

and t > 0,

|ϕi(y, z2a, . . . , zia, t) − ϕi(y, z2b, . . . , zib, t)| ≤

b0 + b1

i∑
j=2

|z ja − z jb|. (95)

Then, there exist positive real numbers (κ, `1, . . . , `nz−1)
such that the system (92), (94), is a robust finite-time ob-
server.

With respect to Theorem 6.4, we obtain much less restric-
tive conditions on the functions ϕi. In particular, the homo-
geneous inequality (81) is now replaced by (95) in which
each function ϕi is bounded by a linear and a constant
term. To the best of the authors’ knowledge, a convergent
observer of the form (60a) under the condition (95) cannot
be obtained, thus motivating the interconnection structure
(92) to be crucial for systems with such type of nonlinear-
ities.

Note that an early version of the observer (92) in the pure
differentiator context (see Section 6.4) can be found in
[101], where the gains ki, j in (92) are selected following
the homogeneous conditions with degree r = −1, namely
as in (79). Therein, however, the interconnection term
ẑ(i+1)(i+1) in the ẑi(i+1) dynamics is not employed and each
block is actually implemented as a pure sliding-mode dif-
ferentiator of order 2. Another possibility is finally to se-
lect the gains ki, j in (92) following standard homogeneous
theory, see [174]. In this case, the homogeneous version
of the low-power high-gain observer [29] is recovered and
a result similar to Theorem 6.4 can be established.

Finally, note that if the system (1) has (uniformly) bounded
trajectories and admits a continuous triangular normal form as
in (58) with constant vectors A and C as in (55) and without
any further assumption of regularity on ϕ, it is proposed in [50]
to build a finite-time observer by interconnecting n homoge-
neous observers of degree r = −1 (see Section 6.3.1), with the

i-th block of dimension i estimating (x1, . . . , xi). Indeed, thanks
to triangularity, the estimate of (x1, . . . , xi) provided by the i-
th block, which converges in finite-time, can be used to feed
(ϕ1, . . . , ϕi) in the (i + 1)th block and the homogeneous correc-
tion terms with r = −1 allow to handle the bounded nonlinearity
ϕi+1 on the last line. This observer is also shown to be uniformly
asymptotically stable and robust.

7. Observers from backward distinguishability

When D. Luenberger published his first results concerning
the design of observers for linear systems in [157], his idea was
to look for an invertible change of coordinates transforming the
plant dynamics

ẋ = Ax , y = Cx ,

into a form
ż = Λz + Γy

with Λ Hurwitz, for which a trivial observer is simply made of
a copy of the dynamics

˙̂z = Λẑ + Γy .

Indeed, the estimation error in the z-coordinates then evolves
simply along the contracting dynamics

d
dt

(ẑ − z) = Λ(ẑ − z)

and x̂ is obtained from ẑ by inverting the transformation. He
proved that when the pair (A,C) is observable with ny = 1, this
is always possible via a linear stationary transformation z =

T x with nz = nx, for any Hurwitz matrix Λ in Rnx×nx with no
common eigenvalues with A, and Γ any vector in Rnx such that
the pair (Λ,Γ) is controllable. This is based on the fact that the
Sylvester equation

T A = ΛT + ΓC (96)

admits in this case a solution that is unique and invertible.
Some researchers have therefore tried to reproduce Luen-

berger’s original methodology on nonlinear systems, i.e., find
a (uniformly injective) transformation into a Hurwitz form

ż = Λz + Γ(y, t) , y = H(z, t) (97)

with Λ Hurwitz, and associated observer

˙̂z = Λẑ + Γ(y, t) . (98)

Unlike in Section 5, this procedure is not a linearization of the
plant dynamics, since the output function H in (97) can be any
nonlinear function (see [130, Remark 4]). This crucial differ-
ence leads to far less restrictive conditions on the system, and
because the corresponding observer (98) is a simple copy of the
dynamics, it is not even necessary to have an explicit expression
for H.
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7.1. Autonomous systems
The case of autonomous nonlinear systems was first pro-

posed and analyzed in a general context by [218]. It was re-
discovered later by [130] who gave a local analysis close to an
equilibrium point under conditions relaxed later on in [142].
The localness as well as most of the restrictive assumptions
were then by-passed in [18] leading to the so-called KKL-
observers or nonlinear Luenberger observers, which is also
strongly related to the observer proposed in [137]. More pre-
cisely, in [18], the authors investigate the possibility of trans-
forming an autonomous system (2) into a Hurwitz autonomous
form (97) with Γ(y, t) = Γ(y). This raises the question of find-
ing, for some integer nz, a C1 function T : Rnx → Rnz verifying

dT
dx

(x) f (x) = ΛT (x) + Γ(h(x)) ∀x ∈ X (99)

with Λ some Hurwitz matrix of dimension nz and Γ : Rny → Rnz

some continuous function. The existence of such a transforma-
tion is shown for any Hurwitz matrix Λ with sufficiently neg-
ative eigenvalues and for some well-chosen functions Γ under
the only assumption that the system is backward-complete7 in
X ([18, Theorem 2]). Of course, this is not enough since, as we
saw in Theorem 3.1, it is required that T be uniformly injective
on X to deduce from the estimate ẑ of T (x) an estimate of x. It
is shown in [18, Theorem 3] that injectivity of T is achieved for
almost any diagonal complex Hurwitz matrix Λ of dimension8

(nx +1)ny and for any Γ verifying some growth condition, under
a backward-distinguishability assumption.

Definition 7.1. Given an open set O ⊃ cl(X), the system (2)
is backward O-distinguishable if there exists δd > 0 such that
for any (xa,0, xb,0) ∈ O × O verifying xa,0 , xb,0, and for any
solution (xa, xb) to (2) initialized at (xa,0, xb,0), there exists t < 0
such that both xa and xb are defined in O + δd on [t, 0] and

h(xa(t)) , h(xb(t)) .

In other words, two different states in O can be distinguished
in O + δd from the past values of the output. In the case where
X is bounded, the result of [18] can be simplified as follows.

Theorem 7.1 ([18]). Assume thatX is bounded and there exists
an open bounded subset O of Rnx containing cl(X) such that
the system (2) is backward O-distinguishable on X. Then, there
exists a strictly positive number ` and a set R of zero Lebesgue
measure in Cnx+1 such that denoting

Ω =
{
λ ∈ C : <(λ) < −`

}
,

for any (λ1, . . . , λnx+1) in Ωnx+1 \ R, there exists a C1 map T :
O → R(nx+1)×ny uniformly injective on X and verifying (99) with

Λ = Λ̃ ⊗ Iny , Γ(y) = (Γ̃ ⊗ Iny ) y ,

7Any solution exiting X in finite backward time must cross the boundary of
X. See [18, Definition 1].

8Separating the real/imaginary parts, the observer is thus of dimension
2(nx + 1)ny on R.

and

Λ̃ =


λ1

. . .

λnx+1

 , Γ̃ =


1
...
1

 . (100)

It is therefore possible to design an observer for an au-
tonomous nonlinear system (2) under the weak assumption of
backward-distinguishability. Note that with a stronger assump-
tion of strong differential observability of order m (see Defini-
tion 6.1), and still in a bounded set, it is also proved in [18,
Theorem 4] that the injectivity of T is ensured for any m eigen-
values λi = `λ̃i with ` sufficiently large and λ̃i < 0.

Assuming differential observability, it is shown in [13] that
the observer is exponential in the sense of (6). Moreover, it can
be shown that the observer obtained is robust since it satisfies
an asymptotic gain property as in equation (10).

Note that Theorem 7.1 recommends to filter each output with
nx + 1 generic complex eigenvalues in Ω. Separating real and
imaginary parts, this gives a real implementation of dimen-
sion 2(nx + 1) for each output. Actually, ongoing works show
that the result extends to any controllable real pair (Λ̃, Γ̃) with
Λ̃ ∈ R2nx+1 diagonalizable and a generic choice of complex
conjugate or real eigenvalues in Ω. Therefore, this allows a real
implementation of dimension 2nx + 1 (instead of 2(nx + 1)) for
each output and a more general choice of filters.

7.2. Time-varying/controlled systems

After first steps in [202, 230] for linear time-varying sys-
tems, an extension of the Luenberger design to nonlinear con-
trolled systems was considered in [87], following the ideas of
[137]. In [87], injectivity of a time-varying transformation T is
proved only under a so-called ”finite-complexity” assumption,
originally introduced in [137] for autonomous systems. Un-
fortunately, this property is very restrictive and hard to check.
Besides, no indication about the needed dimension nz is given.
Those problems were then overcome more recently in [46] with
results of existence and injectivity of a time-varying transfor-
mation under more standard and constructive observability as-
sumptions.

More precisely, consider nz ∈ N, a Hurwitz matrix Λ ∈ Rnz×nz

and a vector Γ ∈ Rnz×ny . In order to transform a general time-
varying system (1) into the Hurwitz form (97) with9 Γ(y, t) =

Γy, we need to find a transformation T : Rnx × [0,+∞) → Rnz

such that for any x in X and any time t ∈ [0,+∞),

∂T
∂x

(x, t) f (x, t) +
∂T
∂t

(x, t) = ΛT (x, t) + Γh(x, t) . (101)

According to Theorem 3.1, (98) then gives an observer for (1)
if besides T becomes injective uniformly in time and in space
at least after a certain time.

It is shown in [46, Lemma 1] that a solution to (101) always
exists if solutions to (1) initialized in X do not explode in finite

9We could have considered the more general Hurwitz form (97), but taking
Γ linear and stationary is sufficient to obtain satisfactory results.
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backward time. Note that this latter assumption can always be
made to hold if X is bounded by saturating f outside of X.
Then, still under a backward-distinguishability condition, but
this time in finite time, “generic” injectivity is proved in [46,
Theorem 3].

Theorem 7.2 ([46]). Assume that X is bounded and the sys-
tem (1) is backward-distinguishable in time td on an open set
O containing cl(X), i-e for any t0 ≥ td and any pair of so-
lutions (xa, xb) to (1) verifying (xa(t0), xb(t0)) ∈ O × O with
xa(t0) , xb(t0), there exists s ∈ [t0 − td, t0] such that

h(xa(s), s) , h(xb(s), s) .

Then there exists a set R of zero-Lebesgue measure in Cnx+1

such that for any (λ1, . . . , λnx+1) in Ωnx+1 \ R with Ω = {λ ∈
C , <(λ) < 0}, there exists a C1 map T : X → R(nx+1)×ny verify-
ing (101) with

Λ = Λ̃ ⊗ Iny , Γ = Γ̃ ⊗ Iny ,

and Λ̃, Γ̃ defined in (100), such that T (·, t) is injective on X for
t > td.

Note that the assumption of backward-distinguishability in
finite time is in particular verified when the system is instanta-
neously backward-distinguishable, and a fortiori when the map
made of the output and its Lie derivatives up to a certain order
is injective with respect to x (weak differential observability).
Actually, under a strong differential observability assumption
on (1), it is shown in [46, Theorem 2] that, with sufficiently fast
eigenvalues, nz can be chosen according to the order of differ-
ential observability of each output.

7.3. Computation of the transformation

All in all, the main difficulty of the KKL observers lies in the
computation of the map T , let alone its left-inverse T . From
a theoretical point of view, an injective solution T : O →
R(nx+1)×ny to (99) shown to exist in Theorem 7.1, is written ex-
plicitly as

T (x) =

∫ 0

−∞

e−ΛτΓ(h(X̆(x, τ))) dτ , (102)

where X̆(x, τ) is the solution at time τ and initialized at x to
modified dynamics ẋ = f̆ (x) with f = f̆ on X. A similar ex-
pression exists for the time-varying context (see [46, Lemma
1]) Unfortunately, the use of those explicit expression (102) is
not easy since it necessitates to integrate backwards a differen-
tial equation at each time step. Several examples in [45, Section
6.3] show how the map T can sometimes be computed without
relying on the integral formulas. Otherwise, an approximation
strategy was proposed in [163] in the context of output regu-
lation, and a learning-based strategy was presented in [81] in
order to learn offline the map T via neural networks.

Note that when the time dependence of (1) comes from an in-
put u, namely we have (3), then the map T (·, t) depends implic-
itly on the whole past trajectory of u and is thus not computable

offline. An alternative would be to keep the stationary transfor-
mation obtained for some constant value of u (for instance the
drift system at u ≡ 0) and prove that the additional terms due
to the presence of u do not prevent convergence. In the context
of input-affine systems (57), this can be done under very strong
assumptions of uniform observability and strong differential ob-
servability of order nx of f , namely in the same context as [103]
allowing to transform the dynamics in the triangular form (56b)
(see [46, Theorem 4]).

8. About the implementation of an observer

8.1. The left-inversion problem

The previous sections have shown that it is possible, under
certain conditions, to build an observer by transforming the
plant dynamics into a favorable form for which an observer is
known. It follows that the dynamics of the plant and of the
observer are not expressed in the same coordinates and often
evolve in spaces of different dimensions. In order to obtain an
estimate for the system state, i.e., compute T (or even some-
times to write the observer dynamics), it is necessary to invert
the injective transformation T . But even if T is stationary, this
inversion is difficult in practice, when an analytical expression
for a global inverse is not available. Indeed, the inversion then
usually relies on the resolution of a minimization problem of
the type

x̂ = min
x∈X
|T (x) − ẑ|

with a heavy computational cost and the risk of local minima.
In the case where T is a diffeomorphism on an open set O

containing X, one may hope to avoid this minimization by im-
plementing the observer (4) directly in the x-coordinates with

˙̂x =

(
dT
dx

(x̂)
)−1

F (T (x̂), y, t) . (103)

This is done for instance in [238, 104, 77, 173, 158, 51, 34, 35].
But even in this apparently simple case, the observer (103) must
be treated carefully. Indeed, although x remains in O where
the Jacobian of T is invertible, there is no guarantee that x̂
will, in particular during transient behaviors where the solu-
tions t 7→ ẑ(t) of (4) may leave the image set T (O). For instance
it is shown in [51] that the observer proposed in [104] admits
solutions that explode in finite-time. This can be solved either
by modifying the observer dynamics F to constrain the state
in T (O) as in [158, 34, 35], but some convexity properties are
needed to guarantee convergence is preserved ; or by keeping
the observer dynamics F unchanged but modifying T outside
of X so that T (O) = Rm, as proposed in [51]. But there is no
systematic method to perform this image extension in practice.

Now, when nz > nx, i.e. the Jacobian is rectangular and T
is at best an injective immersion, (103) cannot be implemented.
It was proposed in [51] to extend T into a surjective diffeo-
mophism Te, by adding nz − nx fictitious states w to x, such
that

Te(x, 0) = T (x) ∀x ∈ X

21



and implement
·︷ ︷[
x̂
ŵ

]
=

(
dTe

d(x,w)
(x̂, ŵ)

)−1

F (Te(x̂, ŵ), y, t)

Another path is to implement Newton-like or gradient-like
algorithms in parallel to (4), namely add dynamics of the type

˙̂x = µK(x̂)(ẑ − T (x̂))

where K(x) = dT
dx (x)> or K(x) =

(
dT
dx (x)> dT

dx (x)
)−1 dT

dx (x)> as
proposed in [169, 32] for high gain observers. But the conver-
gence of the obtained observer is only local. Similarly, continu-
ation algorithms which “follow” the minimum of x 7→ |T (x)−ẑ|2

can be used under a convexity assumption like in [111], but
again the convergence is only local.

Finally, one may mention an alternative route followed in
[47], which consists in implementing in parallel to (103), an
independent practical observer which is used to reset x̂ when-
ever it gets too close to the boundary of O. Here, only a finite-
number a approximate left-inversions of T need to be carried
out and the convergence is global.

8.2. Taking into account state constraints
In many applications, the state of the plant is known to evolve

in a given set or manifold X, describing the set of interest of the
variables for the considered set of initial conditions X0. Ex-
amples include positive systems [94], quaternion or other Lie
groups ( [207, 165, 110, 61]), general manifolds admitting sym-
metries ( [2]). When the observer is implemented in other coor-
dinates z = T (x), also z is thus known to remain in the manifold
Z = T (X). But unless the observer is designed in a way that
incorporates these constraints, x̂ (resp. ẑ) could in principle
leave the set X (resp. Z) for some time, because of transient
dynamics or disturbances. A typical example is the peaking
phenomenon occurring in high-gain observers [132]. During
these excursions outside of X (resp. Z), the estimate is known
to be inaccurate and cannot be exploited. Worse, the observer
maps F andT may not be defined or this may lead to instability
in the context of output-feedback. Besides, it is advantageous
from a numerical implementation point of view to specify be-
forehand the range of each variable and to have this range as
small as possible to increase precision. This is not possible if
the estimates are not guaranteed to remain in (or close to) X
(resp. Z).

A simple idea to address some of these issues is to saturate
or to project x̂ into X, while preserving the observer’s inner dy-
namics F , namely change only T . However, the inner observer
state ẑ can still venture far from its “nominal” set Z. A nat-
ural way to overcome these issues is to constrain ẑ in a given
set Ẑ ⊃ Z. This has nevertheless to be done with care to pre-
serve the observer convergence and performance. In control
problems, combining convergence with invariance constraints
is typically handled through control barrier functions [11], lead-
ing to the so-called safety control. However, those methods do
not transpose easily to the estimation field because the state, and
thus the value of the Lyapunov function, are unknown. Instead,
two different strategies may be followed :

• either the observer dynamics F are designed from the start
to ensure simultaneously convergence of the estimation er-
ror and invariance of Ẑ ;

• or the observer dynamics F are first designed along gen-
eral unconstrained methods, and then modified in a second
step to ensure the estimate remains in a particular set Ẑ.

Along the first path, we may mention invariant observers [2]
in which the observer dynamics are designed so that to respect
some state space symmetries. Similar ideas have been devel-
oped in the filtering context in [165, 61] or in [110] for state es-
timation for rotation matrices and more generally for Lie groups
[145, 180, 41, 160, 159]. This is also the path which is followed
in [39, 62] for positive systems in which the positive orthant is
made invariant along the observer dynamics.

On the other hand, along the second path, projection-based
solutions have been proposed for high-gain observers in [158]
for Lur’e type systems in [224], for Kalman filters [219, 44],
within the framework of projected dynamical systems in [115]
for exponentially convergent observers with linear correction
terms, and in [28] for any type of observer with quadratic Lya-
punov functions under general nonlinear convex constraints.
Actually, instead of projecting ẑ or F , [28] also proposes to
consider the constraint information as an additional pseudo-
measurement and add a correction term in F in a way that does
not increase the derivative of the Lyapunov function (to pre-
serve convergence) but that ensure ẑ remains in Ẑ.

8.3. Tuning and characterization of performances

8.3.1. Analysis of the behaviour of observers
From the practical point of view, it is in general important not

only to guarantee that an observer is asymptotic, but also that
its performances are satisfactory in terms of transient response
(convergent speed) and steady-state behaviour in presence of
measurement noise and possibly model uncertainties [33]. For
linear systems, a certain number of different linear tools are
available for both synthesis and design, such as Laplace and
Fourier transform, H∞ or L2 gain designs (based on the mini-
mization on an input-output gain and the bounded real lemma)
or Kalman filtering stochastic approach, see, e.g. [127], just to
cite a few. However, it is also very well known that certain lim-
itations cannot be overcome with standard linear tools, see, e.g.
[211].

For nonlinear observers, one may gain in flexibility in us-
ing nonlinear/hybrid tools, but it has to be stressed that it is
also much harder, in general, to analyze the desired aforemen-
tioned performances characteristics. As a matter of fact, the tool
which is typically employed is the one of Lyapunov functions,
allowing both synthesis and design, with the performances that
are characterized in terms of classical ISS bounds, see, e.g.,
[216]. For the majority of the observer design techniques pre-
sented in these survey, such a Lyapunov analysis can be easily
developed and it is not hard to verify that most of observers
are indeed robust according to the definition given in the intro-
duction, see inequality (10). However, it is also important to
remind that such bounds are in general conservative, because
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Lyapunov analysis reflects the (worst-case) asymptotic gain of
the estimation error (10), failing to capture any frequency infor-
mation. In this sense, the analysis of the behaviour in presence
of high-frequency measurement noise developed in the context
of high-gain observers [30, 31] is a remarkable attempt in such
a direction. On the other hand, Lyapunov analysis may also be
used as a design tool to improve certain properties, as shown in
[23], where a hybrid scheme is employed to reduce the peaking
phenomenon of high-gain observers.

8.3.2. Use of variable gains and multi-observers
A typical limitation in observer design is the requirement

of having fast convergence and a small influence of the mea-
surement noise in steady-state. Intuitively, a “large-gain” (in
terms of magnitude) is needed to achieve fast convergence, but
a “small-gain” is desired to minimize the effect of the mea-
surement noise on the observer-dynamics. Variable gains can
therefore be employed to improve performance either in terms
of sensitivity to measurement noise, or in increasing the speed
of convergence of the observer. This can be achieved with
continuous-time gain adaptation, for instance, by means of Ric-
cati or Lyapunov based designs such as in Kalman filters [127],
Kalman-like observers, see, e.g., [60, 74], and in high-gain ob-
servers [209], or employing switching strategies between dif-
ferent gains in a hybrid/switching context, see, e.g., [6, 78, 84].

In the same spirit of employing different gains, another
methodology consists in using a bank of observers and to es-
timate online the “best-one”, i.e. the one providing the more
accurate estimate. Such an approach has been investigated, for
instance, in [140, 182, 76, 90, 33].

Finally, we recall also [88, 172, 151, 201] where different ob-
servers with different gains are combined to obtain finite-time
estimation.

8.3.3. Use of filters
A different route that it is often used in observer design to

improve the performance in presence of measurement noise is
based on the use of filters in order to reduce its effect. Al-
though filtering the sole measured output may introduce phase-
lag in the estimates, the use of filters for the output-error esti-
mation error may improve the sensitivity properties of the ob-
server while preserving its asymptotic convergence in nomi-
nal “noise-free” conditions (see [36]). A well-known example
of such an approach is the so-called Proportional-Integral Ob-
server (PI-observer) in which both the output estimation error
and its integral are typically employed in the observer design,
enlightening remarkable improvements, see, e.g., [43, 176, 70].
The so-called “low-power high-gain observer” approach inves-
tigated in [29, 31] founds on the same principle of augmenting
the relative-degree between the measurement noise and the state
estimate, in order to increase the filtering properties at high-
frequencies. In this case, the filters are directly inherited from
the cascade structure, see Section 6.5. The use of more gen-
eral low-pass filters have also been investigated in the context
of high-gain observers (see, e.g., [229, 36]) and homogeneous
observers (see, e.g., [124]) presented in Sections 6.2 and 6.3.

Based on similar ideas, we recall also the recent idea in which
the observer is designed by using integrals of the output com-
bined with a moving-horizon strategy, see [170, 171].

Finally, recent developments showed how the use of satu-
ration (also denoted as Stubborn observer) or dead-zone with
adapting thresholds may be employed to improve the sensitiv-
ity with respect to sporadic impulsive noise and biased noise,
see, e.g., [9, 79, 27].

8.4. Output sampling and continuous-discrete observers

In practice, the output y is sampled and only available inter-
mittently at specific time instances. A first natural idea is to ap-
proximately discretize the continuous-time observer designed
for the continuous-time plant model, or to design a discrete-
time observer for an approximate discretized model of the plant.
This typically leads to practical observers, and attention must
be payed to the discretization method in order not to destroy
the convergence properties of the observers, see, e.g., [25].

When the sampling time is not sufficiently small for such dis-
cretizations, or when asymptotic convergence is seeked, spe-
cific continuous-discrete observers need to be designed, con-
sidering the time elapsed between successive sampling events.
Generally, they consist either of a continuous-time predictor
made of the copy of the plant dynamics with discrete updates
of the estimate at each sampling time, or of a continuous-time
observer with a sample-and-hold innovation term.

In this second case, convergence of such observers was first
shown under the assumption that the sampling period is suffi-
ciently small (this strategy is also known in literature as emu-
lation approach), for linear observers in [223], high-gain ob-
servers in [82, 95, 4], and contractive observers in [162]. Us-
ing the hybrid formalism proposed in [106], general conditions
in the context of network communications have been proposed
in [183] and [184] for robust nonlinear observers and reduced-
order observers. More sophisticated designs have been devel-
oped for arbitrary constant sampling period [194, 83], and more
generally for sporadic measurements, using sample-and-hold
strategies [195, 3] or discrete updates of the estimate at the sam-
pling times [166, 98, 92, 212, 53, 150, 5], among others.

Actually, when we know that the time elapsed between two
successive sampling events always belongs to a certain set,
the observer can be modeled by an autonomous hybrid system
[106]. Via this formalism, it is shown in [53] that the discrete
updates of the estimate at the sampling time, should be designed
as for a discrete observer of an equivalent discrete-time system,
made of the plant dynamics sampled at the sampling times. For
linear systems, this allows to use the gains of a discrete Kalman
filter [53], or recover the matrix inequalities obtained for in-
stance in [194, 98]. For Lipschitz nonlinear systems, such tools
may still be used when the dynamics are in the convex hull of
linear dynamics [83].

Last but not least, one should also mention the literature of
event-triggered observers when the sampling times of the out-
put can be triggered based on a policy defined by the observer
or by a smart-sensor (i.e. a sensor equipped with computa-
tional capacities) that decides when to transmit the information.
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We briefly recall [214, 213, 91] concerning the use of event-
triggering strategies and [17, 192] for self-triggering strategies.
See also [179] and references therein.

8.5. Adaptive observers

It may happen that some parameters of the plant dynamics
(1) are unknown or not precisely known. That is why a lot of
researchers devoted their attention to the design of observers for
systems of the form

ẋ = f (x, t, θ) , y = h(x) ,

where θ ∈ Rnθ is a set of parameters characterizing the plant’s
dynamics and which is unknown: we talk about adaptive ob-
servers. Within this context, two main approaches may be pur-
sued.

Joint estimation: The first one consists in considering the con-
stant parameters θ as an additional state with a pure in-
tegrator dynamics, i.e., θ̇ = 0 (state augmentation). In
such a case, one can recast the observation problem for
the extended state (x, θ) and re-apply, for instance, one of
the technique reviewed in this survey. In doing so, joint-
observation requires the appropriate observability assump-
tion to hold for the full state (x, θ). See, for instance, [1]
for the case of KKL observers.

Disjoint estimation: A second approach is to consider the esti-
mation problem disjoint from the “identification” problem
of the parameters and follow typical adaptive control tech-
niques [121, 37, 144, 177]. In doing so, one is typically
interested in the convergence of the state estimation error
without any requirement/guarantee of the correct estima-
tion of the parameter θ. Such an approach has been ex-
tensively studied over the last decades with “ad-hoc” so-
lutions based on the particular structure/properties of the
plant’s dynamics. See, for instance, in the following (non-
exhaustive) list of references: [42, 71, 75, 156, 96, 164,
232, 241].

We remark that as discussed in [58], under some persistence
of excitation assumptions, the two approaches may be inter-
changeable, namely when joint estimation can be employed,
then a disjoint strategy can be pursued, and vice-versa.

8.6. Disturbance observers and extended state observers

In some applications such as disturbance estimation and out-
put feedback stabilization, it is commonly assumed that the sys-
tem (1) is transformed into a system of dimension nz of the form

ż = Az + ϕ(t, z, νz), y = Cz

with (A, ϕ,C) being a triplet in prime form (see (55)), and νz

being an unknown input to be estimated. By considering νz

as a fictitious state (as often done in adaptive control, see Sec-
tion 8.5), the dynamics of which is modelled as ν̇z = 0, one
can then design a differentiator (following the prescriptions of

Section 6) of order nz + 1 in order to have an approximate es-
timation of νz and at the same time increase the performances
of the observers in terms of asymptotic gain with respect to νz.
Such an approach is often denoted as Extended State Observer
(shortly ESO), see, e.g. [109] and references therein, or ex-
tended high-gain observer, see, e.g., [175]. Design philosophy
and convergence proofs follow the same principles presented in
Sections 6.2 and 6.3. Concerning other classes of disturbance
observers, we refer to the survey [193] and references therein.

8.7. Use of observers in feedback control
One of the main motivations for the use of an observer in

practical problems is given by feedback control when only a
part of the state can be measured. In practice, a common ap-
proach consists in designing first a state-feedback design, and
then replace the state by its estimate provided by an observer.
For linear systems, it is not difficult to show that the poles of
the closed-loop dynamics coincide with the union of the poles
given by the state-feedback design and those of the observer.
Such a property is also known a “separation-principle” (see,
e.g., [73]).

For nonlinear systems the use of observers in feedback con-
trol is more involved due to possible nonlinear phenomena such
as finite-escape time (see [89]). Furthermore, the control it-
self may destroy the convergence properties of the observers in
lack of uniform observability properties, e.g., [205]. In such a
context, high-gain observers played a fundamental role in es-
tablishing the first “nonlinear separation principle” in output
feedback control, see, e.g., [225, 38, 215, 12]. For triangular
normal form, the use of homogeneous techniques is also well
investigated, see, e.g., [148, 149, 189, 190, 191, 236, 19].

In practice, most of the time, the combination of an asymp-
totic observer and a stabilizing state-feedback design is not suf-
ficient to guarantee the overall stability of an equilibrium of the
closed-loop system and stronger properties such as uniform ob-
servability and ISS (or iISS) of the feedback/observer are usu-
ally needed, see, e.g., [12]. Overall, at the time of the publi-
cation of this article, the problem of output-feedback control is
far from being completely understood and is an open field of
research.

9. Conclusions

In this survey we have reviewed the main methods to design
an asymptotic observer for finite dimensional nonlinear dynam-
ical systems, that have been developed in the last six decades.
They are summarized in Table 1. These methods have been
classified based on the observability property available on the
given dynamical system. Such an approach allows to obtain a
general and unifying point of view on this topic. Although in
its sixties, this research theme is still young and active. This
is illustrated by the recent publications to which we have re-
ferred in the course of this paper. However, some difficulties
remain unsolved and we do not yet have a complete solution to
the observation problem in the nonlinear context. For example,
it remains difficult to characterize the existence of observers for
systems with inputs.
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Also, even if the theory presented all along the paper may
guarantee the existence of an observer, its construction and
practical implementation for (possibly large-dimensional) sys-
tems can be difficult. For instance, KKL observers provide a
very general answer to the observation problem, but the explicit
construction of the transformation T remains problematic apart
from particular applications [161, 49]. Also, the inversion of
the map T in most of the designs still remains a numerical ob-
stacle and leads practitioners to prefer observers written in the
plant coordinates, such as the EKF, even at the price of local
convergence. Moreover, the optimal selection of the observer’s
parameters (in order to guarantee some desired performances)
remains generically an open problem.

This explains why state observers for nonlinear systems are
not systematically implemented in real-life applications. How-
ever, many examples show their relevance (see for instance
[10], see also the soft sensors industry) and we hope that this
survey will participate in their dissemination. It is also impor-
tant to highlight that in many practical applications, discrete-
time observers, such as Extended Kalman Filters (and its mod-
ifications, such as Unscented EKF, Extended EFK or Ensem-
ble EKF), moving horizon observers or particle filters, are di-
rectly designed and implemented. An exhaustive overview of
discrete-time approaches is out of the scope of this article but
of great interest for applications.

Some theoretical problems were not addressed during this
study and may constitute future research themes. For instance,
designing observers for more complex dynamical systems (such
as hybrid, of large/infinite dimension, or with delayed measure-
ments) is not covered by this survey. The use of observers for
feedback control in the presence of observability singularities
is also of great interest and a rich open research problem.

Finally, an approach that seems promising is the joint use of
these methods in combination with techniques resulting from
data analysis and supervised learning methods. Along these
lines, some preliminary results can be found in [162, 81].
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actions on Automatic Control, 65(7):2867–2882, 2020.
[34] D. Astolfi and L. Praly. Output feedback stabilization for SISO nonlinear

systems with an observer in the original coordinate. IEEE Conference
on Decision and Control, pages 5927 – 5932, 2013.

[35] D. Astolfi and L. Praly. Integral action in output feedback for multi-
input multi-output nonlinear systems. IEEE Transactions on Automatic
Control, 62(4):1559–1574, 2017.

[36] D. Astolfi, L. Zaccarian, and M. Jungers. On the use of low-pass filters
in high-gain observers. Systems & Control Letters, 148:104856, 2021.

[37] K. J. Åström and B. Wittenmark. Adaptive control. Courier Corporation,
2013.

[38] A. N. Atassi and H.K. Khalil. A separation principle for the stabiliza-
tion of a class of nonlinear systems. IEEE Transactions on Automatic
Control, 44(9):1672–1687, 1999.

[39] J. Back and A. Astolfi. Design of positive linear observers for positive
linear systems via coordinate transformations and positive realizations.
SIAM Journal on Control and Optimization, 47(1):345–373, 2008.

[40] J. Back and J.H. Seo. Immersion of non-linear systems into linear sys-
tems up to output injection : Characteristic equation approach. Interna-
tion Journal of Control, 77(8):723–734, 2004.

[41] A. Barrau and S. Bonnabel. The invariant extended Kalman filter as a
stable observer. IEEE Transactions on Automatic Control, 62(4):1797–
1812, 2016.

[42] G. Bastin and M. R. Gevers. Stable adaptive observers for nonlin-
ear time-varying systems. IEEE Transactions on automatic control,
33(7):650–658, 1988.

[43] S Beale and B Shafai. Robust control system design with a proportional
integral observer. International Journal of control, 50(1):97–111, 1989.

[44] S. Berkane, A. Tayebi, and A. R. Teel. Hybrid constrained estimation
for linear time-varying systems. 57th IEEE Conference on Decision and
Control, 2018.

[45] P. Bernard. Observer design for nonlinear systems, volume 4. Springer,
2019.

[46] P. Bernard and V. Andrieu. Luenberger observers for non au-
tonomous nonlinear systems. IEEE Transactions on Automatic Control,
64(1):270–281, 2019.

[47] P. Bernard and L. Marconi. Hybrid implementation of observers in
plant’s coordinates with a finite number of approximate inversions and
global convergence. Automatica, 111:108654, 2020.

[48] P. Bernard, N. Mimmo, and L. Marconi. On the semi-global stability of
an EK-like filter. IEEE Control Systems Letters, 5(5):1771–1776, 2021.

[49] P. Bernard and L. Praly. Estimation of position and resistance of a sen-
sorless PMSM : a nonlinear Luenberger approach for a non-observable
system. IEEE Transactions on Automatic Control, 2020.

[50] P. Bernard, L. Praly, and V. Andrieu. Observers for a non-Lipschitz
triangular form. Automatica, 82:301–313, 2017.

[51] P. Bernard, L. Praly, and V. Andrieu. Expressing an observer in preferred
coordinates by transforming an injective immersion into a surjective dif-
feomorphism. SIAM Journal on Control and Optimization, 56(3):2327–
2352, 2018.

[52] P. Bernard, L. Praly, V. Andrieu, and H. Hammouri. On the triangular
canonical form for uniformly observable controlled systems. Automat-
ica, 85:293–300, 2017.

[53] P. Bernard and R.G. Sanfelice. Robust observer design for hybrid dy-

26



namical systems with linear maps and approximately known jump times.
To appear in Automatica, 2022.
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