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Abstract : The paper considers the problem of determining the translational velocity of an
artillery shell from noisy information. To optimize the smoothness of the estimate which is to be
used in a attitude observer through an analysis of its slope, the unknown is sought after under the
form of an element of a family of possible curves, solely parameterized by their initial condition.
The nonlinear dynamics of the velocity being a contraction, it is shown that a measurement bias
is observable. The estimator statistical properties are studied when the number of measurement
is increased.
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1 Introduction and context
In this paper, we propose a technique to improve the method proposed in [4, 5, 6] to estimate
the attitude of an artillery shell in free flight. Determining the attitude of a shell means finding
its 3D-orientation with respect to fixed reference frame. This information is instrumental to
redirect the shell while flying, to improve its accuracy, and to increase its range and its overall
efficiency. It is an essential step in the development of smart shells or guided-ammunition, which
is a very promising technology [4, 2].

1.1 Wahba’s problem, definition and application to a shell in free-flight

Attitude Estimation of a shell in free flight is a well-known problem that can be mathematically
described using Wahba’s problem [10].

This problem is to find a rotation matrix (i.e. a matrix from SO3(R)) between two coordinate
systems, in our case between the shell frame and the (fixed) reference Earth frame, though the
minimization of a cost function expressed using the measurements of direction vectors. The cost
function that Wahba’s problem seeks to minimize is defined as follows :

J(R) =
N∑
k=1
||~uk −R~vk||2

where R ∈ SO3, ~uk is a vector measurement in the shell frame and ~vk is the same vector
expressed in the reference frame.

What is important to consider while considering the Wahba’s problem is that a solution can
only be found if N ≥ 2 : at least 2 linearly independent vector measurement expressed in both
frames to be able are required to find a unique solution.

In most applications of attitude determination using Inertial Measurement Units (IMU),
accelerometers and magnetometers are employed. Under the usual assumption that the ac-
celeration is zero (on average), the accelerometer measures the Earth gravity which is a fixed
direction. The magnetometer measures the Earth magnetic field. Both vector measurements
can be readily normalized, as explained in [4] to provided two linearly independent directions.

However, as the shell is in free flight, it is impossible to read gravity from any on-board
accelerometers. Therefore, the direct solution of Wahba’s problem is impossible here. One has
to find another solution to get more information.
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Figure 1: ISL Shell

Following the method proposed in [4]:

Instead of 2 vectors, the Wahba’s problem can be solved using 1 vector and 1 angle.

This means that one needs to find 1 angle measurement in the shell and then, considering one
already got Earth magnetic field direction using magnetometers, it would be possible to find the
attitude of the shell. For this, a specific method has been developed. The convergence of the
proposed attitude estimation methodology has been established, stressing the complementarity
of pitch angle information and magnetic vector measurement.

1.2 Finding the pitch angle using an estimate of the translational velocity

Figure 2: Pitch angle definition

The pitch angle is defined as the angle between the horizontal plane and the velocity vector
~v of the shell. Using the dynamic equations projected along ~v, one has

v̇ = −ρSCD2M v2 − g sin(θ)

where the quadratic term is the aerodynamic drag, and the term related to g comes from gravity.
This equation gives a direct relationship between v and θ, which is almost equal to the pitch
angle we are seeking. Loosely speaking, the time variations of the velocity give direct information
on the value of θ. In turn, this streses that, in view of determining the full attitude of the shell,
any candidate method to estimate v should avoid to features bumps and other oscillations.
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Figure 3: Estimation of v using a state observer

Figure 3 reports typically results obtained in [4] using a Luenberger-type state observer to
estimate the velocity. As the pitch angle θ is directly linked to the slope of this curve, those
irregularities lead to massive inaccuracy while trying to estimate θ.

It looks to be the main performance bottleneck. In this paper we propose a new estimator
of v which gives us a smoother curve.

The paper is organized as follows. In Section 2, we present the new estimator. In Section 3,
we extend it to account for a (constant) bias on the measurement. In Section 4, we conduct a
convergence analysis. In Section 5 some numerical results are presented along with conclusions
and perspectives.

2 Proposed estimator : find the unknown among a set of pre-
calculated curves

2.1 Curves generation

The rotational and translational dynamics gives us the following set of equations, (see [9] for
detailed notations). p, q and r are angular velocities of the shell among 3 axis. Those four
equations are linked (because θ̇ = p) and one need to solve them all together to get v among
time. 

v̇ = −ρSCD2M v2 − g sin(θ)

ṗ = ρ(h)SD2Cspinv

2Il
p+ 1

2ρ(h)SDδfincantClδv2

q̇ = 1
It

([Il − It]pr + 1
2ρSpD

2Cmagvβ + 1
2ρSDCMαv

2α+ 1
2ρSD

2CMqvq)

ṙ = 1
It

([Il − It]pq + 1
2ρSpD

2Cmagvα−
1
2ρSDCMαv

2β + 1
2ρSD

2CMqvr)

(1)

4



MINES ParisTech, PSL University

With those equations, and with enough computational power, one can integrate those laws
over the (short) duration of the flight and obtain a set of simulated curves of v through time.
Those curves are generated based on a uniformly distributed list of initial velocities in a compact
K, covering all the possible values for the initial translational velocity. As it is physically
impossible to have a negative velocity, as of now, it will be acknowledging that K ∈ {v0 ∈
R|∀t, v(v0, t) ≥ 0}.

Figure 4: 10 velocity curves initiated with v0 ∈ K = [280m.s−1, 500m.s−1]

Straightforwardly, from the Cauchy–Lipschitz theorem states, for a given initial condition,
there exists a unique solution to our differential equation. Thus, it is perfectly equivalent to
know the value of v at every moment and to only know the value of v0 that produce this velocity
profile.

According to this consideration, this paper will now focus on building a good estimator of
v0 instead of v at any given time. If, by using all the data, one can find the best value of v0
that generate a curve v that closely matches at every time step the data we got, then this value
allows us to find the best value v at any moment.

2.2 About causality

What is important to know is that our method is designed to be used in real-time applications.
Therefore, it is mandatory to talk about causality. Causality means that at a given time t of the
flight, the only data available to estimate the shell velocity t are the measurements made before
t. To formalize this concept, the current time of the experience is named tf . Getting n ∈ N, n
measurements are available, respectively taken at tk = tf

k

n
.

Gathering the considerations above, the purpose of our estimator is to determine the ap-
proximation of v0 that maximizes the likelihood of the velocity of our shell right now (i.e. at tf )
to be v(v0, tf ) (which is the value at tf of the velocity profile generated by the initial value v0).
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2.3 Stochastic approach

Let v0 ∈ K, where K is a compact set1. Our objective is to build an estimator v̂0 that gives us
a good estimation of v0, and therefore v at any given time tf using our pre-calculated curves.

Our data is impacted by some random noise. Thus, we define :

Yti = v(v0, ti) +Ni (2)

where (Ni) are random variables called “noise”, as pictured in Figure 5.

Figure 5: Examples of a list of measurements with a white Gaussian noise.

Our objective is to find the curve among those in the background that most fit our measured
velocity (here in top in blue).

2.4 Maximum likelihood Estimator

For a set of measurements (y0, . . . , ytn), we define :

L(u0|yt0 , . . . , ytn) : u0 → Pu0((Yt0 = yt0), (Yt1 = yt1), . . . , (Ytn = ytn))

where Pu0 is a (joint) probability depending of one parameter u0, which corresponds to our
initial velocity.

Maximum likelihood estimation (MLE) is a method of estimating this parameter. The value
of u0 that maximizes L is the parameter that defined the statistical model where the observed
data is most probable. Therefore, one can imagine using as an estimator for v0 :

v̂0 = argmaxu0L(u0|yt0 , . . . , ytn)

2.5 First results

Let us, for the sake of an example, imagine that our noise across our data (Ni) is independent, and
identically distributed following a centered Gaussian law N (0, σ). Then, as Ni = Yti − v(v0, ti),
one gets

Pu0(Yti = yti) = 1
σ
√

2π
exp−(yti − v(u0, ti))2

2σ2

1in real life, K can be relatively large : it only implies that we have an idea of the range around the value v0
that we are looking for, which is always true in a real situation
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As those random quantities are independent :

L(u0|yt0 , yt1 , . . . , ytn) =
n∏
i=0

Pu0(Yti = yti)

As log is an increasing function, it is equivalent to find the max of L than to find the one of
log (L) which is

logL(u0|yt0 , yt1 , . . . , ytn) =
n∑
i=0

log (Pu0(Yti = yti)) = −1
2σ

n∑
i=0

(yti − v(u0, ti))2 + cst

Then, we can simply rewrite our estimator as

v̂0 = argmaxu0L(u0|yt0 , . . . , ytn) = argminu0

n∑
i=0

(yti − v(u0, ti))2

With this particular case, it appears that our MLE is equivalent to the method of non-linear
least squares.

Indeed, using the signals reported in Figure 5, the following estimation (see Figure 6) are
obtained.

Figure 6: (Causal) Estimation from noisy measurements.

This method is robust and even with extreme value for σ, it converges really fast to the real
solution. This comes from the fact that those measured are centered. So what happens when a
measurement bias is introduced?

3 Effects of a constant bias
Let Ni  N (b, σ) with b ∈ R. The notation means that the random variable Ni is distributed
according to the law N (b, σ), which in this case is a normal distribution of mean b and standard
deviation σ). Figure 7 illustrates that, as the differential equation is not linear, a solution shifted
up by a constant bias b is not anymore belonging to in the space of the solutions.

We are going to illustrate that with this bias, our previously developed method is exponen-
tially diverging, and thus a new term shall be added to prevent this error.
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Figure 7: A biased velocity curve is not a trajectory b = 10m.s−1

3.1 Contracting behavior

Note the error ∆(u0, t) = v(u0, t)− v(v0, t). One has

v̇(u0, t)− v̇(v0, t) = −K(v(u0, t)2 − v(v0, t)2)

∆̇(u0, t) = −K∆(u0, t)(v(u0, t) + v(v0, t))
This scalar differential equation can then be solved

∆(u0, t) = (u0 − v0) exp (−
∫ t

t0
K(v(u0, t) + v(v0, t))ds)

|∆(u0, ti+1)| ≤ |∆(u0, ti)|

The solutions are contracting [7], which means that the velocity curves are getting closer
and closer among time.

3.2 Impact of a constant bias on the estimator

On the other side :

u0 − v0 = ∆(u0, t) exp (
∫ t

0
K(v(u0, s) + v(v0, s))ds)

For the sake of an example, let’s take some speed around v ∼ 100m.s−1 :

• With an error b at t ∼ 0, which means that ∆(u0, 0) = b, then u0 − v0 ∼ b× 1

• But if there is the same error b at t ∼ 30s, which means that ∆(u0, 30s) = b, then

u0 − v0 ∼ b exp (
∫ 30

0
2 ∗ 100ds) ∼ 2b.

As it shows, as a result of the contracting behavior, the bias is exponentially more detrimental
to the estimation of v0 while one is looking at values of v further in time.

However, the nonlinear nature mentioned above of our equation makes it possible to observe
this bias and therefore to avoid it. This is explained below.
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3.3 Correction of our estimator

In order to take into account this flow, it is possible to add in our estimator this constant bias :

L(u0|yt0 , yt1 , . . . , ytn) =
n∑
i=0

(yti − [v(u0, ti) + b])2

So how to choose b using our data (yt0 , yt1 , . . . , ytn) ? Simply, a look at the value of b that
minimize the quantity

∂L

∂b
= −2

n∑
i=0

(yti − v(u0, ti)− b) = 0

suggests the value for the estimator

b̂(u0) = 1
n+ 1

n∑
i=0

(yti − v(u0, ti))

3.4 A new estimator

All at once, we now use a joint estimator for v and b:

v̂0 = argminu0Ln(u0)

with

Ln(u0) = 1
n+ 1

n∑
i=0

(yti − [v(u0, ti) + b̂(u0)])2 (3)

and

b̂(u0) = 1
n+ 1

n∑
k=0

(ytk − v(u0, tk)) (4)

The convergence properties of this new estimator are studied next.

4 Convergence analysis

4.1 Main result

Theorem 1. Consider the differential equation v̇ = −Kv2 + g(t) (E) and its unique solution
v(v0, t) for the initial value v0. Consider2 E = {v0 ∈ R|∀t, v(v0, t) ≥ 0}. Let K ⊂ E be a compact
set. Choose v0 ∈ K, n ∈ N∗, t0, tf ∈ R, and Tn = tf − t0

n
a step size, T1 = tf − t0 the duration

of the flight and ti = t0 + i× Tn the instant of the i-th measure. Consider a set of n+ 1 noisy
and biased measurements

(yi = v(v0, ti) + b+ ni)0≤i≤n

where b is an unknown constant and where (ni)0≤i≤n are (Ni)0≤i≤n, where Ni are centered
random variables of standard deviation σ and such as E(|Ni|) exists.

2In real application, any application always leads to an idea of the initial value of v0 : one is never clueless on
the real value of v0, and there is at least a wide range where we know that our initial velocity will be in.
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With (3) and (4), consider the following estimator for v0 :

v̂0,n = argmin
u0∈K

Ln(u0) (5)

Then the following properties hold :

• v̂0,n converges to v0 when n→∞.

• v(tf , v̂0,n) converges to v(tf , v0) when n→∞.

• b̂n(v̂0,n) converges to b when n→∞.

4.2 Proof

4.2.1 A Lemma from the literature

This proof is based on a Lemma which is stated and proven in [3].
Using our notations, this Lemma can be reformulated as

Main Lemma ([3]). Consider K a compact set, and v0 ∈ K. Assume that Ln(u0) is continuous
in u0 and that there exists a function L(u0) such that :

• Ln(u0) converges uniformly in probability to L(u0)

• L is continuous

• L is uniquely minimized in v0

Then v̂0, defined as the value of K that minimizes Ln for each (Y0, . . . , Ytf ) = (y0, . . . , ytf ) is
converging in probability to v0.

In order to introduce the notion of uniform convergence in probability, let us first recall the
notion of simple convergence in probability :

Definition (Simple convergence in probability).
Let Xn(u) be a sequence of real random variables depending on one parameter u, and l ∈ R.

It is said that the sequence Xn converges simply in probability to l when :

∀u ∈ K, ∀ε, P (|Xn(u)− l| > ε)→ 0 when n→∞

This definition is analogue to the notion of simple convergence while facing a sequence of
functions. Similarly, we have to consider the analogue of uniform convergence, because the
simple convergence in probability will face the same cons as its analogue in R.

Definition (Uniform convergence in probability).
Let Xn(u) be a sequence of real random variables depending on one parameter u, and l ∈ R.

It is said that the sequence Xn converges uniformly in probability to l when :

∀ε, P (supu∈K|Xn(u)− l| > ε)→ 0 when n→∞

Along the following proof, supu∈K|F (u)| will be written ||F ||K∞.

10



MINES ParisTech, PSL University

4.2.2 Analysis of the solutions of the differential equation

Under a smoothness assumption on the coefficient K in the differential equation, any solution
v(u0, .) with u0 ∈ K is C∞. As previously, consider the error ∆(u0, t) = v(u0, t)− v(v0, t).

It is straightforward to see that v0 7→ v(v0, t) is injective. Indeed Lets choose u1 and u2 in
K such that ∃τ, v(u1, τ) = v(u2, τ). Using the Cauchy-Lipschitz theorem, there exists a unique
solution for a set of initial condition (τ, v(u1, τ)). That means ∀t, v(u1, t) = v(u2, t), which leads
to u1 = v(u1, 0) = v(u2, 0) = u2. Also, it is straightforward to see that v0 7→ v(v0, t) is strictly
monotonic. Indeed, choose u1 > u2, then v(u1, 0) > v(u2, 0). Then ∀t, v(u1, t) > v(u2, t).
Indeed, assume that one can find τ such as v(u1, τ) ≤ v(u2, τ), then the Intermediate value
theorem states that τ0 ∈ [0, τ ] such that v(u1, τ0) = v(u2, τ0), and so u1 = u2 which yields the
conclusion. As a final remark, v0 7→ ∆(v0, t) is also strictly increasing.

4.2.3 Rewriting the likelihood function

Some calculations give

Ln(u0) = 1
n+ 1

n∑
i=0

(yi − (v(u0, ti) + b̂n(u0)))2 = 1
n+ 1

n∑
i=0

(Γi(u0)− [b̂n(u0)− b])2

with Γi(u) = v(v0, ti)− v(u, ti) +Ni = ∆i(u) +Ni. A closer look at b̂n(u0) reveals that

b̂n(u0) = 1
n+ 1

n∑
k=0

(yk − v(u0, tk)) = 1
n+ 1

n∑
k=0

(v(v0, tk)− v(u0, tk) + b+ nk) = b+ 1
n+ 1

n∑
k=0

Γk(u)

Which gives

b̂n(u0)− b = 1
n+ 1

n∑
k=0

Γk(u) , Γn(u) (6)

By injecting this result into the previous line, using König-Huygens’s relation, one gets

Ln(u) = 1
n+ 1

n∑
i=0

(Γi(u)− Γn(u))2 = 1
n+ 1

n∑
i=0

Γi(u)2 − (Γn(u))2 (7)

4.2.4 Standard deviation

Analysis of Γi(u) As we defined it before, Γi(u) = ∆i(u) +Ni. The following results follow

• Γi(u) is a random quantity, E(Γi(u)) ∈ R and Var(Γi(u)) ∈ R.

• Those random quantities Γi(u) are independent.

• E(Γi(u)) = ∆i(u) + E(ni) = ∆i(u)

• E(Γi(u)2) = E(∆i(u)2 + n2
i + 2∆i(u)ni) = ∆i(u)2 + E(n2

i ) + 0 = ∆i(u)2 + σ2

var(Γi(u)) = var(∆i(u) + ni) = var(ni) = σ2.

As for Γ(u) :

• E(Γ(u)) = 1
n+ 1

n∑
i=0

∆i(u) = ∆(u)

11
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• var(Γ(u)) = σ2

n+ 1 .

• E(Γ(u)2) = var(Γ(u)) + E(Γ(u))2 = σ2

n+ 1 + ∆(u)2.

Expected value of Ln(u0)
With the previous results in mind, it becomes easy to write the expected value of Ln(u0) :

E(Ln(u)) = 1
n+ 1

n∑
i=0

E(Γi(u)2)− E(Γ(u)2)

= 1
n+ 1

n∑
i=0

(∆i(u)2 + σ2)− σ2

n+ 1 −∆(u)2 = 1
n+ 1

n∑
i=0

∆i(u)2 −∆(u)2 + n

n+ 1σ
2

E(Ln(u)) = 1
n+ 1

n∑
i=0

(∆i(u)−∆(u))2 + n

n+ 1σ
2 (8)

As a Riemann sum, this quantity converge when n→∞, and :

E(Ln(u))→ 1
T1

∫ tf

0
(∆(s, u)−∆(u))2ds+ σ2 = Q(u0) (9)

Standard deviation of Ln(u0)
Calculating the exact standard deviation of Ln(u0) would be really time consuming and irrele-
vant. The only useful result is to prove that Var(Ln(u0))→ 0 when n→∞.

To prove this, let us first break down a set of useful proprieties :

1. If X = O(nα) and Y = O(nβ), then var(X) = O(n2α) and Cov(X,Y ) = O(nα+β).

2. var(X + Y ) = var(X) + var(Y ) + 2Cov(X,Y ) = O(nmax(2α,2β))

3. Then, using the previous result, with n quantities which are O(nα), var( 1
n

n∑
i=1

Xi) =

1
n2

n∑
i,j=1

Cov(Xi, Xj) = 1
n2

n∑
i,j=1

O(n2α) = O(n2α)

4. and, from the independence of the random quantitiesO(nα), then var( 1
n

n∑
i=1

Xi) = 1
n2

n∑
i=1

var(Xi) =

O(n2α−1)

It now becomes pretty easy to find an approximant of Var(Ln(u0)). By assumption Var(N2
i )

exists, then Var(Γ2
i ) does exist as well. And as a sum of independent variables,

Var( 1
n+ 1

n∑
i=0

Γ2
i ) = 1

n+ 1Var(Γ
2
0) = O( 1

n
)

The second term rewrites :

( 1
n+ 1

n∑
i=0

Γi)2 = 1
(n+ 1)2

n∑
i,j=0

ΓiΓj = 1
n+ 1(

n∑
i=0

Γi[
1

n+ 1

n∑
j=0,j 6=i

Γj ] + 1
n+ 1Γ2

i )

12
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Var( 1
n+ 1

n∑
j=0,j 6=i

Γj) = n

(n+ 1)2σ
2 = O( 1

n
)

And because this quantity is independent of Γi :

Var(Γi
1

n+ 1

n∑
j=0,j 6=i

Γj) = Var(Γi)Var(
1

n+ 1

n∑
j=0,j 6=i

Γj) = σ2O( 1
n

) = O( 1
n

)

Var( 1
n+ 1Γ2

i ) = O( 1
n2 ). Using the previous results :

Var(Γi[
1

n+ 1

n∑
j=0,j 6=i

Γj ] + 1
n+ 1Γ2

i ) = O( 1
n

)

Finally, adding a sum :

Var( 1
n+ 1

n∑
i=0

Γ2
i ) = Var( 1

n+ 1(
n∑
i=0

Γi[
1

n+ 1

n∑
j=0,j 6=i

Γj ] + 1
n+ 1Γ2

i )) = O( 1
n

)

This leads to the desired result, as Ln(u) = 1
n+ 1

n∑
i=0

Γi(u)2 − (Γn(u))2:

var(Ln(u)) = O( 1
n

) (10)

4.2.5 Determining the limit function of Ln

To use the referenced Lemma, it is first mandatory to prove the uniform convergence in proba-
bility of Ln to a known function L. As the uniform convergence in probability is stronger than
the simple convergence in probability, then the only candidate function L is the simple limit in
probability of Ln.

With the previous results, as the standard deviation of Ln is going down to 0 with n→∞,
and because the sequence of functions E(Ln(u)) converges to a function Q(u0), one can make
the assumption that L(u0) = Q(u0) .

Let An, Bn and Cn be 3 positive random quantities such that An ≤ Bn + Cn. Then An ≥
2ε ⇒ Bn + Cn ≥ 2ε. Therefore, the event (An ≥ 2ε) is included in the event (Bn + Cn ≥ 2ε).
Thus, P(An ≥ 2ε) ≤ P(Bn + Cn ≥ 2ε).

Further, if it is possible to decrease Cn to 0 when n goes to infinity, then let us fix a n0
so than ∀n ≥ n0, Cn ≤ ε. Then, ∀n ≥ n0, Bn + Cn ≥ 2ε ⇒ Bn ≥ ε. Like before, the event
(Bn + Cn ≥ 2ε) is included in the event (Bn ≥ ε), and so P(Bn + Cn ≥ 2ε) ≤ P(Bn ≥ ε).

With this, P(An ≥ 2ε) ≤ P(Bn ≥ ε) when n ≥ n0.
Finally, if P (Bn ≥ ε) −→ 0 when n→∞, then P(An ≥ 2ε) −→ 0 when n→∞
Let us use this previous proof technique with the elements of this paper. Let us fix An =

|Ln(u)−Q(u)|, Bn = |Ln(u)− E(Ln(u))| and Cn = |E(Ln(u))−Q(u)|.
By the triangle inequality, one has : |Ln(u))−Q(u)| ≤ |Ln(u))−E(Ln(u))|+|E(Ln(u))−Q(u)|

which gives An ≤ Bn + Cn.
Furthermore, as Cn = |E(Ln(u))−Q(u)|, because E(Ln(u)) −→n→∞ Q(u), then there exists

a n0 so that ∀n ≥ n0, |E(Ln(u)) − Q(u)| ≤ ε. And, finally, because var(Ln(u)) = O( 1
n4 ), using

13
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Bienaymé-Tchebychev’s inequality, one gets

∀ε > 0,∀u,P(|Ln(u)− E(Ln(u))| > ε) ≤ var(Ln(u))
ε2

−→n→∞ 0 (11)

which means P (Bn ≥ ε) −→ 0 when n→∞
As it is shown, this case perfectly fits the theory that was introduced before. As so, it is

clear that :
∀ε > 0,∀u,P(|Ln(u)−Q(u)| > 2ε) −→n→∞ 0 (12)

And so Ln(u) simply converge in probability to Q(u), ∀u ∈ E.
From now on, Q is renamed L, so

L(u) = 1
T1

∫ tf

0
(∆(s, u)−∆(u))2ds+ σ2 (13)

4.2.6 Continuity and global minimum

From (13), the continuity of L continuity is pretty straightforward as it stems from the continuity
of u 7→ ∆(s, u). Further, because (∆(s, u)−∆(u))2 ≥ 0 (as a squared real number), then :

L(u) = 0⇒ ∀t ∈ [0, tf ], ∆(t, u)−∆(u) = 0 (14)

Then,

∀t ∈ [0, tf ],∆(t, u) = cst, ∀t ∈ [0, tf ], ∆̇(t, u) = 0 = −K∆(u, t)(v(u, t) + v(v, t)) (15)

So that
∀t ∈ [0, tf ],∆(u0, t) = 0, ∆(u, 0) = 0 = u− v0, u = v0 (16)

Then, L has a unique and global minimum in v0, which is the value we are seeking.

4.2.7 Lemma of uniform continuity

The last thing there is to show is that Ln uniformly converge to L in probability. At this point,
we have only proved the simple convergence. The following Lemma is useful to establish uniform
convergence in probability

Lemma 1 ([3]). Assume that :

1. Ln converges in probability to L.

2. L is continuous.

3. There exists C(N0, . . . , Nn) such that :

∀(u0, ũ0) ∈ K2, |Ln(u0)− Ln(ũ0)| ≤ C(N0, . . . , Nn)|u0 − ũ0|

4. C(N0, . . . , Nn) is bounded in probability.

Then, Ln converges uniformly in probability to L.

14
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The proof of this result can be found in [3].
The hypothesis formulated in this Theorem looks like a probabilistic version of Lipschitz

continuity. Lipschitz continuity is a strong form of uniform continuity for functions. Therefore,
it looks logic that this probabilistic version might imply a uniform convergence in probability.

Aside, the definition of “bounded in probability” is :

Definition (boundedness in probability). C(N0, . . . , Nn) is bounded in probability if for every
ε > 0 there exists N and η such that :

∀n ≥ N,P (|C(N0, . . . , Nn)| > η) < ε

4.2.8 Analysis of the error Ln(u0)− Ln(ũ0)

As a reminder :

Ln(u0) = 1
n+ 1

n∑
i=0

(Γi(u0)− Γ(u0))2

By subtracting Ln(u0) and Ln(ũ0) and by using the subtracted squares identity a2 − b2 =
(a− b)(a+ b), we get a formula of the form

Ln(u0)− Ln(ũ0) = 1
n+ 1

n∑
i=0

AiBi

with : {
Ai , (Γi(u0)− Γi(ũ0)− [Γ(u0)− Γ(ũ0)])
Bi , (Γi(u0) + Γi(ũ0)− [Γ(u0) + Γ(ũ0)])

Analysis of Ai As a reminder Γi(u0) = ∆(u0, ti) + Ni. Thus, Γi(u0) − Γi(ũ0) = ∆(u0, ti) −
∆(ũ0, ti). This means that Ai is not a random variable, but only a function of (u0, ũ0, t) in R.
Yet, K × [0, tf ] is a compact set (as a cross product of 2 compact sets). Knowing this, and by
the fact that ∆ is C1, Heine–Cantor theorem [8] gives us :

∃C,∀t, |∆(u0, t)−∆(ũ0, t)| ≤ C|u0 − ũ0|

This leads to :
|Ai| ≤ 2C|u0 − ũ0|

Analysis of Bi This time, Γi(u0) + Γi(ũ0) = 2Ni + ∆(u0, ti) + ∆(ũ0, ti). This leads to :

Bi = 2[Ni −N ] + ∆(u0, ti) + ∆(ũ0, ti) + ∆(u0) + ∆(ũ0)

Again, as K × [0, tf ] is a compact set, one get that

∃D,∀t,∀u, |∆(u, t)| ≤ D

And so :
|Bi| ≤ 2|Ni −N |+ 4D

15
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Gathering the terms Using both Ai and Bi expressions in Ln expression, one has :

|Ln(u0)− Ln(ũ0)| ≤ 1
n+ 1

n∑
i=0

2C|u0 − ũ0|(2|Ni −N |+ 4D)

This means :

|Ln(u0)− Ln(ũ0)| ≤ |u0 − ũ0|[8CD + 4C
n+ 1

n∑
i=0
|Ni −N |]

4.2.9 1
n+ 1

n∑
i=0
|Ni −N | is bounded in probability

The most intuitive tool to prove this is Markov’s inequality [1] :

P (|X| ≥ η) ≤ E(|X|)
η

(17)

In our case, and using the linearity and the increasing propriety of the expected value :

P (| 1
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤

E(| 1
n+1

∑n
i=0 |Ni −N ||)
η

≤ 1
η

1
n+ 1

n∑
i=0

E(|Ni −N |) (18)

P (| 1
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ 1

η

1
n+ 1

n∑
i=0

[E(|Ni|) + E(|N |)]

P (| 1
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ 1

η
[ 1
n+ 1

n∑
i=0

E(|Ni|) + E(|N |)]

E(|N |) = E(|
n∑
i=0

Ni|) ≤
n∑
i=0

E(|Ni|). This means :

P (| 1
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ 2

η

1
n+ 1

n∑
i=0

E(|Ni|)

And, by assumption, E(|Ni|) exists :

P (| 1
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ 2E(|N0|)

η

Some lines of calculus yields the relation we are seeking for :

P (| 4C
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ 8CE(|N0|)

η

And adding to the constant 8CD :

P (|8CD + 4C
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ P (|8CD + 4C

n+ 1

n∑
i=0
|Ni −N || ≥ η + 8CD) ≤ 8CE(|N0|)

η

16
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We finally get :

P (|8CD + 4C
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ 8CE(|N0|)

η

which is the definition of boundedness in probability :

∀ε > 0,∃η(= 8CE(|N0|)
ε

), ∃N(= 0),∀n ≥ N,P (|8CD + 4C
n+ 1

n∑
i=0
|Ni −N || ≥ η) ≤ ε

4.2.10 Conclusion

The last Lemma allows us to prove that Ln converges uniformly to L when n → ∞. That was
the last piece of the puzzle to use the main Lemma introduced at the beginning of this proof.
And so, we have established that

v̂0 converges in probability to v0

As it was shown before, the contracting behavior of the solution space implies |∆(tf , u0)| ≤
|∆(0, u0)|. This means that |∆(tf , v̂0)| ≤ |∆(0, û0)| → 0 when n→∞. Therefore :

v̂ = v(tf, v̂0) converges in probability to v(tf , v0). (19)

5 Results, conclusion and perspectives
Using the proposed method on a simulation with identically distributed noises following a normal
law of standard deviation b = 20m.s−1 and σ = 20m.s−1 gives us the curve on Figure 8.

Figure 8: (Ni) i.i.d, et Ni  N (b = 20m.s−1, σ = 20m.s−1)

Even with pretty absurd value for b and σ as shown in Figure 9, our method looks really
robust and consistent.

Unfortunately, I did not get the time to push further analysis of the consistency and robust-
ness of this method. However, those first results look really promising and this method gives
hope for the best.

Based on this first track of reflections, this work might be improved in the following ways :

17
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Figure 9: (Ni) i.i.d, et Ni  N (b = 200m.s−1, σ = 150m.s−1)

• An in deep study of the robustness of the detailed tools given

• Implement a real time implementation, probably using a recursive form.

• Developing a gradient descent implementation (instead of an comprehensive test on a set
of a fixed number of velocity profile).

To conclude this study, the developed method is able to find using a set of biased measures
the likeliest velocity profile on a set of pre-calculated curves. This method gives a smooth result
which is a critical step to find the angle of pitch θ and to find the attitude of the shell.

This method appears to be relatively robust even with quite disproportionate noise, but
further study of the robustness would be necessary to properly conclude.
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