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Abstract : The paper considers the application of the subspace method MUSIC to the es-
timation of rolling, nutation and precession frequencies of a high velocity spinning artillery
shell. The influence of the various parameters such as signal-to-noise ratio and slow drift of fre-
quencies is studied. The formula giving the variance of the estimation is detailed at the light of
the specificities of the application, and a novel result is established stating that when the sought-
after frequency is varying in a time-affine manner over the considered data window, the MUSIC
estimate recovers the average value of the frequency. A typical case-study serves as illustration,
assessing that, at the expense of a increase of the computational load, MUSIC can recover the
nutation frequency of the shell with a standard deviation below 1 rad/s.

1 Introduction and context
The present research work focuses on one particular technique employed for determining the
attitude of smart artillery shells from onboard sensors. In the thesis [3, 4, 5], a new method has
been developed to estimate the attitude from strapdown magnetometers and accelerometers (see
Figure 1a). Attitude determination from direction vectors is a central question for guidance and
control applications of such projectiles. Mathematically it can be formulated as the Wahba’s
problem [14]. At any given instant, determining the attitude requires the measurement of two
linearly independant directions. Interestingly, in free-flight (also termed exterior ballistic phase)
the accelerometers can not be used to determine the direction of gravity as is commonly done on
the ground, as they solely measure the aerodynamic forces which have no common factor with
the gravity (see [3, section 2.5]). This causes an under-determination of the attitude, as one
angle (corresponding to the rotation around the single measured direction) is unknown. The
methodology proposed in [3] is to recover one angle from an unorthodox use of accelerometer
measurements. In a nutshell, the method considers the direction given by the magnetometer
and the pitch angle to determinate the attitude. The pitch angle can be obtained from a study
of the dynamics of the velocity of the shell by identifying it with the slope angle. The velocity
itself can be estimated from a specific treatment of accelerometers measurements. Indeed, a
detailed aerodynamic model of the free flight rotational dynamics of the symmetric projectiles
reveals that it is subjected to an epicyclic motion (see Figure 1b) that is measured by the
accelerometers. The frequencies of the epicyclic motion are directly (and analytically) related
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to the translational velocity of the shell [9]. For this reason, the estimation of these frequencies
is a solution to estimate the desired angle enabling the full attitude determination. Estimating
these frequencies can be achieved using various techniques, among which are windowed Fast-
Fourier-Transform (FFT) [2], or, advantageously, subspaces methods such as MUSIC [11]. This
last class of methods is the topic under consideration in this paper.

(a) Artillery shell and captors (b) Epicyclic motion

Figure 1

There are 3 frequencies in the epicyclic motion (precession, nutation and spin). Those
frequencies are visible in the accelerometer measurements (Figure 2a). The frequencies are
relatively close and vary (drift) over time (Figure 2b). Their magnitudes significantly decay
during the flight and so does the signal. As a consequence, it is difficult to use traditional FFT
method. Instead, we use a subspace method MUSIC (Multiple Signal Classification) [11] that is
reported to work well with small windows (over which the drift of frequency is hopefully small),
close frequencies and high level of noise, or equivalently low signal-to-noise ratios. Subspace
methods rely on the spectral decomposition of the autocorrelation matrix. The general question
under study in this article is the estimation of the level of accuracy one can expect in this
particular application, considering the noise, the finite size of windows of measurements and the
drifting frequencies over the window.

The contributions of this article are tow-fold. On the one hand, a numerical estimation of
the theoretical variances of the estimation of the frequencies in the studied case is proposed. On
the other hand, a theoretical result on the impact of frequency drift is established.

The article is organized as follows. In Section 2, notations are introduced and the problem
studied is stated (section 2.1). In Section 2.2, the MUSIC algorithm is presented. In Section
3, the bias, the variance and the dependence on the variability of the frequencies are studied.
For the bias and the variance, the proofs follow the classic presentation of subspace methods
and stress the role of the variation on the first order of the eigenstructure of the autocorrelation
matrix estimation. The main results are Theorem 1 and Theorem 2. Concerning the frequency
drift, we study the convergence of the autocorrelation matrix and use trigonometric developments
to establish the novel Proposition 12. In Section 4, simulation results are presented, showing that
the relation between the error on the frequency estimation and the size of the autocorrelation
matrix (m) is not simple and has to be considered to choose the best m possible. In gereral, the
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(a) Example of accelerometer measurement from [3]

(b) Evolution of the frequencies from [3]

Figure 2

error on the frequency estimation decreases then increases when the size of the autocorrelation
matrix (m) increases, which increases the computational burden. In practice, an upper bound
for m has to be considered (m has to remain smaller than the number of observations N = 4032
in the considered window) and for m = 2000 and for the parameters corresponding to our study
case, the standard deviation is approximatively 0.0004 rad.s−1.

2 Subspace methods
Roughly speaking, to estimate frequencies of a stationary random process, one needs to estimate
the power spectral density of the process. There exist two main types of methods for this : non-
parametric or classical methods and parametric methods based on a model for the signal [6].
For a sum of sinusoids (usually refered to as multinsinusoids) covered in noise, the subspace
methods are appealing. They rely on the spectral decomposition of the autocorrelation matrix.
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Historitically, the first subspace method was introduced by Pisarenko [10] and is now seen as a
particular case of the MUSIC method introduced by Schmidt [11]. There exist other subspace
methods such as minimum norm algorithm or eigenvector method [6]. Due to its popularity and
reported solid performances, the algorithm chosen in [3] was the MUSIC algorithm and from
now on we will focus on this algorithm.

2.1 Notations and autocorrelation matrix

The problem we study is the following :

Problem 1. Consider a random process s with N samples : s[0], s[1], ..., s[N − 1]. At time t,
the signal is

s(t) =
p∑

k=1
xk(t) + e(t) with xk(t) = αke

i(ωkt+ϕk) (1)

where e(t) is an additive noise, (ωk)k=1,...,p are p unknown frequencies that we want to determine,
the (αk)k=1,...,p are unknown amplitudes and (ϕk)k=1,...,p are unknown phases. The following
assumptions are made:

• p is known

• ωk are distinct constants

• αk are constants

• ϕk are independent random variables uniformly distributed over [0, 2π]

• e(t) is a real white noise with zero mean and variance σ2, its covariance is E[e(t)e(v)] =
δvt σ

2, where δ is the Kronecker symbol.

• xk(t) and e(t) are independant

The aim is to determine the frequencies (ωk)k=1,...,p.

The MUSIC algorithm rely on the spectral decomposition of the autocorrelation matrix of
the signal and we need a few notations before introducing the definition of the autocorrelation
matrix.

Notations For a complex valued vector X ∈ Cm, we denote X+ its complex conjugate, X∗
its conjugate transpose, XT its transpose. A matrix M ∈ Cm×m is hermitian if M∗ = M . The
considered norm is ‖X‖ =

√
X∗X.

Definition 1. Let m > p be an integer. The autocorrelation matrix of size m of the signal is
defined as

R = E[y(t)y∗(t)] ∈ Cm×m with y(t) =

 s(t)
...

s(t+m− 1)


From the (1), an expression of the autocorrelation matrix depending on the parameters of

the signal can be found. Most of the following properties are recalled from [12].
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Proposition 1. Note M = N −m + 1, and consider x(t) =
(
α1e

i(ω1t+ϕ1) . . . αpe
i(ωpt+ϕp)

)T
,

ε(t) =
(
e(t) . . . e(t+m− 1)

)T
, a(ω) =

(
1eiω . . . eiω(m−1)

)T
, A =

(
a(ω1) · · · a(ωp)

)
∈

Cm×p and P = diag(α2
1, ..., α

2
p). One has

R = APA∗ + σ2Im (2)

The term APA∗ is associated with the signal part of the process and the term σ2Im is
associated with the noise part of the signal.

Proof. From y(t) = Ax(t) + ε(t), one deduces

R = E[y(t)y∗(t)]
= E[(Ax(t) + ε(t))(Ax(t) + ε(t))∗]
= E[Ax(t)x∗(t)A∗ +Ax(t)ε∗(t) + ε(t)x∗(t)A∗ + ε(t)ε(t)∗]
= AE[x(t)x∗(t)]A∗ + 0 + 0 + E[ε(t)ε(t)∗]

Moreover, E[x(t)x∗(t)]j,k = E[αjei(ωjt+ϕj)αke−i(ωkt+ϕk)] = αjαkδ
k
j = Pj,k so we have R =

APA∗ + σ2Im.

Proposition 2. Note λ1, ..., λm the eigenvalues of R in decreasing order. They are all reals and
we have

λ1 ≥ λ2 ≥ ... ≥ λp > λp+1 = λp+2 = ... = λm = σ2

Proof. APA∗ is hermitian positive-definite so the eigenvalues of R are real and superior to σ2.
Moreover, the rank of APA∗ is p so m− p eigenvalues of APA∗ are null and m− p eigenvalues
of R are equal to σ2.

Definition 2 (Eigenstructure of the autocorrelation matrix). Note S =
(
s1 · · · sp

)
the or-

thonormal eigenvectors associated with {λ1, ..., λp} and G =
(
g1 · · · gm−p

)
the orthonormal

eigenvectors associated with {λp+1, ..., λm}. We denote U =
(
S G

)
the entire set of eigenvec-

tors of R.

Proposition 3. The vectors of A are orthogonal to the vectors of G : G∗a(ωi) = 0 for i ∈
{1, ..., p}. And :

a∗(ωi)GG∗a(ωi) = 0 for i ∈ {1, ..., p} (3)

To prove this property, we need the following lemma on hermitian matrices.

Lemma 1. Consider A ∈ Mm,n(C) and note W its column space. If A∗A is inversible, then
A(A∗A)−1A∗ is the orthogonal projection on W .

Proof of lemma 1. Consider x ∈ Cm. x can be written x = xW + xW⊥ with xW ∈ W and
xW⊥ ∈ W⊥ where W⊥ = Ker(A∗) is the orthogonal space of W . There exist c ∈ Cn such that
xW = Wc. xW⊥ ∈W⊥ = Ker(A∗) so

A∗xW⊥ = 0 ⇐⇒ A∗(x−xW ) = 0 ⇐⇒ A∗x = A∗xW ⇐⇒ A∗x = A∗Ac ⇐⇒ (A∗A)−1A∗x = c

Hence : xW = Ac = A(A∗A)−1A∗x and A(A∗A)−1A∗ is the orthogonal projection on W .
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Proof of proposition 3. RS = SΛ with Λ = diag(λ1, ...., λp) (because S are eigenvectors of R)
so from (2) APA∗S = SΛ̃ with Λ̃ = Λ− σ2I so

S = AC with C = PA∗SΛ̃−1 and C−1 = S∗A (4)

because S∗S = I so I = S∗AC by multiplying the first term of (4) by S∗. We haveGG∗+SS∗ = I
and SS∗ = S(S∗S)−1S∗ = A(A∗A)−1A∗ because the column space of A and S coincide (by
the previous lemma). Hence, GG∗ = I − A(A∗A)−1A∗ and a∗(ωi)GG∗a(ωi) = a∗(ωi)a(ωi) −
a∗(ωi)A(A∗A)−1A∗︸ ︷︷ ︸

a∗(ωi)

a(ωi) = 0 and ‖G∗a(ωi)‖2 = 0 so G∗a(ωi) = 0.

Proposition 4. G∗a(ω) 6= 0 for ω /∈ (ωk)k∈{1,...,p}
Proof. If there exists ωp+1 /∈ (ωk)k=1,...,p such that G∗a(ωp+1) = 0 then SS∗a(ωp+1) = a(ωp+1)−
GG∗a(ωp+1) = a(ωp+1) (SS∗ = I − GG∗) and

(
a(ω1) · · · a(ωp) a(ωp+1)

)
is a basis of the

column space of S which is of rank p so it is impossible.

The idea behind subspace methods is to use Propositions 3 and 4 to build a (frequency-
discriminating) function :

h(ω) = 1∑m−p
i=1 ci‖g∗i a(ω)‖2

(with (ci)i=1,...,m−p coefficients to choose) that will have local maximas at the frequencies
(ωk)k=1,...,p. A particular choice will be made next.

2.2 MUSIC Algorithm

Definition 3. The (frequency-discriminating) function used in the MUSIC algorithm is the
function where the ci are equal to 1 :

hMU (ω) = 1∑m−p
i=1 ‖g∗i a(ω)‖2

= 1
‖G∗a(ω)‖2 = 1

a∗(ω)GG∗a(ω) (5)

To build this function, we need an estimation of G from the samples of the signal so we need
an estimation of the autocorrelation matrix:

Proposition 5. R̂ = 1
M

∑M−1
n=0 y[n]y∗[n] is an unbiased estimator of R and

∀i, j ∈ {1, ...,m}, lim
M→∞

E(|R̂i,j −Ri,j |2) = 0

Proof. This is exactly the definition of a process being autocorrelation ergodic and s(t) is auto-
correlation ergodic. More details about ergodicity can be found in [6, chapter 3].

Lemma 2. As R̂→ R in mean-square sense whenM →∞ (∀i, j ∈ {1, ...,m}, limM→∞E(|R̂i,j−
Ri,j |2) = 0), Ŝ → S, Λ̂ → Λ, Σ̂ = diag(λ̂p+1, ..., λ̂m) → σ2I, Ŝ∗G = (Ŝ − S)∗G → 0, S∗Ĝ =
(S − Ŝ)∗Ĝ→ 0, ĜĜ∗ → GG∗, A∗Ĝ→ 0 and ω̂k → ωk.

Proof. This is due to the continuity of the eigenvalues of R and the continuity of the eigenvectors
S (because the multiplicity of their associated eigenvalues is 1). More details can be found in
[8, page 130].

Gathering all the ingredients above, one can formulate a streamlined version of MUSIC
algorithm.
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MUSIC ALGORITHM

• Compute R̂ = 1
M

∑M−1
n=0 y[n]y∗[n]

• Compute the eigendecomposition1 of R̂

• Compute Ĝ with the eigenvectors of R̂ associated with the m− p smallest eigenvalues.

• Compute ĥMU (ω) = 1
a∗(ω)ĜĜ∗a(ω)

2

• Compute the p (dominant) peaks of ĥMU . These are the frequencies estimates (ω̂k)k=1,...,p

3 Statistical analysis of MUSIC
We are interested in the behaviour of the estimator MUSIC when the parameters m, N are
varied and when the frequencies (ωk)k=1,...,p and the noise change. To address these questions,
we study the bias and the variance of the frequencies given by MUSIC.

3.1 Bias

3.1.1 Perturbation matrix

We need to study the evolution of the eigenstructure of a matrix when it is perturbed by a
ε-small random matrix and we have the following proposition (inspired by [7]):

Proposition 6. Consider a hermitian matrix A and a hermtian matrix with zero-mean random
entries B. Note ε a small parameter and consider the perturbed matrix is Â = A + εB. Note
λ1, ..., λm the eigenvalues of A in decreasing order, λ̂1, ..., λ̂m the eigenvalues of A, U the entire
set of orthonormal eigenvectors of A and Û the orthonormal eigenvectors of Â . We suppose,
for some p, λ1 > λ2 > ... > λp > λp+1 = λp+2 = ... = λm. Then, one has :

∀i ∈ {1, ..., p}, ûi = ui +
m∑
j=1
j 6=i

εti1juj +O(ε2) (6)

with ti1j =
u∗jBui

λi − λj
Proof. As the p largest eigenvalues are distinct, the eigenvectors û1, ..., ûp tend to u1, ..., up when
ε tends to zero (from [8]). For all i ∈ {1, ..., p}, we can write ûi = ui +∑m

j=1
j 6=i

εti1juj + O(ε2) an

eigenvector of Â for the eigenvalue λ̂i. We have to verify that : ‖ûi‖2 = 1 +O(ε2) :

‖ũi‖2 = (u∗i +
m∑
j=1
j 6=i

ε(ti1j)+u∗j +O(ε2))(ui +
m∑
j=1
j 6=i

εti1juj +O(ε2))

‖ũi‖2 = u∗iui +
m∑
j=1
j 6=i

ε2(ti1j)+ti1ju
∗
juj +O(ε2)

1R̂ being hermitian, its eigenvalues are real, further they are positive.
2or alternatively ĥMU (ω) = 1

a∗(ω)(I−ŜŜ∗)a(ω) because ĜĜ∗ = I − ŜŜ∗
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‖ũi‖2 = 1 +O(ε2)

Now, we need to find the coefficients ti1j . For i ∈ {1, ..., p} and j 6= i in {1, ...,m}, we have (up
to ε2 terms)

u∗j Âûi = u∗j λ̂iûi = u∗j λ̂i(ui +
m∑
k=1
k 6=i

εti1kuk) = λ̂iεt
i
1j = ελit

i
1j

We also have :

u∗j Âûi = u∗j (A+ εB)(ui +
m∑
k=1
k 6=i

εti1kuk) = u∗jAui + u∗jA
m∑
k=1
k 6=i

εti1kuk + εu∗jBui = ελjt
i
1j + εu∗jBui

This yields ti1j = u∗jBui
λi−λj .

We can apply this property to R and R̂ with B =
√
M(R̂−R) and ε = 1√

M
. Thanks to the

central limit theorem,
√
M(R̂−R) is zero-mean with elements asymptotically jointly Gaussian.

Before deriving the expression of the bias, we need the expression of the statistical expecta-
tion of the coefficients ti1j and of Ŝ and a development of ĜĜ∗ :

Proposition 7.
E[ti1j ] = 0 and E[Ŝ − S] = O( 1

M
) (7)

Proof. E[ti1j ] = E[u
∗
jBui
λi−λj ] = 0 because E[B] = 0. It follows that : E[Ŝ − S] = O( 1

M ).

Proposition 8.
ĜĜ∗ = GG∗ + 1√

M
Z +O( 1

M
) (8)

where Z is a zero-mean random matrix.

Proof. We have ĜĜ∗ = Im − ŜŜ∗. Thanks to (6), we can develop the expression of ŜŜ∗ :

(ŜŜ∗)i,j =
p∑

k=1
ŝi,kŝ

+
j,k =

p∑
k=1

[ui,k +
m∑
q=1
q 6=k

εtk1qui,q +O(ε)][u+
j,k +

m∑
r=1
r 6=k

ε(tk1r)+u+
j,r +O(ε)]

ŜŜ∗i,j =
p∑

k=1
[ui,ku+

j,k +
m∑
r=1
r 6=k

ε(tk1r)+ui,ku
+
j,r +

m∑
q=1
q 6=k

εtk1qui,qu
+
j,k +O(ε2) = (SS∗)i,j − εZi,j +O(ε2)

Where Zi,j = −∑p
k=1[∑m

r=1
r 6=k

(tk1r)+ui,ku
+
j,r +∑m

q=1
q 6=k

εtk1qui,qu
+
j,k]. From (7) : E[Z] = 0.

So we have, ŜŜ∗ = SS∗ − 1√
M
Z +O( 1

M ) and ĜĜ∗ = GG∗ + 1√
M
Z +O( 1

M ).
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3.1.2 Bias of the estimator

We need one more result before prooving that it is an asymptotically unbiased estimator.

Lemma 3. A∗ĜĜ∗ = −A∗S(Ŝ − S)∗GG∗ +O( 1
M )

Proof. A∗ĜĜ∗ = A∗ĜĜ∗ĜĜ∗ = A∗ĜĜ∗(GG∗+ 1√
M
Z+O(1/M)) from (8) and because Ĝ∗Ĝ = I.

Then, A∗ĜĜ∗ = A∗(GG∗+ 1√
M
Z +O(1/M)) = 1√

M
A∗Z +O(1/M) so A∗ĜĜ∗ = A∗ĜĜ∗GG∗+

O( 1
M ). It follows that A∗ĜĜ∗GG∗ = A∗(I − ŜŜ∗)GG∗ = −A∗ŜŜ∗GG∗. Because S∗G = 0, one

has A∗ĜĜ∗GG∗ = −A∗Ŝ(Ŝ − S)∗GG∗. And from Ŝ = S + (Ŝ − S) one gets A∗ĜĜ∗GG∗ =
−A∗S(Ŝ − S)∗GG∗ −A∗(Ŝ − S)(Ŝ − S)∗GG∗. Moreover, (Ŝ − S)(Ŝ − S) = O( 1

M ) which yields
the conclusion.

With this lemma, we can find a simple expression of ω̂k − ωk and deduce the bias with this
new notations :

• βk = S∗a(ωk)

• vk =

µ
∗
k(ŝ1 − s1)

...
µ∗k(ŝp − sp)

 with µk = GG∗d(ωk) with d(ωk) = da
dω (ω)

• hk = d∗(ωk)GG∗d(ωk)

• f(ω) = a∗(ω)GG∗a(ω)

Proposition 9 (adapted from [12]). The frequencies estimates are such that, for all k = 1, ..., p,

ω̂k − ωk = Re(βTk vk)
hk

+O( 1
M

) (9)

Proof. The proof derives from a perturbation analysis of the maximums. By definition, we
have f ′(ω̂k) = 0. Thus, an expansion gives f ′(ω̂k) ' f ′(ωk) + f ′′(ωk)(ω̂k − ωk) with f ′(ω) =
2 Re(a∗(ω)ĜĜ∗d(ω)) and f ′′(ω) = 2d∗(ω)ĜĜ∗d(ω)+2a∗(ω)ĜĜ∗d′(ω) so f ′′(ωk) = 2hk+O( 1√

M
).

With lemma 3, this gives

f ′(ωk) = −2 Re(a∗(ωk)S(Ŝ − S)∗GG∗d(ωk)) +O(1/M)
= −2 Re(β∗k(Ŝ − S)∗µk) +O(1/M)
= −2 Re(β∗kv+

k ) +O(1/M)
= −2 Re(βTk vk) +O(1/M)

Hence

f ′(ω̂k) = f ′(ωk) + f ′′(ωk)(ω̂k − ωk) ⇐⇒ 0 = −2 Re(βTk vk) +O(1/M) + (2hk +O( 1√
M

))(ω̂k − ωk)

⇐⇒ ω̂k − ωk = Re(βTk vk)
hk

+O(1/M)

9
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It is now easy to prove that the bias of the estimator approaches 0 when M grows.

Theorem 1. E(ω̂k −ωk) = O( 1
M ) so the estimation of frequencies by MUSIC is asymptotically

unbiased.

Proof. We have : ω̂k − ωk = Re(β∗k(Ŝ−S)∗µk)
hk

+ O(1/M) so : hk × E(ω̂k − ωk) = Re(β∗kE[(Ŝ −
S)∗]µk) +O(1/M). Moreover, E[(Ŝ − S)∗] = O( 1

M ) (7) so E(ω̂k − ωk) = O( 1
M ).

3.2 Variance and covariance

3.2.1 Preliminary results

To derive the expression of the covariance matrix, we need the statistical expectation of ti1kt
j
1l

and ti1k(t
j
1l)+ and before deriving their expressions we need the expectation of Buiu∗jB with

B =
√
M(R̂−R) that can be found in Proposition 10 (from [13]). We denote :

• Qk = E[ε(t)ε∗(t − k)] = E[ε(t)εT (t − k)] = σ2Jk where (Jk)i,j = δk+i
j (and Qk =

E[y(t)yT (t− k)])

• Rk = E[y(t)y∗(t− k)] = APdiag(eiω1 , ..., eiωp)kA∗ +Qk = APDkA∗ +Qk

Proposition 10. With B =
√
M(R̂−R), then for all i, j ∈ {1, ...,m},

E(Buiu∗jB) =
m−1∑

l=−(m−1)
(u∗jR−lui)Rl +Qlu

+
j u

T
i Ql (10)

Proof. We have

E[R̂uiu∗j R̂]k,l =E[(R̂k)∗uiu∗j R̂l]

= 1
M2

M−1∑
q=0

M−1∑
r=0

E[y∗(q)s(q + k − 1)uiu∗jy(r)s+(r + l − 1)]

= 1
M2

M−1∑
q=0

M−1∑
r=0

E[y∗(q)uis(q + k − 1)u∗jy(r)s+(r + l − 1)]

We use the following lemma (that we can apply thanks to the central limit theorem that states
that when M tends to the infinity, y∗(q)ui, s(q + k − 1), u∗jy(r) and s+(r + l − 1) are Gaussian
random variables) :

Lemma 4. (from [1]) If x1, x2, x3 and x4 are four Gaussian random variables with a least one
with zero-mean, we have :

E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3]

10
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E[R̂uiu∗j R̂]k,l = 1
M2

M−1∑
q=0

M−1∑
r=0

E[y∗(q)uis(q + k − 1)]E[u∗jy(r)s+(r + l − 1)]

+ E[y∗(q)uiu∗jy(r)]E[s(q + k − 1)s+(r + l − 1)]
+ E[y∗(q)uis+(r + l − 1)]E[s(q + k − 1)u∗jy(r)]

= 1
M2

M−1∑
q=0

M−1∑
r=0

(R0)∗kuiu∗j (R0)l + u∗jRr−qui(Rq−r)k,l + (Qr−q)luiu∗j (Qr−q)k

=(Ruiu∗jR)k,l + 1
M2

∑
|t|<M

(M − |t|)[u∗jR−tui(Rt)k,l + (Q−tuiu∗jQ−t)l,k]

=(Ruiu∗jR)k,l + 1
M

∑
|t|<M

[u∗jR−tui(Rt)k,l + (Qtu+
j u

T
i Qt)k,l]

So we have : E[R̂uiu∗j R̂]k,l = Ruiu
∗
jR+ 1

M

∑
|t|<M u∗jR−tuiRt +Qtu

+
j u

T
i Qt. Moreover

E(Buiu∗jB) = ME((R̂−R)uiu∗j (R̂−R))
= ME(R̂uiu∗j R̂)−ME(R̂uiu∗jR))−ME(Ruiu∗j (R̂−R))
= MRuiu

∗
jR+

∑
|t|<M

u∗jR−tuiRt +Qtu
+
j u

T
i Qt −MRuiu

∗
jR− 0

=
m−1∑

l=−(m−1)
(u∗jR−lui)Rl +Qlu

+
j u

T
i Ql

The statistical expectations of ti1kt
j
1l and ti1k(t

j
1l)+ are now straightforward to establish.

Proposition 11.

E[ti1k(t
j
1l)

+] = 1
(λi − λk)(λj − λl)

∑
|t|<m

(u∗kRtulu∗jR−tui + u∗kQtu
+
j u

T
i Qtul) (11)

E[ti1kt
j
1l] = 1

(λi − λk)(λj − λl)
∑
|t|<m

(u∗lR−tuiu∗kRtuj + u∗kQtu
+
l u

T
i Qtuj) (12)

Proof. First, E[ti1k(t
j
1l)+] = E[u

∗
kBui
λi−λk

u∗jBul
λj−λl ] = 1

(λi−λk)(λj−λl)
∑
|t|<m u

∗
k(u∗jR−tuiRt +Qtu

+
j u

T
i Qt)ul︸ ︷︷ ︸

(u∗jR−tui)(u
∗
k
Rtul)+u∗kQtu

+
j u

T
i Qtul

which yields E[ti1kt
j
1l] = E[u

∗
kBui
λi−λk

u∗l Buj
λj−λl ] = 1

(λi−λk)(λj−λl)
∑
|t|<m u

∗
k(u∗lR−tuiRt +Qtu

+
l u

T
i Qt)uj︸ ︷︷ ︸

(u∗
l
R−tui)(u∗kRtuj)+u

∗
k
Qtu

+
l
uTi Qtuj

We need two last lemmas (from [12]) before deriving the expression of the variance :

11
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Lemma 5. For all z1, z2 in the column space of G, we denote vk =

z
∗
k(ŝ1 − s1)

...
z∗k(ŝp − sp)

.
We have :

E[v1v
∗
2] = 1

M

m−1∑
k=−(m−1)

Λ̃−1(z∗1Qkz2S
TR+

k S
+ + STQkz2z

∗
1QkS

+)Λ̃−1 (13)

E[v1v
T
2 ] = 1

M

m−1∑
k=−(m−1)

Λ̃−1(z∗1Qkz+
2 S

TQkS + STQkz
+
2 z
∗
1QkS)Λ̃−1 (14)

Proof. First,

(λi − σ2)(λj − σ2)E[v1v
∗
2]i,j = (λi − σ2)(λj − σ2)E[z∗1(ŝi − si)(ŝj − sj)∗z2]

= (λi − σ2)(λj − σ2)z∗1E[
m∑
k=1
k 6=i

εti1kuk

m∑
l=1
l 6=j

ε(tj1l)
+u∗l ]z2

= (λi − σ2)(λj − σ2) 1
M

m∑
k=1
k 6=i

m∑
l=1
l 6=j

z∗1uk×

[ 1
(λi − λk)(λj − λl)

∑
|t|<m

(u∗kRtulu∗jR−tui + u∗kQtu
+
j u

T
i Qtul)]u∗l z2

Since z1 and z2 are in the column space of G, z∗1uk = 0 if k ∈ {1, ..., p} and ∑m
k=p+1

z∗1uku
∗
k

λi−λk =
z∗1GG

∗

λi−σ2 = z∗1
λi−σ2 because GG∗ is the orthogonal projection on the column space of G. So, one has

E[v1v
∗
2]i,j = 1

M

∑m
k=p+1

∑m
l=p+1 z

∗
1uk[ 1

(λi−λk)(λj−λl)
∑
|t|<m(u∗kRtulu∗jR−tui+u∗kQtu

+
j u

T
i Qtul)]u∗l z2

(λi − σ2)(λj − σ2)E[v1v
∗
2]i,j = 1

M

∑
|t|<m

z∗1Rtz2u
∗
jR−tui + z∗1Qtu

+
j u

T
i Qtz2

= 1
M

∑
|t|<m

z∗1Qtz2u
T
i R

+
t u

+
j + uTi Qtz2z

∗
1Qtu

+
j

because z∗1A = 0, we have

E[v1v
∗
2] = 1

M

m−1∑
k=−(m−1)

z∗1Qkz2Λ̃−1STR+
k S

+Λ̃−1 + Λ̃−1STQkz2z
∗
1QkS

+Λ̃−1

12
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Then,

(λi − σ2)(λj − σ2)E[v1v
T
2 ]i,j = (λi − σ2)(λj − σ2)E[z∗1(ŝi − si)(ŝj − sj)T z+

2 ]

= (λi − σ2)(λj − σ2)z∗1E[
m∑
k=1
k 6=i

εti1kuk

m∑
l=1
l 6=j

εtj1lu
T
l ]z+

2

= (λi − σ2)(λj − σ2) 1
M

m∑
k=1
k 6=i

m∑
l=1
l 6=j

z∗1uk×

[ 1
(λi − λk)(λj − λl)

∑
|t|<m

(u∗lR−tuiu∗kRtuj + u∗kQtu
+
l u

T
i Qtuj)]uTl z+

2

Since z1 and z2 are in the column space of G, z∗1uk = 0 if k ∈ {1, ..., p} and ∑m
k=p+1

z∗1uku
∗
k

λi−λk =
z∗1GG

∗

λi−σ2 = z∗1
λi−σ2 is the orthogonal projection on the column space of G. So :

E[v1v
T
2 ]i,j = 1

M

∑m
k=p+1

∑m
l=p+1 z

∗
1uk( 1

(λi−λk)(λj−λl)
∑
|t|<m[u∗kRtujuTi R

+
t u

+
l +u∗kQtu

+
l u

T
i Qtuj ])uTl z

+
2

(λi − σ2)(λj − σ2)E[v1v
T
2 ]i,j = 1

M

∑
|t|<m

z∗1Rtuju
T
i R

+
t z

+
2 + z∗1Qtz

+
2 u

T
i Qtuj

= 1
M

∑
|t|<m

z∗1Qtuju
T
i Qtz

+
2 + z∗1Qtz

+
2 u

T
i Qtuj

because z∗1A = 0, so we have

E[v1v
T
2 ] = 1

M

m−1∑
k=−(m−1)

Λ̃−1STQkz
+
2 z
∗
1QkSΛ̃−1 + z∗1Qkz

+
2 Λ̃−1STQkSΛ̃−1

Lemma 6. We denote X = SΛ̃−1S∗A. We have SΛ̃−1βk = xk, A∗X = P−1 and X =
A(A∗A)−1P−1.

Proof. • xk = SΛ̃−1S∗Ak = SΛ̃−1βk by definition of βk = S∗a(ωk)

• PA∗X = PA∗SΛ̃−1S∗A = CS∗A = CC−1 = I (4) so A∗X = P−1

• X is in the column space of S which coincides with the column space of A so there exists
a matrix H such that X = AH. We have : I = PA∗X = PA∗AH so H = (A∗A)−1P−1

and X = A(A∗A)−1P−1.

3.2.2 Expression of the covariance

We now have all the elements to establish the expression of the covariance matrix.

13
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Theorem 2. E[(ω̂j−ωj)(ω̂i−ωi)] = σ4

2Mhihjα2
iα

2
j

Re∑m−1
k=−(m−1) µ

∗
jJkµ

+
i b

T
j Jkbi+bTj Jkµ+

i µ
∗
jJkbi+

µ∗jJkµib
T
j Jkb

+
i + bTj Jkµiµ

∗
jJkb

+
i with bj the jth column of B = A(A∗A)−1.

Proof. From
E[(ω̂j − ωj)(ω̂i − ωi)] = 1

hihj
E[Re(βTj vj) Re(βTi vi)]

one gets
Re(x) Re(y) = 1

2(Re(xy) + Re(xy+)

and E[(ω̂j − ωj)(ω̂i − ωi)] = 1
2hihjE[Re(βTj vjvTi βi) + Re(βTj vjv∗i β+

i )] = 1
2hihj [Re(βTj E[vjvTi ]βi) +

Re(βTj E[vjv∗i ]β+
i )].

MβTj E[vjvTi ]βi =
m−1∑

k=−(m−1)
βTj Λ̃−1(µ∗jQkµ+

i S
TQkS + STQkµ

+
i µ
∗
jQkS)Λ̃−1βi (13)

= σ4
m−1∑

k=−(m−1)
µ∗jJkµ

+
i x

T
j Jkxi + xTj Jkµ

+
i µ
∗
jJkxi (lemma 6)

= σ4
m−1∑

k=−(m−1)
µ∗jJkµ

+
i

bTj
αj
Jk
bi
αi

+
bTj
αj
Jkµ

+
i µ
∗
jJk

bi
αi

(lemma 6)

= σ4

αiαj

m−1∑
k=−(m−1)

µ∗jJkµ
+
i b

T
j Jkbi + bTj Jkµ

+
i µ
∗
jJkbi

MβTj E[vjv∗i ]β+
i =

m−1∑
k=−(m−1)

βTj Λ̃−1(µ∗jQkµiSTR+
k S

+ + STQkµiµ
∗
jQkS

+)Λ̃−1β+
i (14)

=
m−1∑

k=−(m−1)
µ∗jQkµi xTj R

+
k x

+
i︸ ︷︷ ︸

=x∗iR
∗
kxj

=x∗i (AD−kPA∗+σ2J−k)xj
=(P−1D−kPP−1)ij+σ2x∗i J−kxj (lemma 6)

=
δ
j
i
e
−ikωj

α2
j

+ σ2
α2
i
α2
j

b∗i J−kbj

+xTj Qkµiµ∗jQkx+
i

We have: ∑m−1
k=−(m−1) Jke

−ikωj = a(ωj)a∗(ωj) so : µ∗j
∑m−1
k=−(m−1) Jke

−ikωjµi = 0 because µ∗jA =
0.

MβTj E[vjv∗i ]β+
i = σ4

α2
iα

2
j

m−1∑
k=−(m−1)

µ∗jJkµib
T
j Jkb

+
i + bTj Jkµiµ

∗
jJkb

+
i

Finally : E[(ω̂j − ωj)(ω̂i − ωi)] = σ4

2Mhihjα2
iα

2
j

Re[∑m−1
k=−(m−1) µ

∗
jJkµ

+
i b

T
j Jkbi + bTj Jkµ

+
i µ
∗
jJkbi +

µ∗jJkµib
T
j Jkb

+
i + bTj Jkµiµ

∗
jJkb

+
i ].

14
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Remark 1. The covariance can be written E[(ω̂j −ωj)(ω̂i−ωi)] = d
NSNRjSNRi where d depends

only on m and the frequencies and SNRk = αk
σ2 is the kth signal to noise ratio.

Proof. Consider d = N
2Mhihj

Re∑m−1
k=−(m−1) µ

∗
jJkµ

+
i b

T
j Jkbi + bTj Jkµ

+
i µ
∗
jJkbi + µ∗jJkµib

T
j Jkb

+
i +

bTj Jkµiµ
∗
jJkb

+
i ' 1

2hihj Re∑m−1
l=−(m−1) µ

∗
jJkµ

+
i b

T
j Jkbi+bTj Jkµ+

i µ
∗
jJkbi+µ∗jJkµibTj Jkb+

i +bTj Jkµiµ∗jJkb+
i .

One has E[(ω̂j − ωj)(ω̂i − ωi)] = d
NSNRjSNRi . Interestingly, d depends only on m and on the

frequencies because G and A depends only on m and on the frequencies so does B, µk and
hk.

3.3 Variation of frequency over a window

Below we study the impact of frequency drift. For simplicity, we consider that only one sinu-
soid is present in the signal. Let p be equal to 2 and we suppose s(t) = α0e

i((ω0+ε0t)t+ϕ0) +
α0e
−i((ω0+ε0t)t+ϕ0) + e(t) with ε0 a small parameter. As formulated below, the frequency found

by MUSIC will be the instantaneous frequency in the middle of the considered window (the
instantaneous frequency at time t is d((ω0+ε0t)t)

dt = ω0 + 2ε0t).

Proposition 12. The estimation of the autocorrelation matrix R̂ tends to the matrix R̃M as-
sociated with the signal : s̃(t) = α0e

i(ω̃0t+ϕ0) + α0e
−i(ω̃0t+ϕ0) + e(t) with ω̃0 = ω0 + (N − 1)ε0.

Proof. Let R̂ be the estimation of the autocorrelation matrix of the signal s and R̂k,l the coeffi-
cient of R̂ at the kth line and lth column.

R̂k+1,l+1 = 1
M

M−1∑
n=0

s(n+ k)s+(n+ l)

= 1
M

M−1∑
n=0

[2α0 cos((ω0 + ε0(n+ k))(n+ k) + ϕ0) + e(n+ k)]×

[2α0 cos((ω0 + ε0(n+ l))(n+ l) + ϕ0) + e(n+ l)]

= 1
M

M−1∑
n=0

4α2
0 cos((ω0 + ε0(n+ k))(n+ k) + ϕ0) cos((ω0 + ε0(n+ l))(n+ l) + ϕ0)

+ 2α0 cos((ω0 + ε0(n+ k))(n+ k) + ϕ0)e(n+ l)
+ 2α0 cos((ω0 + ε0(n+ l))(n+ l) + ϕ0)e(n+ k) + e(n+ k)e(n+ l)

As −1 ≤ 2α0 cos((ω0 + ε0(n+ k))(n+ k) +ϕ0) ≤ 1 and 1
M

∑M−1
n=0 e(n+ l) −−−−→

M→∞
E[e(t)] = 0 we

have : 1
M

∑M−1
n=0 2α0 cos((ω0+ε0(n+k))(n+k)+ϕ0)e(n+l) −−−−→

M→∞
0 and 1

M

∑M−1
n=0 2α0 cos((ω0+

ε0(n+ l))(n+ l) + ϕ0)e(n+ k) −−−−→
M→∞

0.
Moreover 1

M

∑M−1
n=0 e(n+ k)e(n+ l) −−−−→

M→∞
E[e(t+ k)e(t+ l)] = σ2δlk.

We denote Π = E[4α2
0 cos((ω0 + ε0(n+ k))(n+ k) + ϕ0) cos((ω0 + ε0(n+ l))(n+ l) + ϕ0)].

We have :

15
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Π = E[2α2
0 × cos((ω0 + ε0(n+ k))(n+ k) + ϕ0 − (ω0 + ε0(n+ l))(n+ l)− ϕ0)

+ 2α2
0 × cos((ω0 + ε0(n+ k))(n+ k) + ϕ0 + (ω0 + ε0(n+ l))(n+ l) + ϕ0)]

= 2α2
0 cos(ω0(k − l) + ε0(k − l)(2n+ k + l))

If k 6= l :

1
M

M−1∑
n=0

Π = Re( 1
M

M−1∑
n=0

2α2
0e
i(ω0(k−l)+ε0(k−l)(2n+k+l)))

= Re( 1
M

2α2
0e
i(ω0(k−l)+ε0(k−l)(k+l))

M−1∑
n=0

eiε0(k−l)2n

︸ ︷︷ ︸
= 1−ei2Mε0(k−l)

1−ei2ε0(k−l)

= eiMε0(k−l) sin(Mε0(k−l))
eiε0(k−l) sin(ε0(k−l))

)

= 2α2
0

M

sin(Mε0(k − l))
sin(ε0(k − l)) cos(ω0(k − l) + ε0(k − l)(M + k + l − 1))

If k = l :
1
M

M−1∑
n=0

Π = 2α2
0 cos(ω0(k − l) + ε0(k − l)(N − 1))

We supposed that : Mε0 � 1 and ε0 � 1 so : sin(Mε0(k−l))
M sin(ε0(k−l)) '

Mε0(k−l)
M(ε0(k−l)) ' 1.

Moreover, as 1 ≤ k, l ≤ m for m�M , we have M + k + l− 1 'M − 1 'M +m− 1 = N − 1.
So :

R̂k+1,l+1 ' 2α2
0 cos(ω0(k − l) + ε0(k − l)(N − 1)) + σ2δlk

WhenM tends to the infinity and ifMε0 � 1, R̂ is almost the autocorrelation matrix associated
with the signal s̃(t) = 2α0 cos(ω̃0t+ ϕ0) + e(t) with ω̃0 = ω0 + (N − 1)ε0.

4 Simulation results
All the simulations3 were done on real-valued signals of the form

s(t) =
2ρ=p∑
k=1

αke
i(ωkt+ϕk) + e(t) with ∀k ∈ {1, ..., ρ}, αk+ρ = αk, ωk+ρ = −ωk and ϕk+ρ = −ϕk

The signal can be written: s(t) = ∑ρ
k=1 2αk cos(ωkt+ ϕk) + e(t).

The results are not modified even if the phases are not independant (see appendix for more
details).

3https://github.com/JulietteGerbaux/MUSIC.git
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4.1 Validation of theoritical results

Simulations were made to illustrate the 3 theoretical results presented in this article : bias
(Theorem 1), variance (Theorem 2) and variation of frequency (Proposition 12).

To validate that the method was asymptotically unbiased when M tends to the infinity (or
equivalently N →∞), we made a large number (100) of frequency estimations of the signal

s[n] = 2α cos(ωn+ φ) + e(t), n = 0, ..., N − 1

for every N between 50 and 2500 with α = σ = 0.5 and ω = 960
fs

rad (fs = 8000 Hz is the
sampling frequency). These values are chosen because they are close to the values of our case-
study. With m = 20, we plot the mean frequency (multiplied by fs) that was found by MUSIC
for each N in Figure 3. One can see that the method is indeed asymptotically unbiased.

Figure 3 – Frequency estimation by MUSIC with 100 tests for every N with s(t) = cos(960t+
ϕ) + e(t), m = 20, σ = 0.5, SNR=1 and fs = 8000 Hz

Using the same data, we plot the variance of the estimation for every N in Figure 4. One
can see that the experimental variance converges to the theoritical variance when N tends to
infinity which is the expected result.

To have an idea of the influence of m on the variance, we plot for the same signal and
N = 1000, the theoretical variance for different m in Figure 5. One can see that the relation
between the variance and m is not simple and that numerical computation of the variance is
useful to choose the appropriate m.

Finally, to verify the result on the variation of frequency, we applied the MUSIC algorithm
to a signal s such that :

s(t) = cos((960 + 5fs
N
t)t+ ϕ) + e(t)

The frequency found by MUSIC is 965 rad.s−1 approximately (Figure 6).

17
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Figure 4 – Variance of the frequency estimation by MUSIC with 100 tests for every N with
s(t) = cos(960t+ ϕ) = e(t), m = 20, σ = 0.5, SNR=1 and fs = 8000 Hz

4.2 Case-study

We now show that on a signal typical of our study case, the MUSIC algorithm performs well.
A typical signal is [3]:

s(t) = cos(940t+ ϕ1) + 0.91 cos(958t+ ϕ2) + 0.78 cos(880t+ ϕ3) + e(t) (15)

with s[n] = cos(940
fs
n+ϕ1) + 0.91 cos(958

fs
n+ϕ2) + 0.78 cos(880

fs
n+ϕ3) + e(t) for n ∈ {0, ...N −1}

with N = 4032 and fs = 8064 Hz. The frequencies 940, 958 and 880 are in rad.s−1. The SNR
is 25 so σ2 = 1√

50 .
We tested the MUSIC algorithm on a typical signal (Figure 7) and we obtained the pseudo

spectrum in Figure 8. The frequencies found are : 880.2, 940.9 and 958.4 rad.s−1.

The parameter m has to be chosen and we plot the pseudo-spectrum obtained by MUSIC
for different m in Figure 9.
Thanks to the theoretical formula of the variance (Theorem 2), we can compute the expected
standard deviation of each typical frequency for different m (Tab. 1) and it appears that
m = 2000 seems to be a good choice. We could compute the variance for more m to choose
the m corresponding to the minimal variance but a standard deviation of 0.0004 satisfies our
exigences.
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Figure 5 – Variance of the frequency estimation by MUSIC with s(t) = cos(960t + ϕ) + e(t),
N = 1000, σ = 0.5, SNR=1 and fs = 8000 Hz

Figure 6 – Frequency detection with MUSIC for s1(t) = cos(960t + ϕ1), s2(t) = cos((960 +
10feN t)t+ ϕ2), N = 20000, σ = 0.1 and fs = 8000 Hz

5 Conclusion
When employed on experimental signals, frequency detection methods are facing a list of strong
challenges. Some are data acquisition issues such as missing data due to packet losses, irregular
sampling rates. In our application, some further issues are caused by the physics of the systems
under consideration: closeness of two of the three frequencies of the studied epicyclic motion,
drift of frequencies and decay of the magnitudes, high level of noises. All these issues are
plausible causes for the performance issues observed in [3] which led to discard the MUSIC
implementation and, instead, favor ad-hoc techniques based on envelope filtering.

The present study sheds a new light on this conclusion. It appears that the decrease of the
SNR (caused by the decay of the epicyclic motion) has an nonneglible effect but that it can be
circumvented by heavier computations (by increasing the parameter m in the algorithm). It also
appears that the drift has, assuming that it remains small, an effect that can be predicted, and
if necessary compensated for. However, the closeness of frequencies is indeed a problem, and it
is likely that in practice the two close frequencies will be detected as one.

In this new analysis, the formula of the variance is instrumental as it quantifies the accuracy
one can expect from MUSIC in function of the various parameters (see Tab.1 for parameters
typical of our study case of attitude estimation). Moreover, the result on the variation of
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Figure 7 – Typical signal

Figure 8 – MUSIC function associated with the typical signal with m = 400.

frequency help us to choose appropriate windows for the frequency estimation if we have an idea
of how much the frequency vary.

Rather than resorting to black-box implementation of MUSIC, it is concluded that it is
better to implement the streamlined algorithm described in §2.2 so that the m parameter can
be directly tuned to the requirements of the specific case-study. Particular attention should be
paid however in determining with a sufficient level of accuracy the eigenstructure of the empirical
autocorrelation matrix.

The effects of other troubles listed above are still unsolved such as the influence of a bad
sampling on the MUSIC algorithm.
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Figure 9 – Pseudo-spectrum of the typical signal obtained by MUSIC for different m

m ω1 = 940 ω2 = 958 ω3 = 880
200 30.7 22.5 2.86
500 0.169 0.142 0.0215

1000 0.00320 0.00393 0.00107
2000 0.000375 0.000444 0.000419
4000 0.000738 0.000889 0.00114

Table 1 – Standard deviation for the typical signal

Appendix
In this appendix, we are going to show that the results does not change if we consider real
signals.

s(t) =
2ρ=p∑
k=1

αke
i(ωkt+ϕk) + e(t) with ∀k ∈ {1, ..., ρ}, αk+ρ = αk, ωk+ρ = −ωk and ϕk+ρ = −ϕk

The signal can be written: s(t) = ∑ρ
k=1 2αk cos(ωkt+ ϕk) + e(t).

First, we have R = APA∗ + σ2Im because even if the phases are not independant :

E[x(t)x∗(t)]j,k = E[αjei(ωjt+ϕj)αke−i(ωkt+ϕk)] =


E[α2

je
i(ωjt+ϕj)−i(ωjt+ϕj)] = α2

j if j = k

E[α2
je
i(ωjt+ϕj)+i(ωjt+ϕj)] = 0 if |j − k| = ρ

E[αjei(ωjt+ϕj)]E[αke−i(ωkt+ϕk)] = 0 else

So : E[x(t)x∗(t)]j,k = αjαkδ
k
j = Pj,k and R = APA∗ + σ2Im.

All the results on the spectral decomposition of R still hold and the MUSIC algorithm is still
working.
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The results on the variance are not modified even if E[y(t)yT (t−k)] = E[y(t)y∗(t−k)] = Rk.
Note that the matrix y(t), R, R̂, Rk, S, Ŝ, G and Ĝ are real.

We have :

E[R̂uiuTj R̂]k,l = 1
M2

M−1∑
q=0

M−1∑
r=0

E[yT (q)s(q + k − 1)uiuTj y(r)s(r + l − 1)]

= 1
M2

M−1∑
q=0

M−1∑
r=0

E[yT (q)uis(q + k − 1)]E[uTj y(r)s(r + l − 1)]

+ E[yT (q)uiuTj y(r)]E[s(q + k − 1)s(r + l − 1)]
+ E[yT (q)uis(r + l − 1)]E[s(q + k − 1)uTj y(r)]

= 1
M2

M−1∑
q=0

M−1∑
r=0

(R0)Tk uiuTj (R0)l + uTj Rr−qui(Rq−r)k,l + (Rr−q)luiuTj (Rr−q)k

= (RuiuTj R)k,l + 1
M2

∑
|t|<M

(M − |t|)[uTj R−tui(Rt)k,l + (R−tuiuTj R−t)l,k]

= (RuiuTj R)k,l + 1
M

∑
|t|<M

[uTj R−tui(Rt)k,l + (RtujuTi Rt)k,l]

So we have : E[R̂uiuTj R̂]k,l = Ruiu
T
j R+ 1

M

∑
|t|<M uTj R−tuiRt +Rtuju

T
i Rt.

Hence : E(BuiuTj B) = ∑m−1
l=−(m−1)(u

T
j R−lui)Rl +Rluju

T
i Rl.

Then :
E[ti1k(t

j
1l)+] = E[ti1kt

j
1l] = E[u

T
kBui
λi−λk

uTl Buj
λj−λl ] = 1

(λi−λk)(λj−λl)
∑
|t|<m uTk (uTl R−tuiRt +Rtulu

T
i Rt)uj︸ ︷︷ ︸

(uTi Rtul)(u
T
k
Rtuj)+(uT

k
Rtul)(uTi Rtuj)

Let z1, z2 be two vectors in the column space of G (not necessarily real) and let vk bez
∗
k(ŝ1 − s1)

...
z∗k(ŝp − sp)

.
First :
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(λi − σ2)(λj − σ2)E[v1v
∗
2]i,j = (λi − σ2)(λj − σ2)E[z∗1(ŝi − si)(ŝj − sj)T z2]

= (λi − σ2)(λj − σ2)z∗1E[
m∑
k=1
k 6=i

εti1kuk

m∑
l=1
l 6=j

εtj1lu
T
l ]z2

= (λi − σ2)(λj − σ2) 1
M

m∑
k=1
k 6=i

m∑
l=1
l 6=j

z∗1uk×

[ 1
(λi − λk)(λj − λl)

∑
|t|<m

(uTi RtuluTkRtuj + uTkRtulu
T
i Rtuj)]uTl z2

= (λi − σ2)(λj − σ2) 1
M

m∑
k=p+1

m∑
l=p+1

z∗1uk×

[ 1
(λi − λk)(λj − λl)

∑
|t|<m

(uTi RtuluTkRtuj + uTkRtulu
T
i Rtuj)]uTl z2

= 1
M

∑
|t|<m

uTi Rtz2z
∗
1Rtuj + z∗1Rtz2u

T
i Rtuj

= 1
M

∑
|t|<m

uTi Qtz2z
∗
1Qtuj + z∗1Qtz2u

T
i Rtuj

So we have : E[v1v
∗
2] = 1

M

∑m−1
k=−(m−1) z

∗
1Qkz2Λ̃−1STRkSΛ̃−1 + Λ̃−1STQkz2z

∗
1QkSΛ̃−1.

Then :

(λi − σ2)(λj − σ2)E[v1v
T
2 ]i,j = (λi − σ2)(λj − σ2)E[z∗1(ŝi − si)(ŝj − sj)T z+

2 ]

= (λi − σ2)(λj − σ2)z∗1E[
m∑
k=1
k 6=i

εti1kuk

m∑
l=1
l 6=j

εtj1lu
T
l ]z+

2

= (λi − σ2)(λj − σ2) 1
M

m∑
k=p+1

m∑
l=p+1

z∗1uk×

[ 1
(λi − λk)(λj − λl)

∑
|t|<m

(uTi RtuluTkRtuj + uTkRtulu
T
i Rtuj)]uTl z+

2

= 1
M

∑
|t|<m

uTi Rtz
+
2 z
∗
1Rtuj + z∗1Rtz

+
2 u

T
i Rtuj

= 1
M

∑
|t|<m

uTi Qtz
+
2 z
∗
1Qtuj + z∗1Qtz

+
2 u

T
i Rtuj

So we have : E[v1v
T
2 ] = 1

M

∑m−1
k=−(m−1) Λ̃−1STQkz

+
2 z
∗
1QkSΛ̃−1 + z∗1Qkz

+
2 Λ̃−1STRkSΛ̃−1.

E[(ω̂j − ωj)(ω̂i − ωi)] = 1
hihj

E[Re(βTj vj) Re(βTi vi)]
We have : Re(x) Re(y) = 1

2(Re(xy) + Re(xy+).
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So : E[(ω̂j −ωj)(ω̂i−ωi)] = 1
2hihjE[Re(βTj vjvTi βi) + Re(βTj vjv∗i β+

i )] = 1
2hihj [Re(βTj E[vjvTi ]βi) +

Re(βTj E[vjv∗i ]β+
i )].

MβTj E[vjvTi ]βi =
m−1∑

k=−(m−1)
βTj Λ̃−1(µ∗jQkµ+

i S
TRkS + STQkµ

+
i µ
∗
jQkS)Λ̃−1βi

=
m−1∑

k=−(m−1)
µ∗jQkµ

+
i x

T
j Rkxi + xTj Qkµ

+
i µ
∗
jQkxi

There exist l such that 1 ≤ l ≤ p and |l − i| = ρ. We have xi = SΛ̃−1STa(ωi) =
SΛ̃−1STa(−ωl) = SΛ̃−1STa+(ωl) = x+

l . Then, xTj Rkxi = x∗iR
∗
kxj = x∗i (AD−kPA∗+σ2J−k)xj =

(P−1D−kPP−1)ij + σ2x∗i J−kxj = δji e
−ikωj

α2
j

+ σ2

α2
iα

2
j
b∗i J−kbj = σ2

α2
iα

2
j
bTj Jkbi because we have :∑m−1

k=−(m−1) Jke
−ikωj = a(ωj)a∗(ωj) so : µ∗j

∑m−1
k=−(m−1) Jke

−ikωjµ+
i = 0 because µ∗jA = 0. We

get :

MβTj E[vjvTi ]βi = σ4
m−1∑

k=−(m−1)
µ∗jJkµ

+
i

bTj
αj
Jk
bi
αi

+
bTj
αj
Jkµ

+
i µ
∗
jJk

bi
αi

= σ4

αiαj

m−1∑
k=−(m−1)

µ∗jJkµ
+
i b

T
j Jkbi + bTj Jkµ

+
i µ
∗
jJkbi

MβTj E[vjv∗i ]β+
i =

m−1∑
k=−(m−1)

βTj Λ̃−1(µ∗jQkµiSTRkS + STQkµiµ
∗
jQkS)Λ̃−1β+

i

=
m−1∑

k=−(m−1)
µ∗jQkµi xTj Rkx

+
i︸ ︷︷ ︸

=x∗iR
∗
kxj

=x∗i (AD−kPA∗+σ2J−k)xj
=(P−1D−kPP−1)ij+σ2x∗i J−kxj

=
δ
j
i
e
−ikωj

α2
j

+ σ2
α2
i
α2
j

b∗i J−kbj

+xTj Qkµiµ∗jQkx+
i

= σ4

α2
iα

2
j

m−1∑
k=−(m−1)

µ∗jJkµib
T
j Jkb

+
i + bTj Jkµiµ

∗
jJkb

+
i

Finally : E[(ω̂j − ωj)(ω̂i − ωi)] = σ4

2Mhihjα2
iα

2
j

Re[∑m−1
k=−(m−1) µ

∗
jJkµ

+
i b

T
j Jkbi + bTj Jkµ

+
i µ
∗
jJkbi +

µ∗jJkµib
T
j Jkb

+
i + bTj Jkµiµ

∗
jJkb

+
i ]
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