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Introduction and context

The present research work focuses on one particular technique employed for determining the attitude of smart artillery shells from onboard sensors. In the thesis [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF][START_REF] Fiot | Estimation of air velocity for a high velocity spinning projectile using transverse accelerometers[END_REF][START_REF] Fiot | A gyroless adaptation of attitude complementary filtering[END_REF], a new method has been developed to estimate the attitude from strapdown magnetometers and accelerometers (see Figure 1a). Attitude determination from direction vectors is a central question for guidance and control applications of such projectiles. Mathematically it can be formulated as the Wahba's problem [START_REF] Wahba | Problem 65-1: a least squares estimate of spacecraft attitude[END_REF]. At any given instant, determining the attitude requires the measurement of two linearly independant directions. Interestingly, in free-flight (also termed exterior ballistic phase) the accelerometers can not be used to determine the direction of gravity as is commonly done on the ground, as they solely measure the aerodynamic forces which have no common factor with the gravity (see [3, section 2.5]). This causes an under-determination of the attitude, as one angle (corresponding to the rotation around the single measured direction) is unknown. The methodology proposed in [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF] is to recover one angle from an unorthodox use of accelerometer measurements. In a nutshell, the method considers the direction given by the magnetometer and the pitch angle to determinate the attitude. The pitch angle can be obtained from a study of the dynamics of the velocity of the shell by identifying it with the slope angle. The velocity itself can be estimated from a specific treatment of accelerometers measurements. Indeed, a detailed aerodynamic model of the free flight rotational dynamics of the symmetric projectiles reveals that it is subjected to an epicyclic motion (see Figure 1b) that is measured by the accelerometers. The frequencies of the epicyclic motion are directly (and analytically) related to the translational velocity of the shell [START_REF] Mccoy | Modern exterior ballistics[END_REF]. For this reason, the estimation of these frequencies is a solution to estimate the desired angle enabling the full attitude determination. Estimating these frequencies can be achieved using various techniques, among which are windowed Fast-Fourier-Transform (FFT) [START_REF] Cooley | An algorithm for the machine calculation of complex fourier series[END_REF], or, advantageously, subspaces methods such as MUSIC [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF]. This last class of methods is the topic under consideration in this paper. There are 3 frequencies in the epicyclic motion (precession, nutation and spin). Those frequencies are visible in the accelerometer measurements (Figure 2a). The frequencies are relatively close and vary (drift) over time (Figure 2b). Their magnitudes significantly decay during the flight and so does the signal. As a consequence, it is difficult to use traditional FFT method. Instead, we use a subspace method MUSIC (Multiple Signal Classification) [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] that is reported to work well with small windows (over which the drift of frequency is hopefully small), close frequencies and high level of noise, or equivalently low signal-to-noise ratios. Subspace methods rely on the spectral decomposition of the autocorrelation matrix. The general question under study in this article is the estimation of the level of accuracy one can expect in this particular application, considering the noise, the finite size of windows of measurements and the drifting frequencies over the window.

The contributions of this article are tow-fold. On the one hand, a numerical estimation of the theoretical variances of the estimation of the frequencies in the studied case is proposed. On the other hand, a theoretical result on the impact of frequency drift is established.

The article is organized as follows. In Section 2, notations are introduced and the problem studied is stated (section 2.1). In Section 2.2, the MUSIC algorithm is presented. In Section 3, the bias, the variance and the dependence on the variability of the frequencies are studied. For the bias and the variance, the proofs follow the classic presentation of subspace methods and stress the role of the variation on the first order of the eigenstructure of the autocorrelation matrix estimation. The main results are Theorem 1 and Theorem 2. Concerning the frequency drift, we study the convergence of the autocorrelation matrix and use trigonometric developments to establish the novel Proposition 12. In Section 4, simulation results are presented, showing that the relation between the error on the frequency estimation and the size of the autocorrelation matrix (m) is not simple and has to be considered to choose the best m possible. In gereral, the (a) Example of accelerometer measurement from [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF] (b) Evolution of the frequencies from [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF] Figure 2 error on the frequency estimation decreases then increases when the size of the autocorrelation matrix (m) increases, which increases the computational burden. In practice, an upper bound for m has to be considered (m has to remain smaller than the number of observations N = 4032 in the considered window) and for m = 2000 and for the parameters corresponding to our study case, the standard deviation is approximatively 0.0004 rad.s -1 .

Subspace methods

Roughly speaking, to estimate frequencies of a stationary random process, one needs to estimate the power spectral density of the process. There exist two main types of methods for this : nonparametric or classical methods and parametric methods based on a model for the signal [START_REF] Hayes | Statistical digital signal processing and modeling[END_REF]. For a sum of sinusoids (usually refered to as multinsinusoids) covered in noise, the subspace methods are appealing. They rely on the spectral decomposition of the autocorrelation matrix.

Historitically, the first subspace method was introduced by Pisarenko [START_REF] Pisarenko | The retrieval of harmonics from a covariance function[END_REF] and is now seen as a particular case of the MUSIC method introduced by Schmidt [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF]. There exist other subspace methods such as minimum norm algorithm or eigenvector method [START_REF] Hayes | Statistical digital signal processing and modeling[END_REF]. Due to its popularity and reported solid performances, the algorithm chosen in [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF] was the MUSIC algorithm and from now on we will focus on this algorithm.

Notations and autocorrelation matrix

The problem we study is the following : Problem 1. Consider a random process s with N samples :

s[0], s[1], ..., s[N -1]. At time t, the signal is s(t) = p k=1 x k (t) + e(t) with x k (t) = α k e i(ω k t+ϕ k ) (1)
where e(t) is an additive noise, (ω k ) k=1,...,p are p unknown frequencies that we want to determine, the (α k ) k=1,...,p are unknown amplitudes and (ϕ k ) k=1,...,p are unknown phases. The following assumptions are made:

• p is known

• ω k are distinct constants • α k are constants
• ϕ k are independent random variables uniformly distributed over [0, 2π]

• e(t) is a real white noise with zero mean and variance σ 2 , its covariance is E[e(t)e(v)] = δ v t σ 2 , where δ is the Kronecker symbol.

• x k (t) and e(t) are independant

The aim is to determine the frequencies (ω k ) k=1,...,p .

The MUSIC algorithm rely on the spectral decomposition of the autocorrelation matrix of the signal and we need a few notations before introducing the definition of the autocorrelation matrix.

Notations For a complex valued vector X ∈ C m , we denote X + its complex conjugate, X * its conjugate transpose, X T its transpose.

A matrix M ∈ C m×m is hermitian if M * = M . The considered norm is X = √ X * X.
Definition 1. Let m > p be an integer. The autocorrelation matrix of size m of the signal is defined as

R = E[y(t)y * (t)] ∈ C m×m with y(t) =    s(t) . . . s(t + m -1)   
From the (1), an expression of the autocorrelation matrix depending on the parameters of the signal can be found. Most of the following properties are recalled from [START_REF] Stoica | Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies[END_REF]. Proposition 1. Note M = N -m + 1, and consider x(t) = α 1 e i(ω 1 t+ϕ 1 ) . . . α p e i(ωpt+ϕp) T ,

ε(t) = e(t) . . . e(t + m -1) T , a(ω) = 1e iω . . . e iω(m-1) T , A = a(ω 1 ) • • • a(ω p ) ∈
C m×p and P = diag(α 2 1 , ..., α 2 p ). One has

R = AP A * + σ 2 I m (2)
The term AP A * is associated with the signal part of the process and the term σ 2 I m is associated with the noise part of the signal.

Proof. From y(t) = Ax(t) + ε(t), one deduces R = E[y(t)y * (t)] = E[(Ax(t) + ε(t))(Ax(t) + ε(t)) * ] = E[Ax(t)x * (t)A * + Ax(t)ε * (t) + ε(t)x * (t)A * + ε(t)ε(t) * ] = AE[x(t)x * (t)]A * + 0 + 0 + E[ε(t)ε(t) * ] Moreover, E[x(t)x * (t)] j,k = E[α j e i(ω j t+ϕ j ) α k e -i(ω k t+ϕ k ) ] = α j α k δ k j = P j,k so we have R = AP A * + σ 2 I m .
Proposition 2. Note λ 1 , ..., λ m the eigenvalues of R in decreasing order. They are all reals and we have

λ 1 ≥ λ 2 ≥ ... ≥ λ p > λ p+1 = λ p+2 = ... = λ m = σ 2
Proof. AP A * is hermitian positive-definite so the eigenvalues of R are real and superior to σ 2 . Moreover, the rank of AP A * is p so m -p eigenvalues of AP A * are null and m -p eigenvalues of R are equal to σ 2 .

Definition 2 (Eigenstructure of the autocorrelation matrix). Note S = s 1 

a * (ω i )GG * a(ω i ) = 0 for i ∈ {1, ..., p} (3) 
To prove this property, we need the following lemma on hermitian matrices.

Lemma 1. Consider A ∈ M m,n (C) and note W its column space. If A * A is inversible, then A(A * A) -1 A * is the orthogonal projection on W . Proof of lemma 1. Consider x ∈ C m . x can be written x = x W + x W ⊥ with x W ∈ W and x W ⊥ ∈ W ⊥ where W ⊥ = Ker(A * ) is the orthogonal space of W . There exist c ∈ C n such that x W = W c. x W ⊥ ∈ W ⊥ = Ker(A * ) so A * x W ⊥ = 0 ⇐⇒ A * (x-x W ) = 0 ⇐⇒ A * x = A * x W ⇐⇒ A * x = A * Ac ⇐⇒ (A * A) -1 A * x = c
Hence : 

x W = Ac = A(A * A) -1 A * x and A(A * A) -1 A * is the orthogonal projection on W .
= I -A(A * A) -1 A * and a * (ω i )GG * a(ω i ) = a * (ω i )a(ω i ) - a * (ω i )A(A * A) -1 A * a * (ω i ) a(ω i ) = 0 and G * a(ω i ) 2 = 0 so G * a(ω i ) = 0. Proposition 4. G * a(ω) = 0 for ω / ∈ (ω k ) k∈{1,...,p} Proof. If there exists ω p+1 / ∈ (ω k ) k=1,...,p such that G * a(ω p+1 ) = 0 then SS * a(ω p+1 ) = a(ω p+1 ) - GG * a(ω p+1 ) = a(ω p+1 ) (SS * = I -GG * ) and a(ω 1 ) • • • a(ω p ) a(ω p+1
) is a basis of the column space of S which is of rank p so it is impossible.

The idea behind subspace methods is to use Propositions 3 and 4 to build a (frequencydiscriminating) function :

h(ω) = 1 m-p i=1 c i g * i a(ω) 2 (with (c i ) i=1,.
..,m-p coefficients to choose) that will have local maximas at the frequencies (ω k ) k=1,...,p . A particular choice will be made next.

MUSIC Algorithm

Definition 3. The (frequency-discriminating) function used in the MUSIC algorithm is the function where the c i are equal to 1 :

h M U (ω) = 1 m-p i=1 g * i a(ω) 2 = 1 G * a(ω) 2 = 1 a * (ω)GG * a(ω) (5) 
To build this function, we need an estimation of G from the samples of the signal so we need an estimation of the autocorrelation matrix:

Proposition 5. R = 1 M M -1 n=0 y[n]y * [n] is an unbiased estimator of R and ∀i, j ∈ {1, ..., m}, lim M →∞ E(| Ri,j -R i,j | 2 ) = 0
Proof. This is exactly the definition of a process being autocorrelation ergodic and s(t) is autocorrelation ergodic. More details about ergodicity can be found in [6, chapter 3].

Lemma 2. As R → R in mean-square sense when M → ∞ (∀i, j ∈ {1, ..., m}, lim M →∞ E(| Ri,j - R i,j | 2 ) = 0), Ŝ → S, Λ → Λ, Σ = diag( λp+1 , ..., λm ) → σ 2 I, Ŝ * G = ( Ŝ -S) * G → 0, S * Ĝ = (S -Ŝ) * Ĝ → 0, Ĝ Ĝ * → GG * , A * Ĝ → 0 and ωk → ω k .
Proof. This is due to the continuity of the eigenvalues of R and the continuity of the eigenvectors S (because the multiplicity of their associated eigenvalues is 1). More details can be found in [8, page 130].

Gathering all the ingredients above, one can formulate a streamlined version of MUSIC algorithm.

MUSIC ALGORITHM

• Compute R = 1 M M -1 n=0 y[n]y * [n]
• Compute the eigendecomposition 1 of R

• Compute Ĝ with the eigenvectors of R associated with the m -p smallest eigenvalues.

• Compute ĥMU (ω) =

1 a * (ω) Ĝ Ĝ * a(ω) 2
• Compute the p (dominant) peaks of ĥMU . These are the frequencies estimates (ω k ) k=1,...,p

Statistical analysis of MUSIC

We are interested in the behaviour of the estimator MUSIC when the parameters m, N are varied and when the frequencies (ω k ) k=1,...,p and the noise change. To address these questions, we study the bias and the variance of the frequencies given by MUSIC.

Bias

Perturbation matrix

We need to study the evolution of the eigenstructure of a matrix when it is perturbed by a ε-small random matrix and we have the following proposition (inspired by [START_REF] Kaveh | The statistical performance of the MUSIC and the minimumnorm algorithms in resolving plane waves in noise[END_REF]): Proposition 6. Consider a hermitian matrix A and a hermtian matrix with zero-mean random entries B. Note ε a small parameter and consider the perturbed matrix is  = A + εB. Note λ 1 , ..., λ m the eigenvalues of A in decreasing order, λ1 , ..., λm the eigenvalues of A, U the entire set of orthonormal eigenvectors of A and Û the orthonormal eigenvectors of  . We suppose, for some p, λ 1 > λ 2 > ... > λ p > λ p+1 = λ p+2 = ... = λ m . Then, one has :

∀i ∈ {1, ..., p}, ûi = u i + m j=1 j =i εt i 1j u j + O(ε 2 ) ( 6 
)
with t i 1j = u * j Bu i λ i -λ j
Proof. As the p largest eigenvalues are distinct, the eigenvectors û1 , ..., ûp tend to u 1 , ..., u p when ε tends to zero (from [START_REF] Lax | Linear algebra and its applications[END_REF]). For all i ∈ {1, ..., p}, we can write ûi =

u i + m j=1 j =i εt i 1j u j + O(ε 2 ) an
eigenvector of  for the eigenvalue λi . We have to verify that : ûi

2 = 1 + O(ε 2 ) : ũi 2 = (u * i + m j=1 j =i ε(t i 1j ) + u * j + O(ε 2 ))(u i + m j=1 j =i εt i 1j u j + O(ε 2 )) ũi 2 = u * i u i + m j=1 j =i ε 2 (t i 1j ) + t i 1j u * j u j + O(ε 2 )
1 R being hermitian, its eigenvalues are real, further they are positive. 2 or alternatively ĥMU (ω) =

1 a * (ω)(I-Ŝ Ŝ * )a(ω) because Ĝ Ĝ * = I -Ŝ Ŝ * MINES ParisTech, PSL University ũi 2 = 1 + O(ε 2 )
Now, we need to find the coefficients t i 1j . For i ∈ {1, ..., p} and j = i in {1, ..., m}, we have (up to ε 2 terms)

u * j Âû i = u * j λi ûi = u * j λi (u i + m k=1 k =i εt i 1k u k ) = λi εt i 1j = ελ i t i 1j
We also have :

u * j Âû i = u * j (A + εB)(u i + m k=1 k =i εt i 1k u k ) = u * j Au i + u * j A m k=1 k =i εt i 1k u k + εu * j Bu i = ελ j t i 1j + εu * j Bu i This yields t i 1j = u * j Bu i λ i -λ j .
We can apply this property to R and R with

B = √ M ( R -R) and ε = 1 √ M . Thanks to the central limit theorem, √ M ( R -R
) is zero-mean with elements asymptotically jointly Gaussian. Before deriving the expression of the bias, we need the expression of the statistical expectation of the coefficients t i 1j and of Ŝ and a development of Ĝ Ĝ * :

Proposition 7. E[t i 1j ] = 0 and E[ Ŝ -S] = O( 1 M ) (7) Proof. E[t i 1j ] = E[ u * j Bu i λ i -λ j ] = 0 because E[B] = 0. It follows that : E[ Ŝ -S] = O( 1 M ). Proposition 8. Ĝ Ĝ * = GG * + 1 √ M Z + O( 1 M ) ( 8 
)
where Z is a zero-mean random matrix.

Proof. We have Ĝ Ĝ * = I m -Ŝ Ŝ * . Thanks to (6), we can develop the expression of Ŝ Ŝ * :

( Ŝ Ŝ * ) i,j = p k=1 ŝi,k ŝ+ j,k = p k=1 [u i,k + m q=1 q =k εt k 1q u i,q + O(ε)][u + j,k + m r=1 r =k ε(t k 1r ) + u + j,r + O(ε)] Ŝ Ŝ * i,j = p k=1 [u i,k u + j,k + m r=1 r =k ε(t k 1r ) + u i,k u + j,r + m q=1 q =k εt k 1q u i,q u + j,k + O(ε 2 ) = (SS * ) i,j -εZ i,j + O(ε 2 )
Where

Z i,j = -p k=1 [ m r=1 r =k (t k 1r ) + u i,k u + j,r + m q=1 q =k εt k 1q u i,q u + j,k ]. From (7) : E[Z] = 0. So we have, Ŝ Ŝ * = SS * -1 √ M Z + O( 1 M ) and Ĝ Ĝ * = GG * + 1 √ M Z + O( 1 M ).

Bias of the estimator

We need one more result before prooving that it is an asymptotically unbiased estimator. 8) and because Ĝ * Ĝ = I.

Lemma 3. A * Ĝ Ĝ * = -A * S( Ŝ -S) * GG * + O( 1 M ) Proof. A * Ĝ Ĝ * = A * Ĝ Ĝ * Ĝ Ĝ * = A * Ĝ Ĝ * (GG * + 1 √ M Z +O(1/M )) from (
Then, A * Ĝ Ĝ * = A * (GG * + 1 √ M Z + O(1/M )) = 1 √ M A * Z + O(1/M ) so A * Ĝ Ĝ * = A * Ĝ Ĝ * GG * + O( 1 M ). It follows that A * Ĝ Ĝ * GG * = A * (I -Ŝ Ŝ * )GG * = -A * Ŝ Ŝ * GG * . Because S * G = 0, one has A * Ĝ Ĝ * GG * = -A * Ŝ( Ŝ -S) * GG * . And from Ŝ = S + ( Ŝ -S) one gets A * Ĝ Ĝ * GG * = -A * S( Ŝ -S) * GG * -A * ( Ŝ -S)( Ŝ -S) * GG * . Moreover, ( Ŝ -S)( Ŝ -S) = O( 1 M ) which yields the conclusion.
With this lemma, we can find a simple expression of ωk -ω k and deduce the bias with this new notations :

• β k = S * a(ω k ) • v k =    µ * k ( ŝ1 -s 1 ) . . . µ * k ( ŝp -s p )    with µ k = GG * d(ω k ) with d(ω k ) = da dω (ω) • h k = d * (ω k )GG * d(ω k ) • f (ω) = a * (ω)GG * a(ω)
Proposition 9 (adapted from [START_REF] Stoica | Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies[END_REF]). The frequencies estimates are such that, for all k = 1, ..., p,

ωk -ω k = Re(β T k v k ) h k + O( 1 M ) ( 9 
)
Proof. The proof derives from a perturbation analysis of the maximums. By definition, we have f (ω k ) = 0. Thus, an expansion gives

f (ω k ) f (ω k ) + f (ω k )(ω k -ω k ) with f (ω) = 2 Re(a * (ω) Ĝ Ĝ * d(ω)) and f (ω) = 2d * (ω) Ĝ Ĝ * d(ω)+2a * (ω) Ĝ Ĝ * d (ω) so f (ω k ) = 2h k +O( 1 √ M ). With lemma 3, this gives f (ω k ) = -2 Re(a * (ω k )S( Ŝ -S) * GG * d(ω k )) + O(1/M ) = -2 Re(β * k ( Ŝ -S) * µ k ) + O(1/M ) = -2 Re(β * k v + k ) + O(1/M ) = -2 Re(β T k v k ) + O(1/M ) Hence f (ω k ) = f (ω k ) + f (ω k )(ω k -ω k ) ⇐⇒ 0 = -2 Re(β T k v k ) + O(1/M ) + (2h k + O( 1 √ M ))(ω k -ω k ) ⇐⇒ ωk -ω k = Re(β T k v k ) h k + O(1/M )
It is now easy to prove that the bias of the estimator approaches 0 when M grows.

Theorem 1. E(ω k -ω k ) = O( 1 M
) so the estimation of frequencies by MUSIC is asymptotically unbiased.

Proof. We have : ωk

-ω k = Re(β * k ( Ŝ-S) * µ k ) h k + O(1/M ) so : h k × E(ω k -ω k ) = Re(β * k E[( Ŝ - S) * ]µ k ) + O(1/M ). Moreover, E[( Ŝ -S) * ] = O( 1 M ) (7) so E(ω k -ω k ) = O( 1 M ).

Variance and covariance

Preliminary results

To derive the expression of the covariance matrix, we need the statistical expectation of t i 1k t j 1l and t i 1k (t j 1l ) + and before deriving their expressions we need the expectation of Bu i u * j B with B = √ M ( R -R) that can be found in Proposition 10 (from [START_REF] Stoica | Eigenelement Statistics of Sample Covariance Matrix in the Correlated Data Case[END_REF]). We denote :

• Q k = E[ε(t)ε * (t -k)] = E[ε(t)ε T (t -k)] = σ 2 J k where (J k ) i,j = δ k+i j (and Q k = E[y(t)y T (t -k)]) • R k = E[y(t)y * (t -k)] = AP diag(e iω 1 , ..., e iωp ) k A * + Q k = AP D k A * + Q k Proposition 10. With B = √ M ( R -R), then for all i, j ∈ {1, ..., m}, E(Bu i u * j B) = m-1 l=-(m-1) (u * j R -l u i )R l + Q l u + j u T i Q l ( 10 
)
Proof. We have

E[ Ru i u * j R] k,l =E[( Rk ) * u i u * j Rl ] = 1 M 2 M -1 q=0 M -1 r=0 E[y * (q)s(q + k -1)u i u * j y(r)s + (r + l -1)] = 1 M 2 M -1 q=0 M -1 r=0 E[y * (q)u i s(q + k -1)u * j y(r)s + (r + l -1)]
We use the following lemma (that we can apply thanks to the central limit theorem that states that when M tends to the infinity, y * (q)u i , s(q + k -1), u * j y(r) and s + (r + l -1) are Gaussian random variables) : Lemma 4. (from [START_REF] Bendat | Measurement and analysis of random data[END_REF]) If x 1 , x 2 , x 3 and x 4 are four Gaussian random variables with a least one with zero-mean, we have :

E[x 1 x 2 x 3 x 4 ] = E[x 1 x 2 ]E[x 3 x 4 ] + E[x 1 x 3 ]E[x 2 x 4 ] + E[x 1 x 4 ]E[x 2 x 3 ] E[ Ru i u * j R] k,l = 1 M 2 M -1 q=0 M -1 r=0 E[y * (q)u i s(q + k -1)]E[u * j y(r)s + (r + l -1)] + E[y * (q)u i u * j y(r)]E[s(q + k -1)s + (r + l -1)] + E[y * (q)u i s + (r + l -1)]E[s(q + k -1)u * j y(r)] = 1 M 2 M -1 q=0 M -1 r=0 (R 0 ) * k u i u * j (R 0 ) l + u * j R r-q u i (R q-r ) k,l + (Q r-q ) l u i u * j (Q r-q ) k =(Ru i u * j R) k,l + 1 M 2 |t|<M (M -|t|)[u * j R -t u i (R t ) k,l + (Q -t u i u * j Q -t ) l,k ] =(Ru i u * j R) k,l + 1 M |t|<M [u * j R -t u i (R t ) k,l + (Q t u + j u T i Q t ) k,l ] So we have : E[ Ru i u * j R] k,l = Ru i u * j R + 1 M |t|<M u * j R -t u i R t + Q t u + j u T i Q t . Moreover E(Bu i u * j B) = M E(( R -R)u i u * j ( R -R)) = M E( Ru i u * j R) -M E( Ru i u * j R)) -M E(Ru i u * j ( R -R)) = M Ru i u * j R + |t|<M u * j R -t u i R t + Q t u + j u T i Q t -M Ru i u * j R -0 = m-1 l=-(m-1) (u * j R -l u i )R l + Q l u + j u T i Q l
The statistical expectations of t i 1k t j 1l and t i 1k (t j 1l ) + are now straightforward to establish.

Proposition 11.

E[t i 1k (t j 1l ) + ] = 1 (λ i -λ k )(λ j -λ l ) |t|<m (u * k R t u l u * j R -t u i + u * k Q t u + j u T i Q t u l ) (11) E[t i 1k t j 1l ] = 1 (λ i -λ k )(λ j -λ l ) |t|<m (u * l R -t u i u * k R t u j + u * k Q t u + l u T i Q t u j ) (12) Proof. First, E[t i 1k (t j 1l ) + ] = E[ u * k Bu i λ i -λ k u * j Bu l λ j -λ l ] = 1 (λ i -λ k )(λ j -λ l ) |t|<m u * k (u * j R -t u i R t + Q t u + j u T i Q t )u l (u * j R -t u i )(u * k Rtu l )+u * k Qtu + j u T i Qtu l which yields E[t i 1k t j 1l ] = E[ u * k Bu i λ i -λ k u * l Bu j λ j -λ l ] = 1 (λ i -λ k )(λ j -λ l ) |t|<m u * k (u * l R -t u i R t + Q t u + l u T i Q t )u j (u * l R -t u i )(u * k Rtu j )+u * k Qtu + l u T i Qtu j
We need two last lemmas (from [START_REF] Stoica | Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies[END_REF]) before deriving the expression of the variance :

Lemma 5. For all z 1 , z 2 in the column space of G, we denote

v k =    z * k ( ŝ1 -s 1 ) . . . z * k ( ŝp -s p )   .
We have :

E[v 1 v * 2 ] = 1 M m-1 k=-(m-1) Λ-1 (z * 1 Q k z 2 S T R + k S + + S T Q k z 2 z * 1 Q k S + ) Λ-1 (13) E[v 1 v T 2 ] = 1 M m-1 k=-(m-1) Λ-1 (z * 1 Q k z + 2 S T Q k S + S T Q k z + 2 z * 1 Q k S) Λ-1 (14) 
Proof. First,

(λ i -σ 2 )(λ j -σ 2 )E[v 1 v * 2 ] i,j = (λ i -σ 2 )(λ j -σ 2 )E[z * 1 (ŝ i -s i )(ŝ j -s j ) * z 2 ] = (λ i -σ 2 )(λ j -σ 2 )z * 1 E[ m k=1 k =i εt i 1k u k m l=1 l =j ε(t j 1l ) + u * l ]z 2 = (λ i -σ 2 )(λ j -σ 2 ) 1 M m k=1 k =i m l=1 l =j z * 1 u k × [ 1 (λ i -λ k )(λ j -λ l ) |t|<m (u * k R t u l u * j R -t u i + u * k Q t u + j u T i Q t u l )]u * l z 2
Since z 1 and z 2 are in the column space of G, z *

1 u k = 0 if k ∈ {1, ..., p} and m k=p+1 z * 1 u k u * k λ i -λ k = z * 1 GG * λ i -σ 2 = z * 1 λ i -σ 2
because GG * is the orthogonal projection on the column space of G. So, one has

E[v 1 v * 2 ] i,j = 1 M m k=p+1 m l=p+1 z * 1 u k [ 1 (λ i -λ k )(λ j -λ l ) |t|<m (u * k R t u l u * j R -t u i +u * k Q t u + j u T i Q t u l )]u * l z 2 (λ i -σ 2 )(λ j -σ 2 )E[v 1 v * 2 ] i,j = 1 M |t|<m z * 1 R t z 2 u * j R -t u i + z * 1 Q t u + j u T i Q t z 2 = 1 M |t|<m z * 1 Q t z 2 u T i R + t u + j + u T i Q t z 2 z * 1 Q t u + j because z * 1 A = 0, we have E[v 1 v * 2 ] = 1 M m-1 k=-(m-1) z * 1 Q k z 2 Λ-1 S T R + k S + Λ-1 + Λ-1 S T Q k z 2 z * 1 Q k S + Λ-1 Then, (λ i -σ 2 )(λ j -σ 2 )E[v 1 v T 2 ] i,j = (λ i -σ 2 )(λ j -σ 2 )E[z * 1 (ŝ i -s i )(ŝ j -s j ) T z + 2 ] = (λ i -σ 2 )(λ j -σ 2 )z * 1 E[ m k=1 k =i εt i 1k u k m l=1 l =j εt j 1l u T l ]z + 2 = (λ i -σ 2 )(λ j -σ 2 ) 1 M m k=1 k =i m l=1 l =j z * 1 u k × [ 1 (λ i -λ k )(λ j -λ l ) |t|<m (u * l R -t u i u * k R t u j + u * k Q t u + l u T i Q t u j )]u T l z + 2
Since z 1 and z 2 are in the column space of G, z *

1 u k = 0 if k ∈ {1, ..., p} and m k=p+1 z * 1 u k u * k λ i -λ k = z * 1 GG * λ i -σ 2 = z * 1 λ i -σ 2
is the orthogonal projection on the column space of G. So :

E[v 1 v T 2 ] i,j = 1 M m k=p+1 m l=p+1 z * 1 u k ( 1 (λ i -λ k )(λ j -λ l ) |t|<m [u * k R t u j u T i R + t u + l +u * k Q t u + l u T i Q t u j ])u T l z + 2 (λ i -σ 2 )(λ j -σ 2 )E[v 1 v T 2 ] i,j = 1 M |t|<m z * 1 R t u j u T i R + t z + 2 + z * 1 Q t z + 2 u T i Q t u j = 1 M |t|<m z * 1 Q t u j u T i Q t z + 2 + z * 1 Q t z + 2 u T i Q t u j because z * 1 A = 0, so we have E[v 1 v T 2 ] = 1 M m-1 k=-(m-1) Λ-1 S T Q k z + 2 z * 1 Q k S Λ-1 + z * 1 Q k z + 2 Λ-1 S T Q k S Λ-1 Lemma 6. We denote X = S Λ-1 S * A. We have S Λ-1 β k = x k , A * X = P -1 and X = A(A * A) -1 P -1 .
Proof.

• x k = S Λ-1 S * A k = S Λ-1 β k by definition of β k = S * a(ω k ) • P A * X = P A * S Λ-1 S * A = CS * A = CC -1 = I (4) so A * X = P -1
• X is in the column space of S which coincides with the column space of A so there exists a matrix H such that X = AH. We have :

I = P A * X = P A * AH so H = (A * A) -1 P -1 and X = A(A * A) -1 P -1 .

Expression of the covariance

We now have all the elements to establish the expression of the covariance matrix. and

Theorem 2. E[(ω

j -ω j )(ω i -ω i )] = σ 4 2M h i h j α 2 i α 2 j Re m-1 k=-(m-1) µ * j J k µ + i b T j J k b i +b T j J k µ + i µ * j J k b i + µ * j J k µ i b T j J k b + i + b T j J k µ i µ * j J k b + i with b j the j th column of B = A(A * A) -1 . Proof. From E[(ω j -ω j )(ω i -ω i )] = 1 h i h j E[Re(β T j v j ) Re(β T i v i )]
E[(ω j -ω j )(ω i -ω i )] = 1 2h i h j E[Re(β T j v j v T i β i ) + Re(β T j v j v * i β + i )] = 1 2h i h j [Re(β T j E[v j v T i ]β i ) + Re(β T j E[v j v * i ]β + i )]. M β T j E[v j v T i ]β i = m-1 k=-(m-1) β T j Λ-1 (µ * j Q k µ + i S T Q k S + S T Q k µ + i µ * j Q k S) Λ-1 β i (13) = σ 4 m-1 k=-(m-1) µ * j J k µ + i x T j J k x i + x T j J k µ + i µ * j J k x i (lemma 6) = σ 4 m-1 k=-(m-1) µ * j J k µ + i b T j α j J k b i α i + b T j α j J k µ + i µ * j J k b i α i (lemma 6) = σ 4 α i α j m-1 k=-(m-1) µ * j J k µ + i b T j J k b i + b T j J k µ + i µ * j J k b i M β T j E[v j v * i ]β + i = m-1 k=-(m-1) β T j Λ-1 (µ * j Q k µ i S T R + k S + + S T Q k µ i µ * j Q k S + ) Λ-1 β + i (14) = m-1 k=-(m-1) µ * j Q k µ i x T j R + k x + i =x * i R * k x j =x * i (AD -k P A * +σ 2 J -k )x j =(P -1 D -k P P -1 ) ij +σ 2 x * i J -k x j (lemma 6) = δ j i e -ikω j α 2 j + σ 2 α 2 i α 2 j b * i J -k b j +x T j Q k µ i µ * j Q k x + i We have: m-1 k=-(m-1) J k e -ikω j = a(ω j )a * (ω j ) so : µ * j m-1 k=-(m-1) J k e -ikω j µ i = 0 because µ * j A = 0. M β T j E[v j v * i ]β + i = σ 4 α 2 i α 2 j m-1 k=-(m-1) µ * j J k µ i b T j J k b + i + b T j J k µ i µ * j J k b + i Finally : E[(ω j -ω j )(ω i -ω i )] = σ 4 2M h i h j α 2 i α 2 j Re[ m-1 k=-(m-1) µ * j J k µ + i b T j J k b i + b T j J k µ + i µ * j J k b i + µ * j J k µ i b T j J k b + i + b T j J k µ i µ * j J k b + i ].

Remark 1. The covariance can be written E[(ω

j -ω j )(ω i -ω i )] = d N SNR j SNR i

where d depends only on m and the frequencies and SNR

k = α k σ 2 is the k th signal to noise ratio. Proof. Consider d = N 2M h i h j Re m-1 k=-(m-1) µ * j J k µ + i b T j J k b i + b T j J k µ + i µ * j J k b i + µ * j J k µ i b T j J k b + i + b T j J k µ i µ * j J k b + i 1 2h i h j Re m-1 l=-(m-1) µ * j J k µ + i b T j J k b i +b T j J k µ + i µ * j J k b i +µ * j J k µ i b T j J k b + i +b T j J k µ i µ * j J k b + i . One has E[(ω j -ω j )(ω i -ω i )] = d N SNR j SNR i .
Interestingly, d depends only on m and on the frequencies because G and A depends only on m and on the frequencies so does B, µ k and h k .

Variation of frequency over a window

Below we study the impact of frequency drift. For simplicity, we consider that only one sinusoid is present in the signal. Let p be equal to 2 and we suppose s(t) = α 0 e i((ω 0 +ε 0 t)t+ϕ 0 ) + α 0 e -i((ω 0 +ε 0 t)t+ϕ 0 ) + e(t) with ε 0 a small parameter. As formulated below, the frequency found by MUSIC will be the instantaneous frequency in the middle of the considered window (the instantaneous frequency at time t is d((ω 0 +ε 0 t)t) dt = ω 0 + 2ε 0 t). Proposition 12. The estimation of the autocorrelation matrix R tends to the matrix RM associated with the signal : s(t) = α 0 e i(ω 0 t+ϕ 0 ) + α 0 e -i(ω 0 t+ϕ 0 ) + e(t) with ω0 = ω 0 + (N -1)ε 0 .

Proof. Let R be the estimation of the autocorrelation matrix of the signal s and Rk,l the coefficient of R at the k th line and l th column.

Rk+1,l+1 = 1 M M -1 n=0 s(n + k)s + (n + l) = 1 M M -1 n=0 [2α 0 cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 ) + e(n + k)]× [2α 0 cos((ω 0 + ε 0 (n + l))(n + l) + ϕ 0 ) + e(n + l)] = 1 M M -1 n=0 4α 2 0 cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 ) cos((ω 0 + ε 0 (n + l))(n + l) + ϕ 0 ) + 2α 0 cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 )e(n + l) + 2α 0 cos((ω 0 + ε 0 (n + l))(n + l) + ϕ 0 )e(n + k) + e(n + k)e(n + l) As -1 ≤ 2α 0 cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 ) ≤ 1 and 1 M M -1 n=0 e(n + l) ----→ M →∞ E[e(t)] = 0 we have : 1 M M -1 n=0 2α 0 cos((ω 0 +ε 0 (n+k))(n+k)+ϕ 0 )e(n+l) ----→ M →∞ 0 and 1 M M -1 n=0 2α 0 cos((ω 0 + ε 0 (n + l))(n + l) + ϕ 0 )e(n + k) ----→ M →∞ 0. Moreover 1 M M -1 n=0 e(n + k)e(n + l) ----→ M →∞ E[e(t + k)e(t + l)] = σ 2 δ l k . We denote Π = E[4α 2 0 cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 ) cos((ω 0 + ε 0 (n + l))(n + l) + ϕ 0 )]. We have : Π = E[2α 2 0 × cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 -(ω 0 + ε 0 (n + l))(n + l) -ϕ 0 ) + 2α 2 0 × cos((ω 0 + ε 0 (n + k))(n + k) + ϕ 0 + (ω 0 + ε 0 (n + l))(n + l) + ϕ 0 )] = 2α 2 0 cos(ω 0 (k -l) + ε 0 (k -l)(2n + k + l)) If k = l : 1 M M -1 n=0 Π = Re( 1 M M -1 n=0 2α 2 0 e i(ω 0 (k-l)+ε 0 (k-l)(2n+k+l)) ) = Re( 1 M 2α 2 0 e i(ω 0 (k-l)+ε 0 (k-l)(k+l)) M -1 n=0 e iε 0 (k-l)2n = 1-e i2M ε 0 (k-l) 1-e i2ε 0 (k-l) = e iM ε 0 (k-l) sin(M ε 0 (k-l)) e iε 0 (k-l) sin(ε 0 (k-l)) ) = 2α 2 0 M sin(M ε 0 (k -l)) sin(ε 0 (k -l)) cos(ω 0 (k -l) + ε 0 (k -l)(M + k + l -1)) If k = l : 1 M M -1 n=0 Π = 2α 2 0 cos(ω 0 (k -l) + ε 0 (k -l)(N -1))
We supposed that : M ε 0 1 and ε 0 1 so : sin(M ε 0 (k-l))

M sin(ε 0 (k-l))

M ε 0 (k-l) M (ε 0 (k-l))
1. Moreover, as 1 ≤ k, l ≤ m for m M , we have

M + k + l -1 M -1 M + m -1 = N -1. So : Rk+1,l+1 2α 2 0 cos(ω 0 (k -l) + ε 0 (k -l)(N -1)) + σ 2 δ l k
When M tends to the infinity and if M ε 0 1, R is almost the autocorrelation matrix associated with the signal s(t) = 2α 0 cos(ω 0 t + ϕ 0 ) + e(t) with ω0 = ω 0 + (N -1)ε 0 .

Simulation results

All the simulations3 were done on real-valued signals of the form

s(t) = 2ρ=p k=1
α k e i(ω k t+ϕ k ) + e(t) with ∀k ∈ {1, ..., ρ}, α k+ρ = α k , ω k+ρ = -ω k and ϕ k+ρ = -ϕ k

The signal can be written:

s(t) = ρ k=1 2α k cos(ω k t + ϕ k ) + e(t).
The results are not modified even if the phases are not independant (see appendix for more details).

Validation of theoritical results

Simulations were made to illustrate the 3 theoretical results presented in this article : bias (Theorem 1), variance (Theorem 2) and variation of frequency (Proposition 12).

To validate that the method was asymptotically unbiased when M tends to the infinity (or equivalently N → ∞), we made a large number (100) of frequency estimations of the signal s[n] = 2α cos(ωn + φ) + e(t), n = 0, ..., N -1 for every N between 50 and 2500 with α = σ = 0.5 and ω = 960 fs rad (f s = 8000 Hz is the sampling frequency). These values are chosen because they are close to the values of our casestudy. With m = 20, we plot the mean frequency (multiplied by f s ) that was found by MUSIC for each N in Figure 3. One can see that the method is indeed asymptotically unbiased. Using the same data, we plot the variance of the estimation for every N in Figure 4. One can see that the experimental variance converges to the theoritical variance when N tends to infinity which is the expected result.

To have an idea of the influence of m on the variance, we plot for the same signal and N = 1000, the theoretical variance for different m in Figure 5. One can see that the relation between the variance and m is not simple and that numerical computation of the variance is useful to choose the appropriate m.

Finally, to verify the result on the variation of frequency, we applied the MUSIC algorithm to a signal s such that :

s(t) = cos((960 + 5 f s N t)t + ϕ) + e(t)
The frequency found by MUSIC is 965 rad.s -1 approximately (Figure 6). 

Case-study

We now show that on a signal typical of our study case, the MUSIC algorithm performs well.

A typical signal is [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF]: We tested the MUSIC algorithm on a typical signal (Figure 7) and we obtained the pseudo spectrum in Figure 8. The frequencies found are : 880.2, 940.9 and 958.4 rad.s -1 .

s(t
The parameter m has to be chosen and we plot the pseudo-spectrum obtained by MUSIC for different m in Figure 9. Thanks to the theoretical formula of the variance (Theorem 2), we can compute the expected standard deviation of each typical frequency for different m (Tab. 1) and it appears that m = 2000 seems to be a good choice. We could compute the variance for more m to choose the m corresponding to the minimal variance but a standard deviation of 0.0004 satisfies our exigences. 

Conclusion

When employed on experimental signals, frequency detection methods are facing a list of strong challenges. Some are data acquisition issues such as missing data due to packet losses, irregular sampling rates. In our application, some further issues are caused by the physics of the systems under consideration: closeness of two of the three frequencies of the studied epicyclic motion, drift of frequencies and decay of the magnitudes, high level of noises. All these issues are plausible causes for the performance issues observed in [START_REF] Fiot | Attitude estimation of an artillery shell in free-flight from accelerometers and magnetometers[END_REF] which led to discard the MUSIC implementation and, instead, favor ad-hoc techniques based on envelope filtering. The present study sheds a new light on this conclusion. It appears that the decrease of the SNR (caused by the decay of the epicyclic motion) has an nonneglible effect but that it can be circumvented by heavier computations (by increasing the parameter m in the algorithm). It also appears that the drift has, assuming that it remains small, an effect that can be predicted, and if necessary compensated for. However, the closeness of frequencies is indeed a problem, and it is likely that in practice the two close frequencies will be detected as one.

In this new analysis, the formula of the variance is instrumental as it quantifies the accuracy one can expect from MUSIC in function of the various parameters (see Tab.1 for parameters typical of our study case of attitude estimation). Moreover, the result on the variation of frequency help us to choose appropriate windows for the frequency estimation if we have an idea of how much the frequency vary.

Rather than resorting to black-box implementation of MUSIC, it is concluded that it is better to implement the streamlined algorithm described in §2.2 so that the m parameter can be directly tuned to the requirements of the specific case-study. Particular attention should be paid however in determining with a sufficient level of accuracy the eigenstructure of the empirical autocorrelation matrix.

The effects of other troubles listed above are still unsolved such as the influence of a bad sampling on the MUSIC algorithm. 

Table 1 -Standard deviation for the typical signal

The results on the variance are not modified even if E[y(t)y T (t-k)] = E[y(t)y * (t-k)] = R k . Note that the matrix y(t), R, R, R k , S, Ŝ, G and Ĝ are real.

We have :

E[ Ru i u T j R] k,l = 1 M 2 M -1 q=0 M -1 r=0 
E[y T (q)s(q + k -1)u i u T j y(r)s(r + l -1)]

= 1 M 2 M -1 q=0 M -1 r=0 
E[y T (q)u i s(q + k -1)]E[u T j y(r)s(r + l -1)]

+ E[y T (q)u i u T j y(r)]E[s(q + k -1)s(r + l -1)] + E[y T (q)u i s(r + l -1)]E[s(q + k -1)u T j y(r)]

= 1 M 2 M -1 q=0 M -1 r=0 (R 0 ) T k u i u T j (R 0 ) l + u T j R r-q u i (R q-r ) k,l + (R r-q ) l u i u T j (R r-q ) k = (Ru i u T j R) k,l + 1 M 2 |t|<M (M -|t|)[u T j R -t u i (R t ) k,l + (R -t u i u T j R -t ) l,k ] = (Ru i u T j R) k,l + 1 M |t|<M [u T j R -t u i (R t ) k,l + (R t u j u T i R t ) k,l ]
So we have :

E[ Ru i u T j R] k,l = Ru i u T j R + 1 M |t|<M u T j R -t u i R t + R t u j u T i R t . Hence : E(Bu i u T j B) = m-1 l=-(m-1) (u T j R -l u i )R l + R l u j u T i R l . Then : E[t i 1k (t j 1l ) + ] = E[t i 1k t j 1l ] = E[ u T k Bu i λ i -λ k u T l Bu j λ j -λ l ] = 1 (λ i -λ k )(λ j -λ l ) |t|<m u T k (u T l R -t u i R t + R t u l u T i R t )u j (u T i Rtu l )(u T k Rtu j )+(u T k Rtu l )(u T i Rtu j )
Let z 1 , z 2 be two vectors in the column space of G (not necessarily real) and let v k be    z * k ( ŝ1 -s 1 ) . . .

z * k ( ŝp -s p )   .
First :

So : E[(ω j -ω j )(ω i -ω i )] = 1 2h i h j E[Re(β T j v j v T i β i ) + Re(β T j v j v * i β + i )] = 1 2h i h j [Re(β T j E[v j v T i ]β i ) + Re(β T j E[v j v * i ]β + i )]. M β T j E[v j v T i ]β i = m-1 k=-(m-1) β T j Λ-1 (µ * j Q k µ + i S T R k S + S T Q k µ + i µ * j Q k S) Λ-1 β i = m-1 k=-(m-1) µ * j Q k µ + i x T j R k x i + x T j Q k µ + i µ * j Q k x i
There exist l such that 1 ≤ l ≤ p and |l -i| = ρ. We have k=-(m-1) J k e -ikω j µ + i = 0 because µ * j A = 0. We get :

x i = S Λ-1 S T a(ω i ) = S Λ-1 S T a(-ω l ) = S Λ-1 S T a + (ω l ) = x + l . Then, x T j R k x i = x * i R * k x j = x * i (AD -k P A * +σ 2 J -k )x j = (P -1 D -k P P -1 ) ij + σ 2 x * i J -k x j = δ j i e -ikω j α 2 j + σ 2 α 2 i α 2 j b * i J -k b j = σ 2
M β T j E[v j v T i ]β i = σ 4 m-1 k=-(m-1) µ * j J k µ + i b T j α j J k b i α i + b T j α j J k µ + i µ * j J k b i α i = σ 4 α i α j m-1 k=-(m-1) µ * j J k µ + i b T j J k b i + b T j J k µ + i µ * j J k b i M β T j E[v j v * i ]β + i = m-1 k=-(m-1) β T j Λ-1 (µ * j Q k µ i S T R k S + S T Q k µ i µ * j Q k S) Λ-1 β + i = m-1 k=-(m-1) µ * j Q k µ i x T j R k x + i =x * i R * k x j =x * i (AD -k P A * +σ 2 J -k )x j =(P -1 D -k P P -1 ) ij +σ 2 x * i J -k x j = δ j i e -ikω j α 2 j + σ 2 α 2 i α 2 j b * i J -k b j +x T j Q k µ i µ * j Q k x + i = σ 4 α 2 i α 2 j m-1 k=-(m-1) µ * j J k µ i b T j J k b + i + b T j J k µ i µ * j J k b + i Finally : E[(ω j -ω j )(ω i -ω i )] = σ 4 2M h i h j α 2 i α 2 j Re[ m-1 k=-(m-1) µ * j J k µ + i b T j J k b i + b T j J k µ + i µ * j J k b i + µ * j J k µ i b T j J k b + i + b T j J k µ i µ * j J k b + i ]

( a )

 a Artillery shell and captors (b) Epicyclic motion
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 1 Figure 1

Proof of proposition 3 .

 3 RS = SΛ with Λ = diag(λ 1 , ...., λ p ) (because S are eigenvectors of R) so from (2) AP A * S = S Λ with Λ = Λ -σ 2 I so S = AC with C = P A * S Λ-1 and C -1 = S * A (4) because S * S = I so I = S * AC by multiplying the first term of (4) by S * . We have GG * +SS * = I and SS * = S(S * S) -1 S * = A(A * A) -1 A * because the column space of A and S coincide (by the previous lemma). Hence, GG *

  xy) + Re(xy + )

Figure 3 -

 3 Figure 3 -Frequency estimation by MUSIC with 100 tests for every N with s(t) = cos(960t + ϕ) + e(t), m = 20, σ = 0.5, SNR=1 and f s = 8000 Hz

Figure 4 -

 4 Figure 4 -Variance of the frequency estimation by MUSIC with 100 tests for every N with s(t) = cos(960t + ϕ) = e(t), m = 20, σ = 0.5, SNR=1 and f s = 8000 Hz

Figure 5 -Figure 6 -

 56 Figure 5 -Variance of the frequency estimation by MUSIC with s(t) = cos(960t + ϕ) + e(t), N = 1000, σ = 0.5, SNR=1 and f s = 8000 Hz
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 78 Figure 7 -Typical signal

Figure 9 -

 9 Figure 9 -Pseudo-spectrum of the typical signal obtained by MUSIC for different m m ω 1 = 940 ω 2 = 958 ω 3 = 880 200 30.7 22.5 2.86 500 0.169 0.142 0.0215 1000 0.00320 0.00393 0.00107 2000 0.000375 0.000444 0.000419 4000 0.000738 0.000889 0.00114

α 2 i α 2 j

 2 b T j J k b i because we have :m-1 k=-(m-1) J k e -ikω j = a(ω j )a * (ω j ) so : µ * j m-1

  

  = 4032 and f s = 8064 Hz. The frequencies 940, 958 and 880 are in rad.s -1 . The SNR is 25 so σ 2 = 1

	) = cos(940t + ϕ 1 ) + 0.91 cos(958t + ϕ 2 ) + 0.78 cos(880t + ϕ 3 ) + e(t)	(15)
	with s[n] = cos( 940 fs n + ϕ 1 ) + 0.91 cos( 958 fs n + ϕ 2 ) + 0.78 cos( 880 fs n + ϕ 3 ) + e(t) for n ∈ {0, ...N -1}
	with N √	50 .

https://github.com/JulietteGerbaux/MUSIC.git

Appendix

In this appendix, we are going to show that the results does not change if we consider real signals.

α k e i(ω k t+ϕ k ) + e(t) with ∀k ∈ {1, ..., ρ}, α k+ρ = α k , ω k+ρ = -ω k and ϕ k+ρ = -ϕ k

The signal can be written:

First, we have R = AP A * + σ 2 I m because even if the phases are not independant :

All the results on the spectral decomposition of R still hold and the MUSIC algorithm is still working.

E[(ω j -ω j )(ω i -ω i )] = 1 h i h j E[Re(β T j v j ) Re(β T i v i )] We have : Re(x) Re(y) = 1 2 (Re(xy) + Re(xy + ).