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Abstract14

The second generation of blockchains introduces the notion of "smart contract" to decentralized15

ledgers, but with each new blockchain system comes di�erent consensus mechanisms or di�erent16

approaches on how to assess the cost of computation inside the chain, both aspects that a�ect the17

e�ciency of the systems as a decentralized computer. We present an experimental comparison of two18

blockchain systems, namely Ethereum and Tezos, from the perspective of smart contracts, centered19

around the same implementation of a VCG for Sponsored Search auction algorithm, respectively20

encoded in Solidity and SmartPy. Our analysis shows the feasibility of implementing an algorithm21

for sponsored search in such an environment while providing information on how useful these systems22

can be for this type of smart contracts.23

2012 ACM Subject Classification Computing methodologies æ Distributed computing methodolo-24

gies25
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1 Introduction28

The presence of “smart contracts”, i.e., distributed code snippets, into recent blockchain29

architectures such as Ethereum [10], EOS [4] or Tezos [3] calls for a comparative performance30

analysis of their implementations, in terms of running time, storage requirements or cost.31

Even if some benchmarking work has been done previously, see for instance [7] and [6] , we32

are not aware of work performing a comparative analysis of smart contracts. We report here33

on preliminary results of such a comparison on two architectures, Ethereum and Tezos, using34

a real-life use case, the Vickrey-Clarke-Groves auction for sponsored search (VCG) algorithm.35

Our motivation for designing this particular benchmark setting is two-fold. First, we36

opted to focus on blockchains adhering to di�erent philosophies, the popular and proof-of-37

work-based Ethereum and the newer and proof-of-stake-based Tezos, to better assess the38

performance characteristics of the blockchain ecosystem. Second, our choice of the VCG39

algorithm is driven by its importance for search-engine and social-network companies, where40
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2 Blockchain Performance Benchmarking with VCG Smart Contract

advertisements are the main source of revenues. Since these systems, like Facebook, have41

to mitigate their bottom line and their users’ satisfaction, they often opt for this particular42

type of auction to sell their ads slots, since there advertisers can indeed bid according to43

their perceived value of each targeted user.44

The importance of the reliability and openness of VCG-based ad bidding processes make45

them a potentially valuable application for smart contracts. In the rest of this paper, we46

introduce the Ethereum and Tezos approaches to smart contracts (Section 2), specify the47

VCG algorithm and its implementation as a smart contract (Section 3), present our test48

protocol (Section 4), detail our metrics and main results on both Ethereum and Tezos49

(Section 5), discuss our main findings (Section 6) and finally conclude (Section 7).50

2 Ethereum and Tezos Smart Contracts51

After its introduction in 2008 with Satoshi Nakamoto’s Bitcoin paper, blockchain systems52

evolved and gained functionalities on top of the peer-to-peer exchange of value. The second53

generation of blockchains, kick-started by Ethereum, added Turing-complete computation to54

their o�erings, making decentralized applications (dApps) a possibility, via so-called “smart55

contracts”. A smart contract is an autonomous agent that runs on a blockchain and can56

implement a wide range of applications.57

Ethereum is currently the second largest blockchain system, and the first choice for dApps.58

Its blocks are produced by miners, and the consensus on this blockchain is achieved via the59

Ethash proof-of-work protocol. Ethereum smart contracts are written in Solidity, a high-level60

language influenced by C++, Python and JavaScript. Its compiler targets the Ethereum61

Virtual Machine (EVM), generating EVM opcodes to be executed. Each of these opcodes62

has a gas cost associated, related to how much computation it requires or storage it manages.63

Whenever someone tries to execute a transaction to a smart contract, it is necessary to64

provide a gas limit and a gas price in ETH or Gwei (1.0 ETH = 109 Gwei) as parameters65

for the transaction. A miner will execute the transaction until its completion or it runs out66

of gas, while the user will be debited by the amount of gas used multiplied by the current67

gas price. Gas is important to insure that the system will not get bogged down by a single68

contract execution, or be vulnerable to denial-of-service attacks, as well as functioning as a69

reward system for the miners. There is a gas limit for each block mined, which is voted by70

the miners; currently, it is 1.25 ◊ 107. As there is a limit to the amount of gas, miners will71

give preference to transactions with a high price of gas.72

Tezos is a third-generation blockchain that intends to address the cost, energy and73

scalability issues generated by the proof-of-work approach. It uses proof of stake as its74

consensus mechanism. Funded by the second largest Initial Coin O�ering in 2017, Tezos is75

characterized by its self-amending properties and its proof-of-stake consensus mechanism.76

Tezos presents a particular case of proof of stake, in which the ability to produce blocks77

(“baking”, in Tezos terminology) can be delegated to another entity, so the name “delegated78

proof of stake”. Bakers do not need to perform work as in Ethereum, but rely on access79

rights linked to “coins” valued in XTZ. Tezos also has a di�erent gas system than Ethereum.80

A user is charged for each transaction in two di�erent ways: a fee, which is credited to81

the block baker, and a certain amount of burned coins, sent to an unreachable account.82

For performing a transaction, a user needs to provide a fee (in XTZ) and a gas limit; the83

transaction will then compete with other transactions to be added to a block, taking into84

account two limitations, namely hard block gas limit (10,400,000 gas) and hard operation85

gas limit (1,040,000 gas). Bakers then choose transactions, assuming that gas fits the block86
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and fees respect a minimum. When the size of the blockchain storage increases due to a87

transaction, the sender must pay a “burn”, in XTZ. This happens when a contract storage88

increases (storage burn) or when a new contract is put on the chain (allocation burn).89

3 VCG for Sponsored Search Smart Contract90

VCG for Sponsored Search (VCG) is a specialization of the Vickrey–Clarke–Groves auction91

mechanism dedicated to the sale of sponsored links. In this version, the goods being auctioned92

are “slots” in a web page, and the buyers are advertisers interested in putting one of their93

ads in a slot. Each slot is associated to a click-through rate (“ctr”), a measure of the number94

of clicks advertisers can be expected to receive on their ads per number of impressions.95

The VCG algorithm, in which n bidders vie for k slots, each characterized with a ctr –j ,96

can be outlined as follows, where the ctrs –j are assumed down sorted [8]:97

1. accept a bid bi from each bidder i, and relabel the bidders so that b1 Ø b2 Ø . . . Ø bn;98

2. assign each bidder i of the k first bidders to the i-th slot (the others lose);99

3. charge each such bidder a price pi = 1
–i

qk+1
j=i+1 bj(–j≠1 ≠ –j), with –k+1 = 0.100

Intuitively, the price (per click) pi paid by the bidder i is designed to compensate the101

loss in “social welfare” su�ered by all the other bidders by the mere presence of the bidder i.102

In the framework of search engines, such a VCG algorithm must be run each time a web103

page is about to be displayed on a computer, meaning billions of times per day.104

Implementing VCG as a smart contract varies according to whether one targets Ethereum105

(Solidity) or Tezos (SmartPy). We strove to have similar code for both implementations to106

make the comparison as fair as possible, and use the Solidity version for reference here (the107

full implementation is available at https://github.com/LucasMSg/VCG_SmartContracts).108

Storage109

The following data structures are used to implement VCG (unit denotes unsigned integers):110

owner(address), the Tezos address of the user who owns the auction smart contract;111

isOpen(bool), a flag indicating if an auction is opened at the moment or not;112

ctrs(uint[]), the array of ctrs of the slots being auctioned;113

bids(uint[]), the bids sent by the advertisers;114

agents(address[]), the Tezos addresses of the advertisers;115

prices(uint[]), the prices computed at the end of the auction.116

Public functions117

Here are the main public functions (entry points, in SmartPy) of a VCG contract (only bid118

is not reserved to the contract owner):119

transferOwnership transfers the contract ownership;120

updateCTRs updates the ctrs array, if an auction is not under way;121

openAuction opens an auction, providing it an initial ctrs array argument;122

bid receives one bid from a participant (the bid and bidder’s address are registered);123

cancelAuction cancels the auction (the bids and agents are erased);124

closeAuction closes the auction, sorts the bid list and computes the VCG prices.125
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4 Test Protocol126

Both blockchain development environments provide editors to test contracts, but these127

tests are being simulated in a sandbox blockchain [2] and are thus not present in an actual128

blockchain. To provide performance results more representative of actual blockchains, we129

tested the VCG contract in so-called “testnets”, i.e., Ropsten for Ethereum and Delphinet130

for Tezos. This way we can expect to experience the behavior of a full-fledged blockchain131

without having to pay transaction fees. To deploy and communicate with contracts, we use132

Tru�e, a development environment for smart contracts initially developed for Ethereum, but133

for which a Tezos integration, though still under development, presents enough functionalities134

for our tests. Tru�e’s contract abstraction provides means to interact with contracts using135

JavaScript.136

We implemented a unit test that performs the following transactions on each blockchain:137

deployment of a VCG smart contract, opening of an auction, sending of bids (to simulate138

participants) and finally auction closure, producing a table of winners. We opted to deploy a139

new contract each time the test is performed to better track the possible cost incurred by140

the addition of more storage to a contract (e.g., the burned XTZ for Tezos). Our full test141

consists then of a series of unit test auctions with increasing numbers of participants and142

slots, namely 10 participants with 4 and 8 slots, 20 participants with 4, 8 and 16 slots and143

50 participants with 4 slots. We stopped our tests after 50 participants and 4 slots because144

it was already enough to reach the gas limit of a Ropsten block. We note n_m an auction145

with n participants and m slots.146

We focused the collection of test data on the most important factors that generally147

characterize the dynamic performance of contracts. Our use of Tru�e also limited the scope148

of metrics we could put our hands on. For Ethereum, we measured gas usage, setting a large149

value for both the gas limit and the price to ensure that our transactions would be chosen by150

the miners and also have enough resources to run our contract to completion (in particular,151

when closing auctions). For Tezos, Tru�e automatically sets the fee and gas limit; at the152

end of the test, we get the actual gas used and the number of burned coins for the execution153

of the test contract.154

5 Results155

Metrics selection156

Our comparison experiment focuses on programmability (see next subsection), performance157

and cost issues. In view of the data available through Tru�e and the blockchains’ APIs, we158

selected gas and burned, blocktime and cost in dollars as metrics for our comparison’s para-159

meters. Gas and burned are used for computation (CPU, storage) performance assessment;160

they also illustrate how both platforms units of gas are not directly comparable. “Wall-clock”161

execution time could be considered as the time performance parameter, but when working162

with smart contacts, since it is directly linked to each blockchain’s block time, we consider163

the latter as our time comparison parameter. Finally, monetary considerations are strongly164

linked to blockchain technologies, so we look at cost issues. Cost is, in some sense, a better165

parameter for comparison than the previous ones, since it is a good indicator of the practical166

usability of smart contracts and blockchains.167
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Programmability168

An important though somewhat subjective point of comparison between the two blockchain169

environments is the ease of programming and interacting with smart contracts. Ethereum’s170

main language for writing smart contracts is Solidity, similar to Java and C++. Ethereum171

provides a good IDE, Remix, with the possibility to execute transactions broken down by172

EVM op-codes and follow the changes in storage and gas consumption. On the other hand,173

Tezos o�ers four languages for smart contracts, including Michelson, the stack-based language174

that is, in the end, executed inside its blockchain. We opted for SmartPy, a Python library;175

scripts are then regular Python scripts that use SmartPy constructs. SmartPy relies on176

meta-programming, which may present a steeper learning curve for developers that Solidity.177

For deployment and interaction with Ethereum contracts, we used Tru�e, a well-178

documented tool; thanks to its many tutorials for setting up configurations, it poses few179

problems. Tezos, however, proved more di�cult to put to use. We started with Tezster-CLI,180

a specific tool for Tezos’s contracts, which happened to be not adaptable to our serial unit181

tests. We ended up switching to Tru�e for Tezos, which, while still experimental, proved182

resilient enough for this experiment.183

Gas and Burned184

The experimental data obtained vary significantly according to the phase of the VCG auction185

process and the blockchain on which they run.186

Deployment. On both blockchains, the gas for each deployment of a VCG contract is always187

the same. Ethereum consumes 1,016,192 gas, while Tezos needs 24,017 gas while charging188

1.183 XTZ for the allocation of 4,475 bytes.189

Opening. When opening an auction, the ctrs are stored in the blockchain. As can be190

expected, the gas and burned increase linearly with the number of slots being auctioned.191

Bidding. Bids behave di�erently on each blockchain. Ethereum is more homogeneous, with192

the first bid transaction always needing more gas, since the first push sets up the storage193

for the array of bids and agents. The first bid consumes 105,917 gas, while the subsequent194

bids, having only to insert a uint and an address, always consume 75,917 gas.195

For Tezos, gas consumption increases with a mean of 208.2 ± 1.1 (s.d.) with each196

subsequent bid, while the amount of coins burned is constantly 0.00925 XTZ or 0.0095197

XTZ, depending on the size of the bid.198

Closing. The close auction function/entry-point is the most relevant for our comparison,199

since the bulk of the VCG algorithm is performed here. The array of bids is sorted (we200

implemented a simple insertion-sort algorithm), and this sorted array is used in the third201

step of the VCG algorithm in order to compute the prices for the winners. Figure 1 is a202

graph of the closing gas for each of our tests. Note that it was not possible to close the203

50 bids auction in Ethereum, the gas surpassing what the Ropsten network is accepting204

as gas limit for a single auction.205

Block time206

For Ethereum’s main network, using Etherscan, we measured the block time at 14.82 ± 1.63207

(in seconds), while the Ropsten network clocks at 14.5 ± 1.2 seconds. Measuring Ropsten208

directly from Tru�e, we got a mean of 14.16 ± 7.72. For Tezos, its main network is advertised209

as providing a constant block time of 60 seconds, while Delphinet uses half of it, i.e., 30210

seconds. Using Tru�e, our tests on Tezos showed a block time of 43.07 ± 14.63 seconds.211

Note that we are not waiting for the suggested confirmation blocks.212
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Figure 1 For each VCG contract n_m closing transaction, gas consumption on Ethereum (left)
and gas, fee and burned for Tezos (right, where the Y axis scale is in gas and µXTZ).

Price213

For our experiment, coins on testnets are free, so the ETH and XTZ amounts that were spent214

for this benchmarking had no actual value. Yet, an approximate prediction of the prices one215

would have to pay to run our VCG test can be obtained by taking the main network prices216

for both of these coins. At the time of this writing (Mar 10 2021, 10:24 UTC), one ETH is217

valued at $1,827, and one XTZ is $4.25.218

For Ethereum, we used ETH Gas Station (ethgasstation.info) to get a quote for gas219

prices. For test purposes, we used the price category “Standard” (91 Gwei/gas, at the time220

of test), which led to the following prices for the deployment and bidding phases: $168.94,221

and $17.6 (first bid) and $12.6 (subsequent ones). The varying closing phase prices can be222

deduced from Figure 1; for instance, the price for a 10_4 auction was $128.26.223

For Tezos, we used as transaction fees the ones automatically suggested by Tru�e, while224

the burned costs, related to storage increments, are 0.00025 XTZ for 1 byte at the time225

of test, for both the main and testnets. The prices for the deployment phase are $0.03 for226

fee and $5.02 for burned. For the bidding phase, the fee paid by each bidder increases by227

$0.000088 ± 0.0000029 each time, while the burned remains somewhat constant, between228

$0.039 and $0.04. For the closing phase, one can refer to Figure 1 to get an estimate, where,229

for a 10_4 auction, the fee paid by the auctioneer would be $0.133 and the burned, $0.028.230

6 Discussion231

Our goal with this benchmarking study was to compare the performance of two very similar232

smart contracts on Ethereum and Tezos. Translating a Solidity contract to the Tezos233

blockchain environment proved to be quite di�cult, even though this could be somewhat234

expected since Ethereum is the most popular dApps platform, with thus a lot of support235

from its community, while Tezos is much less used for now. From our experience, most236

complications with Tezos are inherent to its design philosophy. In particular, the self-237

amending property of this blockchain translates into testnets being abandoned every time238

there is a new protocol upgrade (every 4 months or so, based on our experience), which led239

to temporary complications for our study, either because of bugs or because some tools were240

not adapted to the new testnet as fast as expected.241

Ethereum’s scalability is a big drawback for our VCG implementation. The gas limit242

for blocks implies a very small limit for the number of bidders, especially when compared243

to standard VCG auctions in industry. Adding the system’s popularity to the scalability244
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problems is rising gas prices, which results in a high average transaction fee of $39.49 (recorded245

in February 23, 2021). These values could be considered acceptable for a transfer-value246

system, but, for a dApps platform, they could lead to users abandoning the system. However,247

the EIP 1559 [1] proposal to reform the Ethereum fee market and the introduction of a248

proof-of-stake approach within Ethereum 2.0 are two welcoming changes that could positively249

impact the Ethereum results in our benchmarking.250

The idea of implementing VCG as a smart contract, though initially appealing due to251

the archival nature of blockchains and the transparency of its data processing, had some252

less positive implications. The main one is that all data in a public blockchain is public,253

which goes against the sealed-bid requirement of VCG. We intend to address this issue in the254

future, via the inclusion of cryptography contracts similar to [5]. But even if one assumes255

that bidders are not able to access the blockchain to see the other bids, the bid transaction256

receipt automatically returned by Ethereum and Tezos could still be used to inform the257

bidder about the current status of the auction, since, for instance, a big gas consumption for258

Ethereum means that one has been the first bidder, while the always increasing prices for259

bids in Tezos can help subsequent bidders in figuring out better strategies.260

Another hindrance of blockchains for auctions is the total time being linked to the block261

time. In an actual VCG for sponsored search setting, auctions are made in matters of seconds,262

which means that a smart contract is not viable for such an application, except maybe in263

very limited domains (high-value auctioned items among few participants, for instance as in264

a country-level energy market).265

7 Conclusion266

We present a comparative bench-marking use case for smart contracts on the proof-of-work267

Ethereum and proof-of-stake Tezos blockchains. Our test is based on the VCG auction268

mechanism widely used in the search-engine industry for advertisement placement, an269

application that might be thought to be able to profit from the trust and good governance270

practices blockchains bring to computations. Our experimental data suggest however that,271

currently, time and space performances (and price, mostly on Ethereum) prevent this type272

of application to be put most of the time to practical use.273
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