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Abstract 9 

In this paper, we develop a new quantitative method to assess the Strength of Knowledge (SoK) of a risk 10 

assessment. A hierarchical framework is first developed to conceptually represent the SoK in terms of three attributes 11 

(assumptions, data, phenomenological understanding), which are further broken down in sub-attributes and “leaf” 12 

attributes to facilitate their assessment in practice. The hierarchical framework, is, then, quantified in a top-down, 13 

bottom-up fashion for assessing the SoK. In the top-down phase, a reduced-order risk model is constructed to limit 14 

the complexity and number of basic elements considered in the SoK assessment. In the bottom-up phase, the SoK of 15 

each basic element in the reduced-order risk model is assessed based on predefined scoring guidelines and, then, 16 

aggregated using a weighted average of “leaf” attributes, where the weights are determined based on the Analytical 17 

Hierarchical Process (AHP). The strength of knowledge of the basic events is in turn, aggregated using a weighted 18 

average to obtain the SoK for the whole risk assessment model. The developed methods are applied to a real-world 19 

case study, where the SoK of the Probabilistic Risk Assessment (PRA) models of a Nuclear Power Plants (NPP) is 20 

assessed for two hazards groups, i.e., external flooding and internal events. 21 
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1. Introduction 1 

In PRA, models are developed to calculate some probabilistic indexes for risk characterization (Flage and Aven, 2 

2009). These probabilistic indexes express the irreducible “aleatory uncertainty” in the related systems and processes 3 

(Helton and Burmaster, 1996), (Helton et al., 2004), (Flage and Aven, 2009). However, since these indexes are 4 

calculated by the developed “model of the world” (Apostolakis, 1990), they are conditioned on the knowledge on the 5 

problem (Flage and Aven, 2009). Lack of knowledge will result in additional uncertainty in the PRA results, known 6 

as “epistemic uncertainty” (Helton and Burmaster, 1996), (Helton et al., 2004), (Flage and Aven, 2009). It is well-7 

accepted in the risk assessment community that epistemic uncertainty needs to be properly quantified and taken into 8 

account in PRA. Since epistemic uncertainty depends on the Strength of Knowledge (SoK), quantifying the 9 

knowledge that supports risk modeling and assessment is an indispensable task in probabilistic risk assessment (PRA) 10 

(Askeland et al., 2017), (Aven, 2017b). 11 

However, the existing works on epistemic uncertainty quantification and propagation (for example, including 12 

but not limited to subjective probability, law of total expectations, imprecise probability, evidence theory, possibility 13 

theory, etc.) aim at developing mathematical frameworks to represent the epistemic uncertainty in the input and then 14 

propagate the uncertainty to quantify the epistemic uncertainty in the output. For example, in the law of total 15 

expectation, a probability distribution expressing the belief on different assumptions is introduced and then 16 

propagated. Compared to the uncertainty propagation, how to represent the epistemic uncertainty in the input 17 

parameters is less discussed in literature. With respect to this problem, assessing SoK is a critical step, as the epistemic 18 

uncertainty is directly related to the SoK. In fact, quantifying the SoK is even more important in risk-informed 19 

decision making. For example, in the current multi-hazards risk aggregation methods, the aggregation is done by a 20 

simple arithmetic summation of risk from different contributors and the final results are compared to quantitative 21 

safety goals and acceptance criteria to support decision making. However, this simple arithmetic summation does not 22 

take into account the fact that the risk estimates from different contributors are based on different degrees of 23 

knowledge and therefore, might have different degrees of realism (EPRI, 2015). Another example is that when the 24 

decision maker needs to choose among different alternatives based on the estimated risk, simply choosing the 25 

alternative with a lower risk estimate without considering the degree of knowledge might not be the right choice. 26 

SoK of a risk assessment model refers to the level of knowledge that supports the model. It affects the trust one 27 

has on the results obtained by the risk assessment and the decisions that are based on them (Aven, 2013b), (Bani-28 

Mustafa et al., 2017). For example, in the risk assessment of Nuclear Power Plants (NPPs), the SoK of an external 29 
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flooding risk model may be relatively low, due to the fact that the phenomena involved are not so well-understood 1 

and the data are limited: then, it is expected that conservative decisions would be taken even if the risk assessments 2 

were to yield optimistic results (EPRI, 2015). The importance of considering SoK in risk assessment has led 3 

researchers to formulate frameworks in which risk is described not only by traditional elements (like scenarios, 4 

likelihoods and consequences (Aven, 2012)), but also by elements directly related to knowledge (Montewka, 5 

Goerlandt and Kujala, 2014), (Aven, 2012), (Aven and Ylönen, 2016), (Aven, 2013b), (Bjerga and Aven, 2015). For 6 

example, in the Data-Information-Knowledge-Wisdom (DIKW) hierarchy in (Aven, 2013a): the SoK is explicated to 7 

complement the two traditional risk dimensions of consequence and uncertainty (Aven, 2017b). 8 

Only very few works, however, directly address the issue of how to evaluate the SoK of a risk assessment model. 9 

A semi-quantitative approach for evaluating the SoK is proposed by Goerlandt and Montewka (2014), based on four 10 

criteria: (i) phenomenological understanding and availability of trustable predicting models; (ii) reasonability and 11 

realism of assumptions; (iii) availability of reliable and relevant data and information; (iv) agreement/disagreement 12 

among peers. Three levels of SoK are identified based on the degree that the previous criteria are satisfied. Aven 13 

(2013b) considers the SoK that supports the determination of probability intervals used in Norway national risk 14 

assessment (NRA) and a risk analysis concerning a Liquefied Natural Gas (LNG) plant. In Aven and Ylönen (2016), 15 

safety regulations of the oil & gas and nuclear industries have been enhanced by assessing the SoK which 16 

probabilities of risk acceptance criteria are based on. Bjerga and Aven (2015) develop an adaptive risk management 17 

plan for the oil and gas industry, where the SoK that supports the estimation of probability intervals is assessed and 18 

represented as an additional dimension of a risk matrix. In Montewka et al. (2014a), a qualitative description of 19 

uncertainty in maritime-based risk analysis and decision making is presented by developing a two-dimensional 20 

scoring system taking into account the SoK. Berner and Flage (2016) consider the risk assessment of lifting riserless 21 

light well intervention equipment on the Norwegian continental shelf and assess the SoK on which important 22 

assumptions of risk assessment are based. Askeland et al. (2017) adapt the assessment framework in Flage and Aven 23 

(2009) and apply it on security risk assessment, where a fifth criterion, i.e., knowledge scrutinization, is added to the 24 

four criteria defined by Flage and Aven (2009) for SoK assessment. The SoK is, in turn, classified into three levels, 25 

i.e. weak, strong and medium (Askeland et al., 2017). More examples of the SoK evaluation of the risk assessment 26 

models by semi-quantitative models can be found in (Abrahamsen et al., 2016), (Aven, 2017a), (Berner and Flage, 27 

2016), (Khorsandi and Aven, 2017), (Haouzi et al., 2013). 28 

Another method proposed for SoK assessment is the assumption deviation risk method, whose standpoint is that 29 
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poor assumptions are main sources of weak knowledge and, hence, efforts should be made for evaluating the solidity 1 

of assumptions on which risk analysis is based (Aven, 2013b); (Berner and Flage, 2016). The method identifies the 2 

criticality of assumptions by assigning crude risk scores for the main assumptions of the risk assessment model, 3 

which cover: (i) the possible deviation from the assumptions and the associated consequences; (ii) the uncertainty of 4 

this deviation; (iii) the background knowledge that supports the assumptions. Similarly, Berner and Flage (2016) 5 

define guidelines to treat the uncertainty associated with six typical settings that correspond to different levels of 6 

assumptions deviations. In addition to this method, Berner and Flage (2016) identifies three other approaches for 7 

treating uncertain assumptions: (i) law of total expectation; (ii) interval probability; (iii) crude SoK and sensitivity 8 

categorization. In the law of total expectation method works for scenarios with strong knowledge and historical data 9 

where, a probability distribution is introduced to express the belief on different assumptions. In the case of weak 10 

knowledge, on the other hand, interval probability technique can be applied, where the assessors are asked to assign 11 

the minimum and maximum values of assumptions and their corresponding believed probability. In the crude SoK 12 

and sensitivity categorization method, the criticality of assumption is assessed by assessing the strength of knowledge 13 

on which the assumptions are made, as well as the dependency of risk assessment on this assumption.  14 

Goerlandt and Reniers (2016) propose to assess and visualize uncertainty in risk assessment through probability-15 

consequence diagrams, in which the assumption deviation risk is visualized along with a segmented strength-of-16 

evidence assessment. Khorsandi and Aven (2017) emphasize the importance of integrating the assumption deviation 17 

risk in quantitative risk assessment in order to provide a complete representation of the risk and apply the method to 18 

a case study from the offshore industry. Aven (2017b) suggests using the assumption deviation risk method as a 19 

complement to the quantitative risk assessment, to improve traceability of the results and perform a more responsible 20 

RIDM. 21 

As seen from the above, most of the existing methods are qualitative in nature, wherein the assessment is done 22 

based on some crudely defined scoring criteria, which limits the practical application. In practice, however, a 23 

quantitative evaluation of SoK is needed for operationally supporting RIDM. Also, many SoK attributes are difficult 24 

to evaluate directly and, yet, their evaluation is carried out directly by simple scoring based on a plain description of 25 

the attributes, which can be difficult and imprecise in practice. To make a quantitative evaluation feasible, the high-26 

level attributes need to be broken down into more tangible sub-attributes. Besides, the SoK cannot be evaluated 27 

directly on the entire risk assessment model: rather, a feasible approach should consider the SoK of the basic and 28 

most relevant elements. Compared to the existing methods, the contributions of this paper include: (i) A hierarchical 29 
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framework is developed to conceptually represent the SoK and break it down into tangible sub-attributes and “leaf” 1 

attributes to facilitate the assessment in practice; (ii) Detailed scoring guidelines are given for evaluating the bottom-2 

level attributes in the SoK assessment framework; (iii) A top-down bottom-up approach is developed for the practical 3 

evaluation of the SoK supporting the PRA model. More specifically, the work in this paper is rather an attempt to 4 

support RIDM by “measuring what we know instead of what we don’t know”. This work is directed towards 5 

supporting risk-based decision making by giving indices on the state of knowledge on which the risk assessment is 6 

based. Hence, the main goal of this paper is to develop a framework that measures practically the concept of “strength 7 

of knowledge” that has been introduced recently by some colleagues and accepted and used by others for supporting 8 

the risk assessment (Milazzo and Aven, 2012), (Aven, 2013b), (Montewka et al., 2014), (Goerlandt and Montewka, 9 

2015), (Valdez Banda et al., 2015), (Berner and Flage, 2016a), (Berner and Flage, 2016b), (Goerlandt and Reniers, 10 

2016). The paper aims to complement and formulate in a practical way the previous attempts developed for evaluating 11 

the SoK supporting the RIDM.  12 

However, it should be noted that although SoK is an important contributor to the trust in the PRA results, it is 13 

not the only contributor. Other factors, e.g., the quality of the modeling process, also need to be considered if one 14 

wants a complete evaluation of the PRA trustworthiness. The current work focuses on the SoK, i.e., how much we 15 

know about the system and processes related to risk. The specific focus is on complementing and formulating, in a 16 

practical way, the previous attempts for evaluating the SoK supporting the RIDM (Milazzo and Aven, 2012), (Aven, 17 

2013b), (Montewka et al., 2014), (Goerlandt and Montewka, 2015), (Valdez Banda et al., 2015), (Goerlandt and 18 

Reniers, 2016), (Berner and Flage, 2016a), ( Berner and Flage, 2016). 19 

In this paper, we propose a quantitative assessment of SoK. A hierarchical framework is developed in Section 2 20 

to conceptually describe SoK and relate it to its major contributors. The framework is, then, developed into a top-21 

down and bottom-up method for SoK assessment (Section 3), considering the essential constituents of the risk 22 

assessment model. In Section 4, a case study of two hazard-group in Probabilistic Risk Assessment (PRA) models of 23 

a Nuclear Power Plant (NPP) is presented. Finally, the paper is concluded in Section 5 with a discussion. 24 

2. A hierarchical framework for SoK assessment 25 

In this section, we construct a conceptual framework to describe the SoK that supports a PRA. The main 26 

attributes that contribute to the SoK are identified from the literature and organized hierarchically based on the 27 

framework proposed in Flage and Aven (2009), but adjusted and expanded to include more contributors and facilitate 28 

the practical implementations. In Sect 2.1, we illustrate the development of the framework. In Section 2.2, we 29 
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formally present the framework and define its attributes.  1 

2.1 Framework development  2 

In this section, we survey the attributes typically considered in existing works for SoK assessment and argue the 3 

importance of including specific criteria in defining the strength of knowledge and finally, organize them in a 4 

hierarchical framework for practical assessment. 5 

Let’s take the PRA models as an example to illustrate our arguments. Different steps need to be followed to 6 

construct and operate correctly a PRA model, as shown in Figure 1 (Stamatelatos et al., 2011), (NRC, 1983).  7 

 8 

Figure 1 Typical PRA process flow 9 

Now, let’s take each step and elicit the different knowledge required for successfully implementing each step. 10 

The required knowledge is summarized in Table 1. Please note that since we are not concerned about the quality of 11 

the analysis in this work, some steps in Figure 1 are not relevant and, therefore, not considered in Table 1, such as 12 

model evaluation, PRA selection, etc. 13 

  14 

Objective definition System familiarization
Success criteria 

definition

Initiating events 
identification

Accident sequence 
development

PRA selectionModel evaluation

Uncertainty analysis
Data collection and 

Parameters estimation 
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Table 1 PRA’s typical steps requirements 1 

Objective Requirements for achieving the objectives (required knowledge) 

Objectives definition: The defined 

objectives need to be 

unambiguous and clearly defined 

and understood by the risk analyst 

 

• The objectives are defined based on widely accepted quality standards 

for implementing PRA 

• Sufficient data and information are available to support the definition of 

the objectives (Explicit knowledge, in forms of data, information and 

understanding) 

• Availability of experts who have sufficient experience in the domain and 

low value-ladenness and are able to elicit unexpected and unexperienced 

hazards leading to initiating events (implicit knowledge in forms of 

phenomenological understanding provided by reliable experts with low 

value ladenness) 

System familiarization: 

The analysts need to be familiar 

with system structure and 

understand the functional principle 

 

• The technology of the systems is very mature and the functional 

principles of the system are well-understood (explicit and implicit 

knowledge in the form of phenomenological understanding) 

• There are abundant design and operation manuals to support the analysis 

(explicit knowledge in forms of data and industrial  evidence) 

• Availability of experts who have sufficient experience in the domain 

understanding of the problem and the related systems, and low value-

ladenness (implicit knowledge in forms of phenomenological 

understanding provided by reliable experts with low value ladenness) 

Success criteria definition: All the 

possible success and failure 

criteria of the missions and 

systems need to be identified and 

clearly defined 

• There are abundant technical reports that allow the understanding of 

different the systems and the backup systems (explicit knowledge in 

forms of data and phenomenological understanding) 

• There is abundant detailed past experience operation, transient, incidents 

and accident reports (explicit knowledge in forms of data and 

phenomenological understanding) 

• The analysts have access to related technical reports and a good 

understanding of functional principles of the system (explicit knowledge 
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in forms of data and explicit and implicit in forms of phenomenological 

understanding) 

• The availability of experts who have sufficient experience and low value-

ladenness (implicit knowledge in forms of phenomenological 

understanding and solid assumptions provided by reliable experts with 

low value ladenness) 

Initiating events identification: All 

possible events that might lead to 

an abnormal operation or to an 

accident should be clearly defined 

• There are abundant detailed past experience reports about different 

initiating events (explicit knowledge in forms of data) 

• The analysts have a good understanding of the interconnections between 

systems and the dependency on system failures (implicit knowledge in 

forms of phenomenological understanding) 

• The analysts have access to related technical reports and a good 

understanding of functional principles of the system (explicit knowledge 

in forms of data and explicit and implicit in forms of phenomenological 

understanding) 

• The process of identifying initiating events follows well-accepted quality 

control guidelines for PRA 

• Availability of experts who are able to elicit unexpected and 

unexperienced hazards leading to initiating events (implicit knowledge in 

forms of phenomenological understanding) 

• The completeness of the identification process is verified by peer review 

of qualified experts (implicit knowledge in form of agreement among 

experts) 

• The availability of experts who have sufficient experience and low value-

ladenness (implicit knowledge in forms of phenomenological 

understanding provided by reliable experts with low value ladenness) 

Accident sequence development: 

The possible abnormal-operation 

progressions are well understood 

• The evolution sequence is known and well represented (explicit and 

implicit knowledge in forms of phenomenological understanding) 
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and clearly defined, and cover all 

the possible scenarios 

• The functional principles of the system are well-understood (explicit and 

implicit knowledge in forms of phenomenological understanding) 

• The environment and phenomena surrounding and that might affect the 

system are well-understood (explicit and implicit knowledge in forms of 

phenomenological understanding) 

• The availability of detailed abnormal activities reports that allow 

understanding the sequential development of an activity (explicit 

knowledge in forms data) 

• The availability of experts with sufficient experience that allow 

developing thoroughly the different scenarios of any abnormal activity 

(implicit knowledge in forms of phenomenological understanding and 

solid assumptions provided by reliable experts with low value ladenness) 

Data collection and parameters 

estimation: The data needed for 

parameters estimation and model 

evaluation are complete and 

clearly represented 

• The operation, maintenance, and failure reports are available (Explicit 

knowledge in from of data) 

• The abundance of highly reliable data for the estimation of input 

parameters (Explicit knowledge in from of reliable data) 

• Availability of credible models to calculate the model parameters 

• The process of data collection and representation follows quality control 

guidelines that ensure its reliability and quality (Explicit knowledge in 

from of reliable data) 

 1 

It can be seen from Table 1 that two forms of knowledge appear in PRA: explicit knowledge, which refers to all 2 

types of knowledge that can be explicitly transferred, including data, documented established theory and explanation 3 

of phenomena and any kind of undocumented but transferable data, information and phenomenological understanding; 4 

and the implicit knowledge that is owned by the individuals to support the risk assessment but cannot be transferred 5 

(Davies, 2001). The knowledge in Table 1 can also be categorized into four aspects: “data” for input parameters, 6 

hazards, initiating events and accidents sequences; “understanding of phenomena” related to the function of the 7 

systems, their interrelations, and the surrounding environment; “expert’s past experience and knowledge” that allow 8 
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predicting the inexperienced hazards, unknown parameters and “assumptions” regarding the development of the 1 

scenarios and construction of the model.  2 

In fact, the four aspects, i.e., data, understanding of phenomena, expert experience and assumptions have long 3 

been considered in the literature as the main contributors to the SoK. For example, Nowakowski et al., (2014) argue 4 

that unlike the traditional Greek perspectives of knowledge as being justified true belief, the risk analysis propositions 5 

are in the form of assumptions and phenomenological understanding shaped by history (data) and present. Also, a 6 

well-accepted conceptual framework was defined by Flage and Aven (2009) comprised of four components: the inter-7 

alia assumptions and presuppositions (solidity of assumptions), historical field data (availability of reliable data), 8 

understanding of phenomena and agreement among experts. However, since the “agreement among experts” are more 9 

related to the construction of the model and making assumptions (either assumptions on model structure or 10 

assumptions on parameter values), it is considered in this work as a sub-attribute of the “solidity of assumptions” and 11 

extended to cover further value-ladenness of the assessors. The first three components in (Flage and Aven, 2009) are, 12 

then, adopted as the top-level attributes of our conceptual hierarchical framework for SoK. In the following 13 

subsections, we elaborate on these three attributes by surveying their contributing elements one by one. 14 

2.1.1 Solidity of assumptions  15 

In risk analyses, assumptions are inevitably made by experts because of incomplete knowledge, data, 16 

information and understanding of the phenomena involved, for simplifying the analysis when necessary (Kloprogge 17 

et al., 2011). These assumptions might be in different forms, such as assumptions made by experts about the values 18 

of input parameters, the environmental conditions surrounding the system of interest, the scenarios, and consequences 19 

in a model. In fact, the assumptions considered can be understood as related to any kind of input or conditions that 20 

are assumed and acknowledged to possibly deviate from reality (Berner and Flage, 2016). Such assumptions are part 21 

of the background knowledge that supports the analysis. Simple assumptions compose a source of uncertainty 22 

“hidden in the background knowledge” of the risk assessment (Berner and Flage, 2016). The SoK that supports risk 23 

assessment, therefore, depends on the solidity of the assumptions made (Boone et al., 2010).  24 

Few methods have been proposed for evaluating the quality of assumptions and treating the uncertain 25 

assumptions in risk assessment. Numeral Unit Spread Assessment Pedigree (NUSAP) is proposed to directly assess 26 

the quality of assumptions for complex problems (Van Der Sluijs et al., 2005), (Boone et al., 2010), (Kloprogge et 27 

al., 2011), (De Jong et al., 2012). This method allows analyzing the strength, importance and potential value-28 

ladenness of assumptions through a pedigree diagram. The pedigree allows the evaluation of assumptions given seven 29 
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criteria: (i) plausibility; (ii) inter-subjectivity peers; (iii) inter-subjectivity stakeholders; (iv) choice space; (v) 1 

influence situational limitations; (vi) sensitivity to view and interests of the analyst (vii) and influence on results. 2 

Three scores are defined in the pedigree, ranging from zero to two (0-2); each, one correspond to a degree of 3 

fulfillment of the criterion. The scheme covers clearly some social and value-ladenness aspects affecting the 4 

assumptions, as well as their implication on the results (Van Der Sluijs et al., 2005), (Boone et al., 2010), (Kloprogge 5 

et al., 2011), (De Jong et al., 2012). However, it does not cover explicitly the subjectivity and knowledge of the 6 

experts who make the assumptions. In Zio (1996) various criteria are defined for evaluating the value-ladenness and 7 

confidence in experts’ judgments, such as the source of information, the degree of non-biasedness, the degree of 8 

independence, and the personal interests etc. These factors should also be considered when evaluating the solidity of 9 

assumptions. 10 

We group the aforementioned contributing factors into three categories, i.e. quality (solidity) of assumptions, 11 

the sensitivity of assumptions and value-ladenness. Quality (solidity) of assumptions refers to the degree to which 12 

the assumptions are realistic and reasonable and affects greatly the solidity of assumptions and their effectiveness in 13 

supporting the risk assessment (Berner and Flage, 2016). Value ladenness refers to the degree of the inevitable bias 14 

by the assessors who make the assumptions, due to their subjectivity, personal perceptions, external limitations, etc. 15 

(Zio, 1996), (Kloprogge et al., 2011). This attribute is directly connected to the quality of assumptions, since they are 16 

made by the assessor. It might be argued that the value-ladenness affect other attributes of the strength of knowledge, 17 

as the other attributes are in form of explicit knowledge that can be documented and transferred “objectively” without 18 

being affected by the expert’s subjectivity, unlike the “assumptions” that are made based on expert’s judgment and 19 

greatly affected by subjectivity. Finally, the sensitivity of assumptions considers the degree to which the models’ 20 

output varies if the assumptions are changed into the alternative ones (Saltelli et al., 2013). Hence, it is related to the 21 

model output and not the strength of knowledge supporting the model input. Therefore, it is not considered in our 22 

developed framework. In particular, the value-ladenness is further expanded into seven sub-attributes to cover the 23 

most important factors that affect the expert’s judgment (Zio, 1996): (i) the personal knowledge; (ii) the sources of 24 

information; (iii) the non-biasedness; (iv) the relative independence; (v) the past experience; (vi) the performance 25 

measure; (vii) the agreement among peers. Detailed descriptions of these attributes can be found in Section 2.2. 26 

2.1.2 Availability of reliable data 27 

Data is considered the bottom tier of the DIKW hierarchy as defined in (Hey, 2004), (Aven, 2013a). When 28 

processed, data yield information that becomes knowledge when combined with experience and judgment (Kidwell 29 



13 

 

et al., 2000), (Rowley and Hartley, 2017). Thence, the amount of data available is a natural measure of the strength 1 

of knowledge. However, having a large amount of data alone does not necessarily indicates strong knowledge, as the 2 

available data might be of low quality. Some expert might prefer few data of high reliability over large amount of 3 

data of low reliability. In other words, the reliability of data is also very important for supporting PRA. In Flage and 4 

Aven (2009), apart from the availability of data, the reliability of data is also identified as an essential element for 5 

evaluating the SoK. Hence, both availability and reliability of data are considered in the developed framework for 6 

SoK assessment, as shown in Figure 2. 7 

Data availability can be assessed qualitatively. For example, Flage and Aven (2009) quantify the degree of the 8 

availability of data verbally: data are not available, much data are available etc. Data availability can also be 9 

quantified quantitatively by numerical indicators related to the amount of data. For example, failure data are collected 10 

from different components and over various time intervals: the data collection time interval and the number of 11 

components from which the data is collected, can, then, be regarded as numerical indicators of data availability.   12 

Data reliability refers to the representativeness of the data in the context of the purpose that they are used for 13 

(Morgan and Waring, 2004). Various attributes have been defined in the literature for evaluating data reliability. For 14 

example, in computer science, data reliability is evaluated by its completeness, accuracy, and consistency (Roth, 15 

2009). Tests are made to verify whether the data meet the “Generally Accepted Government Auditing Standards” 16 

(GAGAS), with respect to three aspects:  17 

(i) Sufficiency: referring to the “completeness” of the data in the context of supporting the finding. 18 

(ii) Competence: referring to the closeness of data to reality (“accuracy”) and also the validity, completeness, 19 

and non-alteration of data. 20 

(iii) Relevance: referring to the logical and sensible relationship of the data to the finding it supports 21 

(“consistency”), as well as the age of the data (“timeliness”). 22 

A survey of 39 articles conducted by Chen et al. (2014) identifies main attributes of data reliability (referred as 23 

data quality in their paper) as completeness, accuracy, timeliness, validity, periodicity, relevance, reliability, precision, 24 

integrity, confidentiality, etc. Among them, completeness, accuracy, and timeliness have been most frequently used 25 

in testing data reliability (Chen et al., 2014). To assess the reliability of statistical data, EUROPEAN STATISTICS 26 

(EUROSTAT) recommends six attributes, i.e., relevance, accuracy, timeliness, comparability, coherence, accessibility 27 

and clarity (Bergdahl et al., 2007). International Atomic Energy Agency (IAEA) identifies relevance, timeliness, 28 

accuracy, and completeness as main attributes for data reliability in the nuclear industry (IAEA, 1991). Six attributes, 29 
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i.e., completeness, uniqueness, timeliness, validity, accuracy, consistency, are recommended in the Data Management 1 

Association’s (DAMA) white paper for evaluating data reliability (DAMA, 2013). 2 

In general, choosing different data reliability attributes is an organization and context-wise task (DAMA, 2013). 3 

In this paper, we identify the following five attributes for assessing data reliability, based on the literature review 4 

above and their relevance to the SoK of risk assessment: (i) completeness; (ii) timeliness; (iii) validity; (iv) accuracy; 5 

(v) consistency and relevance. Most of these attributes are considered by different organizations due to their 6 

importance (IAEA, 1991), (Bergdahl et al., 2007), (DAMA, 2013). The completeness of data is obviously a very 7 

important issue to ensure that the data can fulfill its purpose and do not cause misleading. The timeliness guarantees 8 

that the data are up to date and keep up with the development in the technology and the measuring techniques. The 9 

validity ensures that data are collected and stored in a managed and standardized way to keep its integrity and 10 

facilitate access without errors. The accuracy of data ensures that the data are of value in representing reality and do 11 

not lead to misinformation. Finally, the consistency and relevance of data are very important to ensure that they are 12 

collected from relevant and consistent sources in a way that is suitable for the desired purpose. Detailed descriptions 13 

of these attributes can be found in Section 2.2. 14 

2.1.3 Understanding of phenomena 15 

In this study, understanding of phenomena refers to the comprehension of the events, phenomena and system’s 16 

functionality that are involved in the risk modeling and assessment. The more the phenomena are understood, the 17 

more knowledge for supporting the risk assessment. As illustrated before, knowledge in risk analysis is characterized 18 

in the form of assumptions and phenomenological understanding shaped by history and present to predict the future 19 

(Nowakowski et al., 2014). Phenomenological understanding has been identified by many researchers as an important 20 

constituent of SoK that is needed to support risk assessment (Flage and Aven, 2009), (Goerlandt and Montewka, 21 

2014), (Nowakowski et al., 2014). However, few existing works have focused on its assessment. For example, Flage 22 

and Aven (2009) evaluate it crudely by introducing verbal expressions such as “not well understood”, “well 23 

understood”, “not available”, “much available” etc. However, this kind of evaluation seems very crude since it doesn’t 24 

overcome the intangibility of this attribute. The attribute itself is intangible and difficult to be evaluated directly 25 

without breaking it down to more tangible attributes. 26 

In general, a comprehensive understanding of a phenomenon requires a correct and complete explanation of it 27 

(Kelp, 2015). So, having a documented explanation of the phenomena, phenomenon-related application experience 28 

and abundant experts in the related field can help to understand the phenomenon. This means that the experience 29 
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gained related to a given phenomenon, the documented pieces of evidence, the application related to the phenomena 1 

and the understanding gained by individuals can be indications on the understanding of phenomena. Accordingly, we 2 

propose four sub-attributes to evaluate the level of phenomenological understanding: (i) number of industrial 3 

evidence; (ii) number of academic evidence; (iii) number of experts involved; (iv) number of years of experience in 4 

the domain. A detailed description of these sub-attributes can be found in Sect 2.2. 5 

2.2 The developed framework 6 

In this section, we present the framework developed, based on the review in Section 2.1. As shown in Figure 2, 7 

the SoK, denoted by 𝐾 (Level 1), represents the solidity of background knowledge that supports a risk model. A high 8 

value of 𝐾 indicates that the model is well supported and, therefore, its results are trustable. The SoK is characterized 9 

by three level-2 attributes: solidity of assumptions (𝐴), availability and reliability of data (𝐷), and understanding of 10 

the phenomena (𝑃ℎ). The attribute 𝐴 measures the plausibility, objectivity and sensitivity of the assumptions upon 11 

which the model is based; 𝐷 measures the amount and reliability of data that support the model evaluation; and 𝑃ℎ  12 

measures the degree of comprehension of the phenomena involved in the risk assessment.  13 

The three attributes of level-2 are further decomposed into sub-attributes (Levels 3 and 4) to assist their 14 

evaluation in practice. Please note that the breaking-down is designed in such a way that the sub-attributes in the 15 

same level of the hierarchy are independent and mutually exclusive. Detailed definitions of the attributes are given 16 

in Table 2 and Table 3. Detailed guidelines for the evaluation of the attributes at the bottom levels of the framework 17 

are defined in Appendices A-C. Note that any kind of input or conditions that are assumed and acknowledged to 18 

possibly deviate from reality are considered assumptions, e.g., input data that are assumed are considered a part of 19 

assumptions and not data.   20 

  21 
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Table 2 Definition of SoK attributes (Level 3) 

Attribute Definition 

Value ladenness of the analyst 

(𝑉𝐿 = 𝐾12) 

The degree to which the presumed values and beliefs that are taken as facts, and the assumptions 

made by experts are affected by the personal points of view, bias, subjectivity, and external or 

personal limitations 

The sensitivity of assumption 

(𝑆 = 𝐾13) 

The degree to which the models’ output varies with assumptions 

Amount of available data (𝐴𝐷 =

𝐾21) 

The quantity of data that supports the modeling and analysis 

Reliability of data (𝑅𝐷 = 𝐾22) The degree to which the available data is complete, accurate and error-free, consistent, valid 

and representative of reality 

Years of experience (𝑌𝐸 = 𝐾31) The amount of experience (measured in years) regarding a specific phenomenon 

Number of experts involved 

(𝑁𝐸 = 𝐾32) 

The number of experts who are explicitly or implicitly involved in understanding the 

phenomena and the risk analysis 

Academic studies on the 

phenomena (𝐴𝐸 = 𝐾33) 

The number of academic resources, i.e., articles, books, etc., available in relation to the 

phenomena of interest 

Industrial evidence and 

applications on the phenomena 

(𝐼𝐸 = 𝐾34) 

The number of industrial applications and reports related to the specific phenomena or events 

of interest 

Table 3 Definition of SoK attributes (Level 4) 1 

Attribute Definition 

Personal knowledge (𝑃𝐾 = 𝐾121) The level of analysts’ knowledge and relevance to the problem 

Source of information (𝑆𝐼 = 𝐾122) The degree of solidity, relevance, and confidence of the experts’ source of information 

and knowledge 

Unbiasedness and plausibility (𝑈 = 𝐾123) The experts’ degree of objectivity and unbiasedness towards personal interest, or an 

intentional or non-intentional tendency towards a specific subject in the analysis 

Relative independence (𝑅𝐼 = 𝐾124) The degree of independence of the analysts from limitations or external pressures 

Past experience (𝑃𝐸 = 𝐾125) The experts’ degree of experience in the related domain and more specifically, in the 

specific problem under analysis 

Performance measures (𝑃𝑀 = 𝐾126) The experts’ degree of professionalism, skills, and competencies, past fulfillment of 

assigned missions and level of achievement 

Agreement among peers (𝑃 = 𝐾127) The degree to which the assumptions made by different experts are consistent 

Completeness (𝐶 = 𝐾221) The degree to which the collected data contains the needed information for the risk 

modeling and assessment 

Consistency (𝐶𝑜 = 𝐾222) The degree of homogeneity of data from different data sources 

Validity (𝑉 = 𝐾223) The degree to which the data are collected from a standard collection process and satisfy 

the syntax of its definition (documentation related) 

Accuracy and conformity (𝐴𝑐 = 𝐾224) The degree to which data correctly reflects the reality about an object or event 

Timeliness (𝑇 = 𝐾225) The degree to which data are up-to-date and represent reality for the required point in 

time 
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 1 

3. A top-down bottom-up method for SoK assessment 2 

In this section, we present a top-down bottom-up method to facilitate the practical implementation of the 3 

framework proposed in Figure 2 for the evaluation of the SoK supporting risk assessment models. In Section 3.1, we 4 

give an overview of the SoK assessment method. In Section 3.2, we show how to break down the risk model into the 5 

basic elements of a reduced-order model. Section 3.3 presents the evaluation of relative importance (weights) of SoK 6 

attributes using pairwise comparison matrices of Analytical Hierarchy Process (AHP) (Saaty, 2008). Finally, in 7 

Section 3.4, we illustrate how to aggregate the SoK of the basic elements to evaluate the SoK of the total risk 8 

assessment model. 9 

3.1 Procedural steps of the top-down bottom-up method  10 

For the purpose of illustration, we consider the Probabilistic Risk Assessment (PRA) models used in the nuclear 11 

industry. Specifically, we refer to the widely applied event tree models. The events probabilities in the event tree 12 

model are calculated by fault tree models. The risk index considered is the probability of occurrence of a given 13 

consequence (e.g. the probability of core damage in a NPP). For each combination of operation state and scenario, a 14 

dedicated risk assessment model (in this case, an event tree) is developed and the total risk index is calculated by 15 

summing the values of the risk indexes calculated for each individual risk model: 16 

 𝑅 = ∑ ∑ 𝑅𝑖,𝑗
𝑛𝑆,𝑖

𝑗=1
𝑛𝑂
𝑖=1 ,  (1) 17 

where 𝑛𝑂 is the number of operation states (O), 𝑛𝑆,𝑖 is the number of accident sequences (scenarios, S) that are 18 

considered in operation state 𝑖 and can lead to the given consequence of interest. Each 𝑅𝑖,𝑗 in Eq. (1) quantifies the 19 

risk contribution specific to scenario 𝑗 (e.g., medium flood level) in operation state 𝑖 (e.g., emergency shutdown).  20 

The risk models for calculating the specific risk index contribution 𝑅𝑖,𝑗 are characterized by initiating events 21 

(IEs), basic events (BEs) and their combinations in minimal cut sets (MCSs). Please note that the initiating events in 22 

the PRA model are basic events that trigger the abnormal activity, so it will be treated hereafter as a basic event. 23 

Taking the rare-event approximation, 𝑅𝑖,𝑗   can be calculated by (Zio, 2007): 24 

 𝑅𝑖,𝑗 = ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑘

𝑛𝑀𝐶𝑆,𝑖,𝑗

𝑘=1
, (2) 25 

where 𝑛𝑀𝐶𝑆,𝑖,𝑗 is the number of minimal cut sets in the risk model for operation state 𝑖 and scenario 𝑗, 𝑀𝐶𝑆𝑘 is 26 

the 𝑘-th minimal cutset and 𝑃𝐵𝐸,𝑞 is the occurrence probability of the 𝑞-th basic event in 𝑀𝐶𝑆𝑘.  27 

For the following illustration of the SoK assessment procedure, it can be considered that the four elements O, S, 28 

MCS and BE fully define the PRA model, as shown in Figure 3. We refer to these four elements as the “constituting 29 
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elements” of the model. 1 

 2 

  3 

In Figure 3, let us imagine that the PRA model is a box (cuboid). The box is divided into several cuboids, each 4 

representing a given operation state. Each operation state cuboid is further broken down into smaller cuboids that 5 

represent the scenarios. The scenario cuboids are in turn broken into smaller cuboids, each representing a MCS. 6 

Finally, the MCS cuboids are broken down into the smallest constituting cuboids (known as the basic atomic elements) 7 

that represent the basic events. The idea behind this is to facilitate the process of SoK evaluation by decomposing the 8 

PRA model into the smallest constituting elements, here called the atomic elements. As illustrated in Figure 3, the 9 

atomic elements of the PRA model are the basic events. 10 

To assess the SoK of the PRA model, all the four atomic elements must be considered. In practice, however, 11 

PRA models are very complex: they contain many scenarios and operation states, combined in large and complex 12 

fault trees and event trees, that consist of thousands of BEs and MCSs (RELCON AB, 1998). For such complex risk 13 

assessment models, it is not practical to consider all atomic elements for evaluating the SoK. To address this problem, 14 

we develop a top-down bottom-up method for SoK assessment, as shown in Figure 4. A reduced-order model for Eq. 15 

Figure 3 Atomic elements of a PRA model 
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(1) is developed first, in order to limit the number of atomic elements that need to be analyzed. The model allows the 1 

assessment of SoK for most basic atomic elements and, then, calculating it for the other constituting elements. A 2 

detailed discussion on how to construct the reduced-order model is given in Section 3.2. Then, the SoK supporting 3 

each atomic element in the reduced-order model is assessed by a weighted average of the scores for the attributes in 4 

Figure 2. The weights are evaluated using the pairwise comparison matrices of the Analytical Hierarchy Process 5 

(AHP), as illustrated in Section 3.3. Finally, the SoK of each element is aggregated to evaluate the SoK of the entire 6 

PRA model, which is discussed in details in Section 3.4.  7 

 8 

 9 

3.2 Reduced-order PRA model construction 10 

In PRA models, most of the contribution to the total risk is provided by a small number of basic elements (known 11 

as “Pareto principle” (Hardy, 2010)). The rest of the basic elements might be in large number but contribute little to 12 

the total risk. To make feasible the SoK assessment, the PRA model is transformed into a reduced-order model that 13 

consists of the most important “atomic elements”, in order to reduce the number of elements that need to be analyzed. 14 

The procedure for constructing the reduced-order model is made of three steps. Firstly, the number of operation 15 

states 𝑛𝑂 is reduced to the 𝑛𝑂,𝑅𝑒𝑑 most relevant; to do this: 16 

• Calculate the risk 𝑅𝑂𝑖
 for each operation state: 17 

 𝑅𝑂𝑖
= ∑ 𝑅𝑖,𝑗

𝑛𝑆,𝑖

𝑗=1 ,    1 ≤ 𝑖 ≤ 𝑛𝑂,  (3) 18 

where 𝑅𝑖,𝑗 is calculated by (2). 19 

• Rank 𝑅𝑂𝑖
 1 ≤ 𝑖 ≤ 𝑛𝑂 in descending order. 20 

• Find the minimal 𝑛𝑂,𝑅𝑒𝑑 , so that: 21 

Figure 4 Procedural steps of the developed method 
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∑ 𝑅𝑂𝑖

𝑛𝑂,𝑅𝑒𝑑
𝑖=1

𝑅
≥ 𝛼,  (4) 1 

where 𝛼 is the fraction of total risk that is represented by the operation states kept in the reduced-order model (in 2 

the case study in Section 4, we choose 𝛼 = 0.8). 3 

• Keep only the first, most contributing operation states, i.e., those with 𝑖 = 1, ⋯ , 𝑛𝑂,𝑅𝑒𝑑; operation states 4 

with 𝑖 > 𝑛𝑂,𝑅𝑒𝑑 are eliminated. 5 

The second step is to define the reduced number of scenarios 𝑛𝑆,𝑅𝑒𝑑,𝑖 for each operating state 𝑖 in the reduced-6 

order model, where 𝑖 = 1, ⋯ , 𝑛𝑂,𝑅𝑒𝑑:  7 

• Calculate the risk 𝑅𝑖,𝑗,  1 ≤ 𝑗 ≤ 𝑛𝑆,𝑖 by (2). 8 

• Rank 𝑅𝑖,𝑗 in descending order, 1 ≤ 𝑗 ≤ 𝑛𝑆,𝑖. 9 

• Find the minimal 𝑛𝑆,𝑅𝑒𝑑,𝑖 so that: 10 

 
∑ 𝑅𝑖,𝑗

𝑛𝑆,𝑅𝑒𝑑,𝑖
𝑗=1

𝑅𝑂,𝑖
≥ 𝛽,  (5) 11 

where 𝑅𝑂𝑖
 is calculated by (3) and 𝛽 is the fraction of total risk provided by the scenarios in the reduced-order 12 

model (in the case study in Section 4, we choose 𝛽 = 0.8). 13 

• Keep only scenarios for 𝑗 = 1, ⋯ , 𝑛𝑆,𝑅𝑒𝑑,𝑖; scenarios with 𝑗 > 𝑛𝑆,𝑅𝑒𝑑,𝑖 are eliminated. 14 

• Repeat the procedures for 𝑖 = 1,2, … . , 𝑛𝑂,𝑅𝑒𝑑. 15 

Finally, the number of minimal cut sets 𝑛𝑀𝐶𝑆,𝑖,𝑗 is tailored to 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗, 𝑖 = 1, ⋯ , 𝑛𝑂,𝑅𝑒𝑑 , 𝑗 = 1, ⋯ , 𝑛𝑆,𝑅𝑒𝑑,𝑖: 16 

• Calculate 𝑅𝑖,𝑗,𝑘  by: 17 

 𝑅𝑖,𝑗,𝑘 = ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑖,𝑗,𝑘
,

1≤𝑖≤𝑛𝑂,𝑅𝑒𝑑
1≤𝑗≤𝑛𝑆,𝑅𝑒𝑑,𝑖

1≤𝑘≤𝑛𝑀𝐶𝑆,𝑖,𝑗

,  (6) 18 

• Rank 𝑅𝑖,𝑗,𝑘 in descending order. 19 

• Find the minimal 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗 so that: 20 

 
∑ 𝑅𝑖,𝑗,𝑘

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗
𝑘=1

𝑅𝑖,𝑗
≥ 𝛾,  (7) 21 

where 𝑅𝑖,𝑗,𝑘 is calculated by (6) and 𝛾 is the fraction of total risk given by the minimal cutsets contained in the 22 

reduced-order model (in the case study in Section 4, we choose 𝛾 = 0.8). 23 

• Keep only minimal cut sets for 𝑘 = 1, ⋯ , 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗 ; minimal cut sets with 𝑘 > 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗  are 24 

eliminated. 25 

Taking the rare-event approximation, the total risk of the reduced-order PRA model can be calculated by: 26 

 𝑅𝑅𝑒𝑑 = ∑ ∑ ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑖,𝑗,𝑘

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑖,𝑗

𝑘=1

𝑛𝑆,𝑅𝑒𝑑,𝑖

𝑗=1

𝑛𝑂,𝑅𝑒𝑑

𝑖=1 ,  (8) 27 

Only the events that are contained in the reduced-order model (9) are considered when assessing the SoK. Note 28 
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that from (4), (5) and (7), the reduced order risk 𝑅𝑅𝑒𝑑 accounts for a portion 𝛼 × 𝛽 × 𝛾  of the total risk 𝑅. From (8), 1 

the risk index of the reduced-order PRA model can be viewed as the sum of 𝑛𝑙 = ∑ 𝑛𝑆,𝑅𝑒𝑑,𝑖
𝑛𝑂,𝑅𝑒𝑑

𝑖=1  risk index values 2 

𝑅𝑅𝑒𝑑,𝑙 , 𝑙 = 1, ⋯ , 𝑛𝑙  where 𝑅𝑅𝑒𝑑,𝑙 is known as the “elementary risk model” and calculated by the corresponding 3 

individual risk model, composed of MCSs and BEs at a given operation state and a given scenario, as shown in (9): 4 

 𝑅𝑅𝑒𝑑,𝑙 = ∑ ∏ 𝑃𝐵𝐸,𝑞𝑞∈𝑀𝐶𝑆𝑙,,𝑘

𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑙

𝑘=1 ,  (9) 5 

In (9), 𝑅𝑅𝑒𝑑,𝑙  is the risk index of the 𝑙 -th “elementary reduced-order risk model”, where 𝑛𝑀𝐶𝑆,𝑅𝑒𝑑,𝑙  is the 6 

number of MCSs in the 𝑙-th individual reduced-order risk model. In other words, the “individual reduced-order risk 7 

model” represents the risk model at a given operation state and a given scenario. 8 

3.3 SoK assessment for the basic events 9 

The assessment of SoK starts from determining the SoK for each basic event. The total SoK for the reduced 10 

PRA model is evaluated as a weighted average of the BEs’ SoK, as will be illustrated later in section 3.4. As illustrated 11 

previously, the SoK is evaluated as a weighted average of the attributes scores presented in Figure 2, where the 12 

attribute scores are evaluated based on the scoring guidelines presented in the Appendixes: 13 

 𝐾 = ∑ ∑ ∑ 𝑊𝑖 . 𝑊𝑖𝑗 . 𝑊𝑖𝑗𝑘. 𝐾𝑖𝑗𝑘
𝑛𝑖𝑗𝑘

𝑘=1

𝑛𝑖𝑗

𝑗=1
𝑛𝑖
𝑖=1 ,  (10) 14 

In Eq. (10),  𝑊𝑖 , 𝑊𝑖𝑗 and 𝑊𝑖𝑗𝑘 are respectively the weights of the 2nd, 3rd and 4th level attributes in the hierarchical 15 

tree of Figure 2, 𝐾𝑖𝑗𝑘 is the score of the “leaf” attributes, while 𝑛𝑖, 𝑛𝑖𝑗 and 𝑛𝑖𝑗𝑘 are respectively the number of 16 

attributes in the 2nd, 3rd and 4th levels. Letting 𝐾𝑙𝑒𝑎𝑓,𝑘 denote the knowledge score for the 𝑖-th leaf attribute in the 17 

bottom level, Eq. (10) can be simplified as: 18 

 𝐾 = ∑ 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 . 𝐾𝑙𝑒𝑎𝑓,𝑘
𝑛𝑙𝑒𝑎𝑓

𝑘=1
,  (11) 19 

where 𝑛𝑙𝑒𝑎𝑓 = 19 is the number of leaf attributes in the assessment framework of Figure 2, 𝐾𝑙𝑒𝑎𝑓,𝑘 is evaluated 20 

based on the guidelines in Appendices A-C, 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 is the global weight of the 𝑘-th “leaf” attribute with respect 21 

to the top level goal and is calculated by: 22 

 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 =  {
 𝑊𝑖 . 𝑊𝑖𝑗 ,            𝑖𝑓𝐾𝑙𝑒𝑎𝑓,𝑘  is in level 3

 𝑊𝑖 . 𝑊𝑖𝑗 . 𝑊𝑖𝑗𝑘 , 𝑖𝑓𝐾𝑙𝑒𝑎𝑓,𝑘  is in level 4
,  (12) 23 

Note that the global weights 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 , 𝑘 = 1,2, … , 𝑛𝑙𝑒𝑎𝑓 of the leaf attributes sums to one: ∑ 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 = 1
𝑛𝑙𝑒𝑎𝑓

𝑘=1
. 24 

As shown in Appendices A-C, 𝐾𝑙𝑒𝑎𝑓,𝑘 is between 1 and 5, with a high value indicating strong knowledge. From 25 

Eqs. (10) and (11), it is obvious that also 𝐾𝐵𝐸 ∈ [1,5]  and a large value indicates strong knowledge on the 26 

corresponding BE. 27 

Given the assessment framework developed in Figure 2, the AHP (Saaty, 2008) is adopted for evaluating the 28 
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relative importance (weights) 𝑊𝑖, 𝑊𝑖𝑗 and 𝑊𝑖𝑗𝑘 in Eq. (12), due to its capability of considering both quantitative 1 

and qualitative evaluations of attributes and factors (Alexander, 2012), (Saaty, 2008). The AHP method is used for 2 

decreasing the complexity of the comparison process for decision-making purposes, as it allows comparing only two 3 

criteria (or alternatives) at a time and, then, computing the “overall” relative importance of a criterion in a group of 4 

criteria. In addition, it allows gauging and enhancing the rationality and consistency of the expert’s evaluation for the 5 

criteria, by measuring the consistency of the pairwise comparison matrices. Then, the local relative importance of 6 

different alternatives are compared with respect to given criteria and finally, the decision is made based on the overall 7 

relative importance of each alternative (Mu and Pereyra-Rojas, 2017). However, since there are no alternatives to be 8 

compared in this work, pairwise comparison matrices are only needed for deriving the criteria (attributes) weights. 9 

Pairwise comparisons are performed to determine the relative importance (weights) of different attributes 10 

(criteria) by comparing their contributions in defining their “parent” attribute (Saaty and Vargas, 2012), (Saaty, 2008), 11 

(Zio, 1996). In the application of the method to the case study of the following Section 4, three experts were invited 12 

to fill pairwise comparison matrixes. The evaluation scale of Saaty (2008) and Zio (1996) was slightly modified, and 13 

a scale of 1-5 was chosen to compare the importance of the attributes with each other. In this scale, two alternatives 14 

A and B are compared as the following: 15 

1: A score of (1) is given if A and B are equally important, 16 

2: A score of (2) is given if A is slightly more important than B, 17 

3: A score of (3) is given if A is moderately more important than B, 18 

4: A score of (4) is given if A is strongly more important than B, 19 

5: A score of (5) is given if A is extremely more important than B. 20 

Each expert is asked to fill individually the pairwise comparison matrices, as illustrated above. For each given 21 

matrix, the weight of each attribute can, then, be determined by solving the eigenvector problem and normalizing the 22 

principal eigenvectors (for details, see (Saaty, 2008), (Saaty and Vargas, 2012), (Mu and Pereyra-Rojas, 2017)). A 23 

good approximation to multiply the elements in each row and, then, the 𝑛-th root of this product (𝑛 is the matrix 24 

size) is taken to represent the weight. The output of the row is eventually, normalized with the other row’s outputs. 25 

For more details on AHP and deriving the weights from pairwise comparison matrices, see: (Coyle, 2004), (Saaty, 26 

2013). 27 

It should be noted that the consistency of the pairwise comparison matrix should be checked by calculating the 28 

consistency ratio (CR): 29 
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 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
,  (13) 1 

where RI represents the consistency index of a randomly generated matrix and its value can be taken from Table 1 of 2 

Saaty and Tran (2007), and CI is the consistency index which is calculated by (14): 3 

 𝐶𝐼 =
𝜆𝑚𝑎𝑥– 𝑛

𝑛−1
,  (14) 4 

where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue and 𝑛 is the order of the matrix and represents the number of attributes 5 

being compared (Saaty, 2008), (Zio, 1996). Saaty’s acceptance criteria of consistency is adopted (Saaty, 2008): when 6 

𝐶𝑅 <  0.1, the comparison matrix is consistent, otherwise it is not and the experts are demanded to revise their 7 

evaluations (Zio, 1996) (Alonso and Lamata, 2006), (Saaty and Tran, 2007). After checking the consistency of the 8 

matrices and obtaining the weights of the attributes from each expert, the final weight of each attribute is calculated 9 

by averaging the weights obtained from the experts. 10 

As illustrated in Sect 3.2, the PRA model is deconstructed to its constituting elements and then, the number of 11 

constituting elements is reduced. In this reduced order PRA model, the most basic element is the “basic event”, where 12 

a minimal cutset consists of a group of “basic events”. On the other hand, a given scenario mathematically consists 13 

of a group of minimal cutsets. Finally, a given operation states consist of a group of scenarios. Accordingly, the 14 

assessment of the SoK starts with the evaluation of the BEs in the reduced-order model of Eq. (8). The SoK of the 15 

BEs is denoted by 𝐾𝐵𝐸 and evaluated as in Eq. (11) by a weighted average of the leaf attributes scores. We take the 16 

generic 𝑞-th BE as an example to illustrate step by step the evaluation of the SoK assessment method. For the sake 17 

of simplicity, we dropped the 𝑞 subscripts in the symbols: 18 

 𝐾𝐵𝐸  = ∑ 𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 . 𝐾𝑙𝑒𝑎𝑓,𝑘
𝑛𝑙𝑒𝑎𝑓

𝑘=1
  (15) 19 

3.4 Aggregation of the SoK 20 

Once the SoKs of the basic events in the reduced-order models are evaluated, they can be aggregated to evaluate 21 

the total SoK for the PRA model. Let  𝐾𝐵𝐸,𝑙,𝑞 represent the SoK of the 𝑞-th BE in the 𝑙-th reduced-order model. 22 

The aggregation of  𝐾𝐵𝐸,𝑙,𝑞 should consider the difference in the atomic elements’ (i.e., BEs, MCs, Scenarios, etc.) 23 

contribution to the total risk. Different importance measures can be used to evaluate the contribution of the basic 24 

events. For example, as the reduced-order risk model is constructed by the BEs in the MCSs, the weights of the BEs 25 

can be calculated based on Fussell-Vesely importance measures (Zio, 2007): 26 

 𝑊𝐵𝐸,𝑙,𝑞 =
𝐼𝐵𝐸,𝑙,𝑞 

∑ 𝐼𝐵𝐸,𝑙,𝑞
𝑛𝐵𝐸,𝑙
𝑞=1

,  (16) 27 

where 𝐼𝐵𝐸,𝑙,𝑞 is the Fussell-Vesely importance measure value of the corresponding 𝑞-th BE in the elementary 28 
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risk model 𝑙 . Remember that the “elementary reduced-order risk model” represents the risk model at a given 1 

operation state and a given scenario, and it is composed of the sum of MCSs (computed by the BEs) in this scenario, 2 

as illustrated in Eq.(9). 3 

The SoK for the 𝑙-th elementary reduced-order risk model, denoted by 𝐾𝑙 , is calculated by a weighted average 4 

of knowledge scores on its basic events by: 5 

 𝐾𝑙 = ∑  𝑊𝐵𝐸,𝑙,𝑞 ⋅ 𝐾𝐵𝐸,𝑙,𝑞
𝑛𝐵𝐸,𝑙

𝑞=1 ,  (17) 6 

The importance of the reduced-order model is evaluated by its contribution to the total risk: 7 

 𝑊𝑙 = 
𝑅𝑅𝑒𝑑,𝑙

∑ 𝑅𝑅𝑒𝑑,𝑙
𝑛𝑙
𝑙=1

,  (18) 8 

where 𝑅𝑅𝑒𝑑,𝑙 is the risk index value of the 𝑙-th “elementary reduced-order model” and is calculated by (9). 9 

To calculate the total SoK 𝐾𝑅𝑒𝑑 of the reduced-order risk model, the knowledge indexes 𝐾𝑙s of the individual 10 

reduced-order risk models are further aggregated by considering their contributions: 11 

 𝐾𝑅𝑒𝑑 = ∑ 𝑊𝑙𝐾𝑙
𝑛𝑙
𝑙=1 ,  (19) 12 

The index 𝐾𝑅𝑒𝑑 is, then, used to represent the SoK of the entire PRA of a specific hazard group: its value is 13 

between 1 and 5, with a high value indicating that there is strong knowledge in support of the PRA model and its 14 

risk outcomes. 15 

4. Case study 16 

In this section, we apply the developed framework to a case study of real PRA models for two hazard groups in 17 

NPPs. The reduced-order model is constructed first for each hazard group. The SoK assessment framework is, then, 18 

applied on the BEs and the total SoK is obtained by aggregating the BEs’ SoKs. Finally, a comparison is made on the 19 

SoKs of the two PRA models to provide some conclusions to relevant RIDM. 20 

4.1 Description of PRA models 21 

In this section, we consider a case study extracted from PRA models of two hazard groups, i.e., external flooding 22 

and internal events provided by Electricité De France (EDF). Both PRA models were developed using the Risk 23 

Spectrum Professional software. 24 

In all generality, “external hazards” refer to undesired events originating from sources outside the NPP, such as 25 

external flooding, external fires, seismic hazards etc. (IAEA, 2010). In this paper, we consider a particular external 26 

hazard, i.e., external flooding, that is caused by the overflow of water due to naturally induced external causes, e.g., 27 

tides, tsunamis, dam failures, snow melts, storm surges, etc. (IAEA, 2003). The “external flooding” PRA model 28 

considered in this paper is a combination of event trees and fault trees that are constructed to evaluate the risk of 29 
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external flooding in different water level conditions (scenarios). The total risk index of external flooding is, then, 1 

calculated by summing the risk indexes at each water level. The PRA model of external flooding is complex and has 2 

a large scale, including three operation states, thousands of BEs and several thousands of MCSs. 3 

“Internal events” refer to undesired events that originate within the NPP itself and can cause initiating events 4 

that might lead to loss of important systems and, eventually, a core meltdown (EPRI, 2015). Major internal events 5 

include componenets, systems or structural failures, safety systems operation, and maintenance errors, etc. (IAEA, 6 

2009a). Internal events might also lead to other initiating events like turbine trip and Loss of Coolant Accidents 7 

(LOCAs). In nuclear PRA, internal events are considered a well-established and understood hazard group (EPRI, 8 

2012), and highly mature PRA models are available for their characterization. The internal events PRA model 9 

considered in this paper is based on a combination of event trees and fault trees that are constructed for evaluating 10 

the risk over different internal events (e.g., loss of offsite power, loss of auxiliary systems). The risk index of the 11 

entire internal events hazard group is, then, calculated by summing the risk indexes (i.e., minimal cut sets at a given 12 

operation state and scenario) of the individual internal events. Similarly to the PRA model of external flooding, the 13 

PRA model of internal events is complex and has a large scale, also containing three operation states, few thousands 14 

of BEs and several thousands of MCSs. 15 

4.2 Reduced-order model construction 16 

The first step in the developed SoK assessment method is the reduced-order model construction. Here, we only 17 

show in details how to construct the reduced-order risk assessment model for the external flooding PRA model. For 18 

the internal events PRA model, the reduced-order model can be constructed in a similar way. 19 

In this paper, we set the fractions of the risk to be 𝛼 = 𝛽 = 𝛾 = 0.8. From Eq. (4), we found that only one out 20 

of six operation states (NS/SG-normal shutdown with cooling using steam generator-NS/SG) is needed for the 21 

reduced-order model, which contributes to 86%  of the total risk index. Therefore, we have  𝑛𝑂 = 1 . Similarly, 22 

based on Eq. (5), only one out of ten scenarios (water levels) is needed for the reduced-order model, whose risk 23 

contribution is 98.7%.  Hence, we have  𝑛𝑆 = 1 . Based on Eq. (7), given the operation states and scenarios of 24 

interest, 5 out of 3102 MCSs already contribute to 80.1% of the risk at the given operation state and scenario. Thus, 25 

we have  𝑛𝑀𝐶𝑆 = 5. Then, a reduced-order model can be constructed using the atomic elements in Table 4. The 26 

definitions of BEs in the MCSs of Table 4 can be found in Table 5. An illustration example on the pathway of the 27 

first minimal cut sets is given in Figure 5. Assuming the rare-event approximation, the risk index of interest, i.e., the 28 

probability of core meltdown, can be calculated using the MCSs and the BEs in Table 4, following Eqs. (4), (5), (7) 29 
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and (8). The constructed reduced-order risk model can reconstruct  86% × 98.7% × 80.1% = 67.99%  of the total 1 

risk 𝑅. 2 

Table 4 Reduced-order model constituents 

Operating state Scenarios MCS 

𝑁𝑆/𝑆𝐺 Water level A 

MCS1={BE1, BE2, BE3} 

MCS2={BE2, BE3, BE4} 

MCS3={BE3, BE5, BE6, BE7, BE8} 

MCS4={BE2, BE3, BE7, BE9} 

MCS5={ BE2, BE3, BE6, BE10} 

 3 

Table 5 Basic events included in the reduced-order model 

Symbol Basic event 

BE1 External flooding with water level A inducing a loss of offsite power 

BE2 Loss of auxiliary feedwater system due to the failure to close the isolating valve 

BE3 Loss of component cooling system because of clogging 

BE4 Failure of all pumps of the Auxiliary feedwater (AFW) system 

BE5 Failure of the turbine of the AFW system 

BE6 Failure of the Diesel Generator A 

BE7 Failure of the Diesel Generator B 

BE8 Failure of the common diesel generator 

BE9 Failure of pumps 1 and 2 of AFW system 

BE10 Failure of pumps 2 and 3 of AFW system 

 4 

  5 
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 1 

 2 

 3 

4.3 Knowledge assessment of basic events 4 

In this section, we show how to assess the SoK for the BEs in Table 5. As shown in Eq. (11), the SoK of the 5 

basic event is evaluated as a weighted average over the SoK of the 19 leaf attributes in Figure 2. Hence, the first step 6 

of applying the SoK assessment framework is to determine the global weights of the “leaf” attributes. It should be 7 

noted that these weights are the same for all basic events. Hence, this step needs to be done only once. Take the “leaf” 8 

attribute 𝐾31 (years of experience) as an example. From Figure 2, it can be seen that 𝐾31 shares the same parent 9 

with the other three attributes 𝐾32, 𝐾33 and 𝐾34. To identify its global weight, a 4 × 4 pairwise matrix needs to 10 

be constructed by experts to compare the importance of the three attributes with respect to their parent attribute. The 11 

results of the pairwise comparison matrix is given in Table 6. In this matrix, the score 𝑆1,2 = 3 in the first raw, means 12 

that YE is more important that NE. 13 

Table 6 Pairwise comparison matrix for the assumptions daughter attributes of 𝐾1 (expert 1) 14 

A YE NE AE In 𝑊 

YE 1 4 1 1 0.318 

NE 1/3 1 1/3 1/3 0.092 

AE 1 3 1 1 0.295 

In 1 3 1 1 0.295 

After constructing the pairwise comparison matrix, the consistency of the matrix needs to be checked. The 15 

Figure 5 Illustration of a MCS in an individual reduced-order model 
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maximum eigenvalue of the matrix is 𝜆𝑚𝑎𝑥 = 4.082 ; the consistency index for the matrix ( 𝑛 = 4)  is, then, 1 

calculated according to Eq. (14) to be 𝐶𝐼 = 0.027. From Table 1 in Saaty and Tran (2007), the random index is 2 

𝑅𝐼 =0.89. The consistency ratio is, then, found by Eq. (13) to be 𝐶𝑅 = 0.031: since 𝐶𝑅 < 0.1, the consistency of 3 

the matrix is accepted. The weight of each attribute is, then, found by normalizing the principal eigenvector, following 4 

the instructions in Section 3.3. The weight of the parent attribute 𝐾3 (understanding of phenomena) was found to be 5 

𝑊3 = 0.306. The global weight for 𝐾31 of the leaf attributes can, be determined using Eq. (12): 𝐾31 = 𝑊3. 𝑊31 =6 

0.097. The experts were asked to repeat the same steps. The weights obtained for each leaf attribute from each expert 7 

were then averaged. The results are presented in Tables 7-8. 8 

Then, the SoK for the “leaf” attributes, i.e., 𝐾𝑙𝑒𝑎𝑓,𝑖  in Eq. (11) is determined following the assessment 9 

guidelines in Appendices A-C. Here, we give an illustrating example on how to evaluate the SoK of the basic event 10 

BE2. The first leaf attribute, i.e., quality of assumptions 𝐾11, is evaluated based on the guidelines in Appendix A.1. 11 

In this basic event, the loss of equipment is calculated by assuming that as long as the water reaches the bottom of 12 

each equipment, a failure is caused. This assumption is based on extrapolating some data to extreme values, and it is 13 

conservative. Therefore, this assumption was judged by the experts to lie between two cases with score 1 and score 14 

3 in Table A.1: an inter-level score of 2 was given by the experts. Take the amount of data 𝐾21 as another example: 15 

the number of years of experience on BE2 is 10 years; therefore, from Appendix B.1, the SoK score of 𝐾21  is 16 

assessed by the experts to be 1. The rest of the leaf attributes are assessed similarly and the results are given in Table 17 

7 and Table 8. Then, from Eq. (11) we found 𝐾𝐵𝐸 = 3.5500 for BE2. The procedures are repeated for each BE; the 18 

resulting 𝐾𝐵𝐸s are given in Table 9. 19 

Table 7 Assessment of level-3 knowledge “leaf” attributes (BE2 ) 20 

Attribute QA AD YE NE AE IN 

𝑊𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 0.3234 0.0587 0.1190 0.0630 0.1190 0.1190 

Score 2 1 5 5 5 5 

 21 

Table 8 Assessment of level-4 knowledge “leaf” attributes (BE2 ) 

Attribute PK SI U RI PE PM P C Co V Cu Ac 

𝑊𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 0.0203 0.0134 0.0177 0.0144 0.0179 0.0186 0.0221 0.0148 0.0110 0.0147 0.0139 0.0190 

Score 5 5 4 4 5 5 4 5 5 3 4 3 

 22 
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4.4 Knowledge Aggregation 1 

Finally, the 𝐾𝐵𝐸s in Table 9 are aggregated for the SoK of the entire model. For this, the SoK of the individual 2 

reduced-order risk models 𝐾𝑙  need to be calculated first by Eqs. (16) and (17), with the Fussell-Vesely (FV) 3 

importance measures for the BEs also given in Table 9. In this case study, we have 𝑙 = 1 for the external events. 4 

The resulted 𝐾𝑙 from Eqs. (16) and (17) is 𝐾𝑙 = 2.90. Then, the total SoK for external flooding, denoted by 𝐾𝑅𝑒𝑑,𝐸𝑥, 5 

is calculated based on the reduced-order model using Eqs. (18) and (19). In this case study, since we have only one 6 

individual risk model, using Eqs. (18) and (19) leads to 𝐾𝑅𝑒𝑑,𝐸𝑥 = 𝐾𝑙,1 = 2.90. 7 

Table 9 Knowledge assessment and aggregation over the basic events 8 

BE BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10 

FV 0.9020 1.0000 0.5530 0.1820 0.1410 0.1270 0.1210 0.0450 0.0277 0.0277 

𝑊𝐵𝐸,𝑙,𝑞 = 𝑁𝐹𝑉 0.2885 0.3199 0.1769 0.0582 0.0451 0.0406 0.0387 0.0144 0.0089 0.0089 

𝐾𝐵𝐸 1.6582 3.6595 2.9006 3.2178 3.7778 3.7778 3.0102 3.7778 3.2178 3.2178 

𝑊𝐵𝐸,𝑙,𝑞 × 𝐾𝐵𝐸,𝑙,𝑞 0.4784 1.1705 0.5131 0.1873 0.1704 0.1535 0.1165 0.05437 0.0285 0.0285 

*(FV): Fussell-Vesely  

*(NFV): Normalized Fussell-Vesely 

4.5 Results and discussion 9 

The same steps were repeated on the internal events PRA model. We directly present the final SoK for the 10 

internal events PRA model: 𝐾𝑅𝑒𝑑,𝐼𝑛 = 4.04. The SoK for both hazard groups are graphically illustrated in Figure 6. 11 

In Figure 6, we also illustrate the risk indexes (probability of core meltdown) evaluated for the two hazard groups 12 

(note that the values of the risk indexes are scaled due to confidentiality reasons). It can be seen from the Figure 6 13 

that the SoK on the internal events is higher than that on external flooding: this means that we are surer of the risk 14 

index value calculated with the PRA model of internal events, than of that for the external flooding hazard group.  15 

In fact, these results confirm expectations, as the internal events hazard group has been well studied in nuclear 16 

PRAs and mature models are available, whose parameters have relatively low uncertainty (EPRI, 2015). On the other 17 

hand, the PRAs for external flooding is generally considered less mature (EPRI, 2012) and several limitations have 18 

been pointed out in the current external flooding PRA models. For example, the flood frequencies are obtained by 19 

extrapolating the fitted historical data (usually limited) to the design basis flood levels, which results in high 20 

uncertainty (EPRI, 2012). In particular, the probability of extreme floods is very low (IAEA, 2003) and flooding 21 

events are very site-specific (IAEA, 2009b). Hence, very few data are available for risk modeling, which limits the 22 

SoK for external flooding. The low occurrence probability of external flooding and the lack of operating experience 23 
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and data related to them makes it very difficult also to predict and estimate their consequences, which adds to the 1 

uncertainties in the risk analysis as it limits the SoK of the PRA model used (IAEA, 2003). Specifically, in the case 2 

study considered, a large fraction of the risk contribution (69% of the reduced-order risk for external flooding) is due 3 

to three basic events i.e., BE1, BE2, and BE3. As shown in Table 9, two of them (BE1, BE3) have quite low SoK, which 4 

limits the SoK of the entire PRA model. 5 

 6 

Figure 6 Representation of hazard groups levels of risk and SoK 7 

5. Conclusions 8 

In this paper, we have proposed a new method for implementing a quantitative evaluation of the SoK of risk 9 

assessment models. The underlying conceptual framework has been developed based on a thorough literature review. 10 

The framework is based on three main attributes (assumptions, data, and phenomenological understanding), which 11 

are further decomposed into more tangible sub-attributes and “leaf” attributes for quantification. Detailed scoring 12 

guidelines are defined for the evaluation of the leaf attributes. In order to facilitate the application of the knowledge 13 

evaluation framework in practice, a top-down bottom-up approach is proposed, where a reduced-order model is 14 

constructed in the top-down phase to reduce the complexity of the analysis, and the SoKs are evaluated and 15 

aggregated hierarchically in the bottom-up phase. The application of the framework on a real case study of PRA 16 

models for two hazard groups, i.e., external flooding and internal events in NPP, has shown its operability. The results 17 

of the case study are consistent with the expectations of industrial practice, where the SoK of external flooding is 18 

lower than that of internal events, for which more data and information (i.e., strong knowledge) are available.  19 

A potential limitation of the developed method is that we are assuming that the risk assessment model itself is 20 

complete in covering all the possible scenarios. The SoK on model structure and model uncertainty (Droguett and 21 

Mosleh, 2008), (Droguett, 1999) is not considered in this paper. For a more comprehensive knowledge assessment, 22 
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further studies are needed to extend the developed method to consider completeness and comprehensiveness, 1 

including model uncertainty in the PRA model (Droguett and Mosleh, 2008), (Droguett, 1999). Furthermore, the use 2 

of AHP method does not allow considering the interdependencies that might exist between some attributes. Also, as 3 

the weights of the attributes in the framework are subjectively evaluated, formal expert judgment elicitation methods 4 

should be used for evaluating the weights. Finally, the evaluation framework and method do not pretend to be 5 

complete but they stand as a starting point for a practical assessment of the SoK of risk assessment models. 6 

 7 
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Appendix A: Evaluation guidelines for leaf attributes under Solidity of Assumptions (𝑲𝟏) 1 

Table A.1 Scoring guidelines for quality of assumptions (Boone et al.,2010)  2 

    Score 

Attribute 
1 3 5 

Quality of 

assumptions 𝐾11 

 

𝐾11 = 1 if the ssumption is not 

realistic (over conservative or 

over optimistic), or the 

available information is not 

sufficient for assessing the 

quality of the assumptions 

𝐾11 = 3 if the 

assumption is based on 

existing simple models 

and extrapolated data 

𝐾11 = 5 if the 

assumption is plausible: 

it is grounded on well-

established theory or 

abundant experience on 

similar systems, and 

verified by peer review 

Note: If multiple assumptions are involved in the assessment, the final score for 𝐾11 is obtained by averaging the 3 

scores of all the assumptions. 4 

Table A.2 Scoring guidelines for the value-ladenness of the assessors 5 

Score 

Attribute 
1 3 5 

Personal 

knowledge 

(educational 

background) 

𝐾121 

𝐾121 = 1 if all of the 

experts hold academic 

degrees from other 

domains 

𝐾121 = 3 if less than two 

thirds of the experts hold 

academic degrees in the same 

field 

𝐾121 = 5 if over two 

thirds of the experts 

hold academic degrees 

in the same field 

Sources of 

information  

𝐾122 

𝐾122 = 1 if experts can 

only access academic 

information source or 

only industrial 

information source 

𝐾122 = 3 if experts can access 

fully industrial information 

source and partially academic 

information source 

𝐾122 = 3 if experts 

can fully access both 

academic and industrial 

information sources 

Unbiasedness and 

plausibility 

𝐾123 

𝐾123 = 1 if the expert 

team is very conservative 

or optimistic 

𝐾123 = 3 if the expert team is 

slightly 

conservative/optimistic 

𝐾123 = 5 if as a team, 

the experts are 

unbiased: the biases of 

the experts can 

compensate one 

another 

Relative 

independence 𝐾124 

𝐾124 = 1 if over three 

quarters of the experts 

are highly influenced by 

mangers and 

stakeholders 

𝐾124 = 3 if less than one 

quarter of experts might be 

influenced by the mangers and 

stakeholders 

𝐾124 = 5 if all 

experts’ decisions are 

highly independent 

Past experience 

𝐾125 

𝐾125 = 1 if the experts’ 

experience is less than 5 

years 

𝐾125 = 3 if the experts’ 

experience is between 10-15 

years 

𝐾125 = 5 if the 

experts’ experience is 

more than 20 years 
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Performance 

measure 

𝐾126 

𝐾126 = 1 if the 

performance of the 

experts are not evaluated 

by external peers 

𝐾126 = 3 if the external peers 

generally acknowledge the 

experts’ performance but raise 

some slight concerns 

𝐾126 = 5 if the 

external peers endorse 

the experts’ 

performance and  

approve them  

Agreement among 

peers 

𝐾127 

𝐾127 = 1 if some 

experts hold strongly 

conflicting views on the 

assumptions 

𝐾127 = 3 if some experts 

questions on the assumptions, 

but do not have strongly 

conflicting views 

𝐾127 = 1 if most of 

the experts agree on the 

assumptions 

Table A.3 Scoring guidelines for assumption sensitivity 1 

Score 

Attribute 
1 3 5 

Sensitivity of 

assumptions 𝐾13 

𝐾13 = 1 if the 

assumption greatly 

influences the final 

result 

𝐾13 = 3 if the 

assumption greatly 

influences the results in 

a major step in the 

calculation 

𝐾13 = 5 if the 

assumption has little or 

no impact on the results 

of risk analysis 

Note: The score here is related to the impact of the sensitivity on the SoK 2 

  3 
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Appendix B: Evaluation guidelines for leaf attributes under Availability and Reliability of Data (𝐊𝟐) 1 

Amount of data 𝐾21 is measured by a numerical metric, Years of Experience (YoE), defined by the number of related 2 

events recorded during a specific period. 3 

YoE =length of the data collection period (in years) × sample size of the data 4 

The amount of data is scored based on the criteria in Table B.1. 5 

Table B.1 Scoring guidelines for Amount of available data 𝐾21 6 

Value of YoE Score  

< 50 1 

50-199 2 

200-499 3 

500-999 4 

>1000 5 

 7 

Completeness of data refers to the degree to which the collected data contains the needed information. For 8 

components and systems, data completeness is characterized by the following criteria (IAEA, 1991): 9 

1. The data should contain baseline information, which covers the design data and conditions of a 10 

component at its initial state. 11 

2. The data should contain the operating history, which covers the service conditions of systems and 12 

components including transient and failure data. 13 

3. The data should contain the maintenance history data, which covers the components monitoring and 14 

maintenance data. 15 

For more details on how each of the previous attributes is identified, see (IAEA, 1991). However, it should be 16 

noted that the completeness features are defined differently depending on the problem. For example, data required 17 

for quantifying to a component failure frequency is different from that for quantifying a natural event. General scoring 18 

guidelines for evaluating 𝐾221 are given, based on the degree to which criteria are satisfied, as shown in Table B.2. 19 

  20 
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Table B.2 scoring guidelines for data reliability  1 

Score 

Attribute 
1 3 5 

Completeness 

𝐾221 

𝐾221 = 1 if the data fail 

to contain the necessary 

information required in 

developing the risk 

assessment model (in the 

light of the completeness 

characteristics defined 

above) 

𝐾221 = 3 if the data contain 

to an acceptable degree the 

necessary information 

required in developing the 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 

 

𝐾221 = 5 if the data contain 

all the necessary information 

required in developing the 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 

 

 2 

The validity of data is evaluated by the following criteria: 3 

1. The integrity of data is carefully managed.  4 

2. Databases are well organized and formatted in a common way, and easily retrieved and manipulated. 5 

3. Data should be collected and entered in the database by well-trained maintenance personnel, and modern 6 

computer techniques should be used for data storage, retrieval, and manipulation. 7 

4. The data collection and entering process should include an appropriate quality control mechanism. 8 

Based on the four criteria the evaluation guidelines of 𝐾223 can be defined in Table B.3. 9 

Table B.3 scoring guidelines for data reliability 10 

Score 

Attribute 
1 3 5 

Validity

𝐾223 

𝐾223 = 1 if none of the 

validity criteria (illustrated 

above) is fulfilled 

𝐾223 = 3 if the validity 

criteria (illustrated above) are 

partially fulfilled 

𝐾223 = 5 if all of the 

validity criteria (illustrated 

above) are fulfilled 

 11 

Accuracy measures how close the estimated or measured value is compared to the true value. Accuracy is 12 

determined by random and systematic errors in the measurements (Popek, 2017). Since the data involved in nuclear 13 

PRA are mostly related to the number of failures or degradations and are usually collected digitally from different 14 

sources, systematic errors in the data are very small. This means that the accuracy of data is primarily determined by 15 

the random errors. Since the error margin of the confidence interval is widely accepted as a good indicator of the 16 

random errors, it can be used as a measure of the data accuracy. Error factor may be defined based on the upper and 17 
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lower bounds of confidence interval:  1 

𝑒𝑟𝑟𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = √
𝑈𝑙

𝐿𝑙
 2 

where 𝑈𝑙 and 𝐿𝑙 are the upper and the lower bounds of confidence intervals. The accuracy of data is, then, scored 3 

based on the value of error factors, following the guidelines in Table B.4.Table B.4 scoring guidelines for data 4 

reliability  5 

Table B.4 scoring guidelines for data accuracy 6 

Score 

Attribute 
1 3 5 

Accuracy

𝐾224 

𝐾224 = 1 if the error factor 

is greater than 10 

𝐾224 = 3 if the error factor is 

between 2-10 

𝐾224 = 5 if the error factor 

is less or equal to 2 

The rest of the “leaf” attributes of the reliability of data are evaluated following the guidelines in Table B.5. 7 

Table B.5 scoring guidelines for data reliability 8 

Score 

Attribute 
1 3 5 

Consistency 

and 

relevance 

𝐾222 

𝐾222 = 1 if the data are 

not from the same type of 

power plant, or have 

different characteristics 

compared to the system 

under investigation, e.g., 

different component or 

model 

𝐾222 = 3 if the data are from 

the same power plant with the 

same type of component and 

the same characteristics of the 

system under investigation 

but from different 

manufacturers 

𝐾221 = 5 if the data are from 

the same power plant with 

the same type of components 

and the components have the 

same characteristics and the 

same manufacturer 

Timeliness 

𝐾225 

𝐾225 = 1 if the data has 

never been updated 

𝐾225 = 3 if the data has been 

updated a few years ago (10 

years and more) 

𝐾225 = 5 if the data are up-

to-date and are updated 

routinely 

 9 

  10 
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Appendix C: Evaluation guidelines for leaf attributes under Understanding of Phenomena (𝐊𝟑) 1 

 Table C.1 Scoring guidelines for Phenomenological understanding’s leaf attributes 2 

Score 

Attribute 
1 3 5 

Years of experience 

(human experience on the 

phenomenon) 

𝐾31 

𝐾31 = 1 if the phenomenon 

is new to human being, and 

no theories about the 

phenomenon have been 

developed yet or the 

theories are incapable to 

explain well the 

phenomenon (e.g. black 

holes) 

𝐾31 = 3 if the 

phenomenon has been 

investigated for moderate 

years of experience with 

few theories that are 

consistent with 

preexisting ones but still, 

do not explain holistically 

the phenomena (e.g. 

nuclear physics) 

𝐾31 = 5 if the 

phenomenon has been 

investigated for a long 

time and well-

established theories 

have been developed to 

explain the 

phenomenon, which 

have been proved by 

many evidences (e.g. 

classical physics) 

Number of experts 

involved in the analysis 

𝐾32 

𝐾32 = 1 if there is no 

experts related to this 

domain (the assessors 

involved are not expert in 

this domain) or the experts 

are unreliable  

𝐾32 = 3 if there is a 

moderate number of 

experts of acceptable 

reliability (two experts) or 

a low number of experts 

of high reliability 

𝐾32 = 5 if there is a 

sufficient number of 

highly reliable experts 

(more than two 

experts) 

Academic studies on the 

phenomena (measured by 

the number of articles and 

books published on the 

subject) 

𝐾33 

𝐾33 = 1 if no or limited 

published articles supports 

the understanding of the 

phenomenon (e.g. Einstein 

electromagnetic waves) 

𝐾33 = 3 if a moderate 

amount of the published 

articles supports the 

understanding of the 

phenomenon (e.g. nuclear 

energy) 

𝐾33 = 5 if a large 

amount of the 

published articles 

supports the 

understanding of the 

phenomenon (e.g. 

kinetic energy) 

Industrial pieces of 

evidence and applications 

on the phenomena 

(measured by the number 

of applications on 

available on this subject) 

𝐾34 

𝐾34 = 1 if no or few 

industrial applications and 

reports support the 

understanding of the 

phenomenon (e.g. 

autonomous vehicles) 

𝐾34 = 3 moderate 

amount of industrial 

applications and reports 

support the understanding 

of the phenomenon (e.g. 

machine learning) 

𝐾34 = 5 if a large 

amount of industrial 

applications and 

reports support the 

understanding of the 

phenomenon (e.g. 

airplanes) 

 3 
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