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Abstract 
 
We analyze the process of infection rate growth and decline for the recent global pandemic, 
applying a new method to the available global data. We describe and utilize an original 
approach based on statistical physics to predict the societal transmission timescale and the 
universal recovery trajectory resulting from the countermeasures implemented in entire 
societies. We compare the whole-society infection growth rates for many countries and 
local regions, to illustrate the common physical and mathematical basis for the viral spread 
and infection rate reduction, and validate the theory and resulting correlations. We show 
that methods traditionally considered for the numerical analysis and the control of 
individual virus transmission (e.g. R0 scaling) represent one special case of the theory, and 
also compare our results to the available IHME computer model outcomes. We proceed to 
illustrate several interesting features of the different approaches to the mitigation of the 
pandemic, related to social isolation and “lockdown” tactics. Finally, we use presently 
available data from many countries to make actual predictions of the time needed for 
securing minimum infection rates in the future, highlighting the differences that emerge 
between isolated “islands” and mobile cities, and identifying the desired overall recovery 
trajectory. 
 

1. Introduction 
 
Traditional pandemic modeling and epidemiological methods are based on the concept of  
viral spread due to person-to-person contact, via an empirical transmission parameter, 
Ro, which is  adjusted to fit dynamic (time-varying)  infection data. We develop a new way 
to predict the recovery rate of infections following a pandemic outbreak, using the basic 
postulates of statistical physics and learning theory. We differ completely from the prior 
published work on the topic (see e.g. Kucharski et al., 2020) by using infection rates, 
statistical physics theory and comparisons between multiple countries and regions, to 
make universal predictions of transmission/incubation timescales and recovery 
trajectories. Our objective is to improve predictive accuracy based on data, by providing an 
alternative basis for the physical modeling of pandemics in entire societies. 
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The fundamental postulate is that humans learn from experience in correcting their 
mistakes and errors (sometimes even just by trial and error), to reduce undesirable 
outcomes, as they gain knowledge on the problem and skills for addressing it. Hence, in the 
specific coronavirus case, infection growth represents failure to learn to control or manage 
the outbreak, whereas infection decrease reflects the effectiveness of the countermeasures 
– whatever they may be – as devised and implemented following the learning process and 
the resulting knowledge acquired on the virus and its mechanisms of diffusion. The theory 
is consistent with the models and data in cognitive psychology of how humans behave and 
the brain operates (Ohlsson, 1996; Fiondella and Duffey, 2015; Anderson, 1990; Duffey, 
2017). The learning process is reflected in the overall observed societal behavior where 
human errors and incorrect decisions are the dominant contributors to accidents, crashes, 
system failures, errors, and operational incidents, just as they are in failing (forgetting) or 
succeeding (learning) in containing and managing a viral pandemic (Duffey and Zio, 2020).   
 
By mid-2020, the world has counted over 4,000,000 cases of CoVid-19 infection (and still 
growing at the time of writing) and over several 100 thousands of deaths, with the 
infection having spread quickly across borders, imported from nation-to-nation mainly via 
travelers, visitors and tourists, and spread internally from just social and day-to-day 
human contact. In this regard, the US Centers for Disease Control correctly states the 
simple obvious: “Risk depends on characteristics of the virus, including how well it spreads 
between people”  (Source: www.cdc.gov/coronavirus/2019-ncov/summary), which is 
what we examine in this paper. 
 
The early onset of the CoVid-19 pandemic led to the postulation of many gloomy scenarios, 
generally assuming no effective countermeasures to the spread of infections. The infection 
numbers grew quickly at first, before countermeasures, such as isolation, distancing, 
mobility and business restrictions, and curfews, were implemented to reduce infection 
rates and “flatten the curve” of count numbers versus time. The characteristic shape is well 
demonstrated, for example, by the data from Italy for 70 days after the number of 
infections reached an initial value of 100 infection cases (see Figure 1).  
 



 
Figure 1 Typical observed trends in infection rate growth and decline, from the day of 100 recorded infection 
cases: the Italian experience  

 
In any accident (e.g. a bridge collapse, a car crash, a toxic gas spill from a processing 
industry, etc.)  or natural disaster (e.g. an earthquake, a flood, a forest fire), the numbers of 
persons killed or injured are highly variable, depending on who and how many risk-
exposed individuals happen to be present in the area at the moment of the accident and on 
the accident physical dynamics. This depends on so many factors that the occurrence and 
outcome of the accident or disaster can be considered random. In the case of the virus 
spread also, the number of deaths depends on too many uncontrolled variables and factors 
(age, pre-existing health conditions, health care system capacity, individual propensity, 
socio-economic status etc.), so that the average death percentage per infection also varies 
widely in magnitude, location and time (as the data clearly show). Deaths are also heavily 
weighted by the older population and in some countries dominated by fatalities in “elder 
care” or “assisted living” facilities that have been left without adequate countermeasures. 
Sad to say, deaths (distressing as they are) are then not the right measure to look at for the 
analysis and control of the dynamics of the virus. Rather, infections are the measure useful 
to look at for the spread and control of infectious diseases, as recognized in traditional 
epidemiological models, where a characteristic basic reproduction parameter, R0 , is 
introduced to reflect the individual or person-to-person transmission ratio (see e.g. 
Heesterbeck, 2002; Jones, 2019). True, there may be inaccuracies in infection counts due to 
the testing types, protocols and extent in and for any given population or sample, and some 
other minor inconsistencies. But the data indicate that these have relatively small effect on 
the trends, and possibly introduce only a small systematic error, that we address and 
minimize by using non-dimensional country-to-country and relative rate inter-
comparisons.  



 
Therefore, for our analysis we calculate the reported infection rates, not the numbers or 
rates of deaths or hospitalizations, because we want to determine the overall social scale of 
infection and use a leading indicator, whereas deaths are a lagging indicator.  
 
The infections numbers also depend on which country/region they refer to and on the 
stage reached by the infection (early onset, spread extent, countermeasures employed etc.). 
We already know that if uncontrolled, the increase in infections rises exponentially if the 
rate of infections is assumed to be proportional to the number of infected individuals, 
(Heesterbeek, 2002; Duffey and Zio, 2020). After some “learning” leads to the definition 
and introduction of countermeasures, the rate falls, precisely in reflection to the society’s 
learning on how to reduce the infection rate or “flatten the curve” of the accumulated 
number of deaths, infections and/or hospitalizations. The characterization of this trend can 
be, then, used for guiding the societal response to the pandemic and control the 
effectiveness of the countermeasures introduced. For example, the USA official guidelines 
for CoVid-19 pandemic state that before a “comeback” phase can be initiated, in addition to 
some social distancing and other measures of reduction of the virus diffusion, any given 
State should have a 14-day period (White House, 2020, 
www.whitehouse.gov/openingamerica) with: 

a) downward trajectory of reported influenza-like illnesses (ILI) 
b) downward trajectory of reported CoVid-19-like syndromic cases. 

 
No quantitative measure of statistical significance is given or required, no desirable or 
minimum rates are specified, nor any means or method of prediction. However, 
everywhere in the World, the public health policies considered in the aftermath of the virus 
outbreak are “data-driven” periodically adjusted and computer model projections are 
updated, as death and infection rates change. For effective control  and decision-making, it 
is, therefore, fundamental to establish the onset and significance of the downward 
trajectory by numerical scientific criteria that can be used by policy makers in their region-
by-region and country-by-country analysis, to predict the future trend expectation and to 
discern significant systematic deviations (learning by cross-fertilization). 
 
A logical public question is: does the infection recovery data show any sign that we are 
learning how to reduce risk and which countermeasures were or are most effective and 
should be kept (and which were or are not, and can be eliminated)? 
 
The global and local data now available from the CoVid-19 pandemic provides an 
opportunity for new thinking and new methods to predict recovery rate and evaluate 
countermeasures effectiveness. Specifically, decision makers want to know when and how 
to ‘re-open” or relax stringent social distancing, “lockdown”, self-isolation and medical 
emergency decrees, while medical and epidemiological analyses focus more clinically on 
deaths and hospital workloads or anticipated ”worst case” or upper bound  scenarios. With 
an initial focus of our analysis on Italy-the leading and worst hit region in Europe- we 
proceed to a systematic examination of the infection rate data for many countries to 
determine : 
 



a) Overall societal transmission timescales to reach defined rate peaks determined by 
introduction of countermeasures (e.g. in California, Belgium, Brazil, Italy, Spain, UK, 
USA) 

b) Trends for “island states” exercising complete border and access control, where  
importation of cases by travelers could be completely controlled or minimized (e.g. 
New Zealand, Hong Kong and Iceland) 

c) Results of imposing only limited “societal” restrictions that rely in large part on 
more voluntary or lax countermeasures, confiding in guided public awareness and 
mindfulness, and in ethics of resilience (Rajaonah and Zio, 2020) (Sweden, 
Wyoming, Nebraska and Iowa) 

d) Comparisons between USA regions with completely different environmental and 
living milieu but all with low infection rates (Idaho and  St Louis, Missouri)  

e) Demonstration of recovery rates due to effective internal countermeasures that 
established a well-defined trajectory (e.g. China, Hong Kong, Italy, Spain, New 
Zealand and  South Korea); 

f) Extent of less defined peaks where an extended  “plateau” occurs (Canada, USA and 
UK) and rates with potential low testing or under-reporting of cases (India, Ecuador 
and others)  

 
In the following Section 2 of the paper, we first develop the fundamental statistical theory 
and compare it to more traditional methods. To the best of the authors’ knowledge, this 
method and theory is not known to and has not been previously published in the 
epidemiological literature. Then, we make a series of comparisons and predictions for the 
overall growth and decline of infection rates, using the available data1. From the analyses 
and comparisons, we draw a number of conclusions in Section 3, relevant to  the use of the 
proposed framework for dealing with the future phases of recovery from the pandemic in a 
risk-informed way that can guide policy decisions for resilience. 
 

2. Theoretical model for social infection rate evolution 
 
In any observation interval considered (e.g. successive days), new infections appear 
distributed as outcomes from prior or past exposure of some portion of the entire infection 
risk-exposed population. We adopt a dynamic infection model that is based on well-known 
statistical physics and is fundamentally different from classic infectious disease theory, 
which is based on the (sequential) person-to-person rate multiplier, R0 (Heesterbeek, 
2002; Jones, 2007).   
  
For infectious diseases, in any society the number of observed infections, n, is randomly 
distributed in the exposed population, since anyone can get it by interacting with someone 
else. Independent of the individual or overall transmission mechanism(s), for a whole 
society the probability of cross-infection given contact, p=n/N, then depends solely on the 
total (fixed) number, N, of the equally infection risk-exposed individuals of the recipient 

                                                        
1 Data sources are all on-line, and include global lists from WHO and world-in-data.org, and individual local 
state (e.g. Idaho, Iowa, California, Nebraska), and country internet “dashboards” and city file records (Italy, 
Hong Kong, New York, St Louis, USA (CDC), etc.), which are all updated periodically.  



population. Using the established physics and mathematical principles of classical 
statistical mechanics (Rushbrooke, 1949; Greiner et al, 1997; Duffey and Saull, 2008) and 
standard reliability theory (Lewis, 1994), the rate and distribution of disease infections 
that are observed among a sample or group of any size emerge from applying the following 
conventional and physically reasonable assumptions: 
 

 infections appear as outcomes and are counted in number, n, during some prior and 
present observed infection risk exposure intervals (here measured in days, d); 

 outcomes (infections) occur and are observed randomly, but are a systematic 
function of the risk exposure by person-to-person contact, or by any and all  
transmission spread processes, with some average or overall societal characteristic 
timescale, G,  of the transmission and incubation growth process;    

 a multitude of possible distributions of infections,  N!/Πn!, are equally possible  and 
enable the use of the well-known Stirling’s formula for large numbers  (Rushbrooke, 
1949);  

 the distribution of the number of occurred infections, n, as a function of the 
incremental or actual infection risk exposure interval, Δd, is the most likely, because 
it is the one that has actually occurred and been observed; 

 the most likely infection distribution is that which gives a maximum of the 
likelihood among all the possible distributions for a given number of observed 
infections;  

 the total number of all possible infections observed in the prior infection risk 
exposure interval in days, d, is finite and constant (the exposed or sample 
population does not change); 

 the rate of outcomes (infections) , 𝜆 ≡ 𝑅(𝑑), per incremental risk exposed interval, 
Δd, is proportional to the incremental change, Δn, in the number of infections during 
the infection risk exposure interval of observation (taken equal to a step of d= 1 day, 
in our case). 

 
As usual, the validity of the above assumptions is justified by data comparisons and 
predictions. The number of actual infections, n, observed in the total risk-exposure interval 
d, n(d), is (hopefully) much less than the total number of possible infections and the sample 
size , so n<<N. As usual for any sample n<<N, the social rate, R(d), of observed infections is 
(since n are removed from the population by already becoming infected),  
 

𝜆 ≡ 𝑅(𝑑) =
1

(𝑁−𝑛)
 
𝛥𝑛

𝛥𝑑
 ≈  

1

𝑁

𝑑𝑛

𝑑𝑑
  (1) 

 
With the above introduced assumptions and conditions, the most likely distribution of the 
number of possible observed infections, n, is, then, always systematically exponential in 
form (Rushbrooke, 1949). In any incremental observation interval of infection risk 
exposure, the observed outcome rate, R(d), is derived as (Duffey and Saull, 2008), 
 

𝑅(𝑑) =  𝑅𝑚+ (𝑅0− 𝑅𝑚)𝑒±𝑘(𝑑−𝑑0)  (2) 
 



independent of the total number of possible infections, N, where in our present notation, R0 
is the initial rate value at d= d0, the time of the onset of infection observation. 
 
The positive sign describes the “forgetting” phenomenon resulting in rate growth due to 
(initially) uncontained and/or still continuing infection spread until the time, dM, at which a 
peak or maximum rate value, RM, is reached. The negative sign gives rise to a rate decline 
due to (successively, day-by-day) “learning” by society and individuals deploying and 
obeying effective countermeasures until the minimum attainable rate value, Rm, is reached. 
The constant, k, is therefore the characteristic e-folding timescale of the rate, dependent on 
the presence (learning) or absence (forgetting) of effective countermeasures (societal and 
medical, in the case of CoVid-19). 
Equation (2) is actually the solution of the second-order differential equation in the 
observed infection number, n, as a function of risk exposure days,  
 

𝑑𝑅

𝑑𝑑
=  ±𝑘(𝑅 − 𝑅𝑚)   or      

𝑑2𝑛

𝑑𝑑2
=  ±𝑘 (

𝑑𝑛

𝑑𝑑
−

𝑑𝑛𝑚

𝑑𝑑
) (3) 

 
This relation describes quantitatively the Learning Hypothesis that the rate of change of the 
rate (reported infection cases per day, in this paper) is proportional to the rate itself. The 
single physical parameter, k, thus represents the process of acquisition of knowledge and 
learning, as human societal behavior affects the rate of unwanted outcomes.  
 
This purely theoretical result should be contrasted to the traditional multi-parameter 
epidemiological model for growth due to transmission by individuals through one-by-one 
contact(s). In its simplest form with some contact removal rate2, ν, the infection rate is 
given by the straightforward assumption that the individual cross-infection rate of growth 
is proportional to the number of individuals already infected. Conventionally and 
empirically, this is governed by the first-order differential equation (e.g. Heesterbeek, 2002; 
Jones, 2007),   
 

𝑑𝑛

𝑑𝑑
 ∝ 𝑛 = 𝜈𝑛 (R0  -1)    (4)     

  
Thus, the successive one-to-another-one infection rate grows if and only if R0 >1. This 
formula is fundamentally different, in that this traditional individual R0  arises as a special 
case of the more general societal Learning Theory previously introduced. Hence, by 
equating Equation (3) with the differential of Equation (4) straightforwardly we obtain the 
equivalent  societal reproduction number as, 
 

 R0 =  
{1±𝑘(𝑅−𝑅𝑚)}

𝜈𝑅
    (5) 

 
Only in the limits of high rates, kR >>1, with R >>Rm, , and taking ν ~O(1), is, then, R0 ~ ± k.  
                                                        
2 Note that in the theory  underpinning the  analysis presented in this work, removal of already infected cases 
from the population is captured by using the correct formula for the rate (Equation (1)) not by introducing 
the empirical adjustable factor, ν.  



Being intrinsically dependent on the overall societal rate, in general R0 =f(R), and is not 
constant but varies as R changes, which explains why any such parametric transmission 
model requires periodic adjustment to fit growth data, and often yields a wide spread of 
apparent values (see e.g. Holme and Masuda, 2015; Wikipaedia “Basic Reproduction 
Number”; and IHME,  2020). So, this new relation in Equation (5) also implies that we must 
know or determine the dynamic societal learning or forgetting rate , k,  and importantly its 
sign.  
  
For the initial positive exponential process of infection rate growth, for clarity we denote 
positive k=G, and consider its onset and trend in infection risk-exposure days from the 
initial “zero” day of spread increase corresponding to the day, d0, of first observing or 
detecting an infection  threshold number, say, 100 cases. Then, Equation (2) becomes, for 
d0<d<dM, 
 

𝑅(𝑑) =  𝑅𝑚+ (𝑅0− 𝑅𝑚)𝑒𝐺(𝑑−𝑑0)  (6) 
 
Similarly, for the successive negative exponential process of infection rate decline, we use 
directly the symbol, k, for the exponential parameter, and consider its onset and trend in 
infection risk-exposure days from the initial “zero” day of spread decline, d=dM, 
corresponding to the day of reaching the infection rate peak, RM. Then, Equation (2) 
becomes, for  dM<d<dT,  
 

𝑅(𝑑) =  𝑅𝑚+ (𝑅𝑀− 𝑅𝑚)𝑒−𝑘(𝑑−𝑑𝑀)  (7) 
 
These growth and decline curves (negative and positive exponential, with parameters G 
and k, respectively) intersect at the peak day, dM, when the rate achieves its maximum 
value, RM. This can sometimes generate almost a “plateau” in the actual data, depending on 
the absolute rate value and the actual intensity of the force of the spread and of the 
counterforces of the measures deployed to control it and contain it (see actual data below). 
From the Equations (6) and (7) evaluated at their peak intersection, and considering a 
sufficiently long span of evolution after the onset in Equation (6), dM>>d0 at which RM >> Rm, 
we obtain, 
  

 𝑑𝑀 = (
1

𝐺−𝑘
) 𝑙𝑛 (

𝑅𝑀

𝑅0−𝑅𝑚
)   (8) 

 
The peak rate day, dM, is, then, found to depend on the ratio of the peak rate value, RM , to 
the value of observed rate onset, R0, and on the difference between the e-folding 
parameters, G and k, governing the rate growth (forgetting) and decline (learning) 
processes, whose values can be readily determined from fitting the recorded data. We have 
already shown that this intersection occurs at the correct peak day by fitting to the data for 
Italy shown in Figure 1 above (Duffey and Zio, 2020).   
   
For further data inter-comparisons, it is useful to adopt the non-dimensional form of these 
trends, obtaining the so-called Universal Learning Curve (ULC) (Duffey and Saull, 2008). 
For example, with reference to the infection rate decline phase of the learning part of the 



process, taking the normalized infection risk-exposure interval measure d* = (d-d0)/(dT-d0), 
where d0=dM and dT >>d0 is the total infection risk-exposure interval of observation when 
learning is completed and the attainable minimum rate, Rm, is reached, Equation (7) can be 
written as (Duffey and Zio, 2020), 
 

𝐸∗ =  
𝑅(𝑑)−𝑅𝑚

𝑅𝑀−𝑅𝑚
=  𝑒−𝑘𝑑∗

          (9)  

 
Interestingly, a value k~ 3 fits “universally” the decline trend (due to “learning”) of many 
failures/errors/accidents time series rate data in industrial, surgical, transportation, 
mining, manufacturing, chemical, maintenance, software and a multitude of other societal 
systems (see Duffey and Saull, 2008). This same learning rate trend and constant value 
emerges also in cognitive psychological testing from skill acquisition tasks performed and 
learnt by individuals, in which case one talks of the “Universal Law of Practice” (ULP) thus 
linking individual to collective learning. 
 
Similarly, for the forgetting growth part of the process, taking the normalized infection 
risk-exposure interval measure d* = (d0-d)/(dM-d0), where dM >>d0, Equation (4) becomes, 
 

𝐸∗ =  
𝑅(𝑑)−𝑅𝑀

𝑅0−𝑅𝑀
=  𝑒𝐺𝑑∗

   (8) 

 
We have provided here the fundamentally human-societal basis for the observed trends, 
and now show the universal applicability of the theory on a wide range of growing and 
declining infection rate data.  
 
2.1 Predicting the infection rate growth trajectory to the peak  
 
The trajectory of growth to the peak of the infection rate (e.g. the solid line in Figure 1 for 
the Italian case) has been examined for many countries and the best fit exponential has 
been determined (Duffey and Zio, 2020). The application to 14 countries/regions has 
yielded 295 data points for over 1,000,000 total infections worldwide3. The comparisons 
demonstrate an overall similarity of the characteristic e-folding timescale, 1/G, 
independent of the absolute peak infection rate value reached, which ranges over 200<RM< 
50000 per day in the different regions considered. The average global growth 
characteristic timescale value is 5.9 ±1.4 days with a coefficient of determination R2 =0.84, 
or a one standard deviation interval of 4.5- 7.3 days.  
 

                                                        
3 China, Belgium, Brazil, California USA , Canada, Germany, Idaho USA, Italy, Spain, South Korea, Sweden, 
Turkey, UK, and USA 



 
Figure 2 Typical characteristic growth trajectories of societal infection rates (semi- logarithmic plot)  

 
Differences of up to a factor of five in growth timescales of 0.04<G<0.2 are apparent 
between countries, as shown by the extreme examples in Figure 2, suggesting important 
impacts of environmental, cultural and social factors on transmission rates. Only Sweden 
adopted limited voluntary ‘social distancing’ countermeasures without industry and 
service closures, but initially had a low rate of infections anyway, and is relatively 
geographically isolated with limited international travel, and largely mono-cultural. Brazil 
did not impose restrictions immediately and is a highly diverse society with heavily 
populated urban developments, major cities and extensive rural/agricultural spaces. The 
USA contains all these different factors and characteristics, the highest rate and rapid 
spread being in cities which are diverse, highly mobile, very densely populated and with 
unavoidably close community contacts (dominated by New York) .  
 
From our data analysis, averaging the individual and world G-values gives a characteristic 
incubation timescale of 5.5 days, which is in agreement with the likely theoretical 
incubation timescale of about 5 days and the results of other studies. Indeed, the 
characteristic transmission/incubation timescale value for entire societies that we have 
found can be regarded as reasonable, comparing quite well to the individual incubation 
period following infection in the USA indicated in (Ghinai et al, 2020). In the paper, an 
average incubation time of 4.4±1.7 days4, or between 2.7- 6.1 days, was found to result 
from tracking cross-infections for just 15 individual cases; these values are well within the 
one standard deviation interval of 4.5-7.3 days determined in our study for the global 
population, and match well also the 1/G value of approximately 5 days found for the USA. 
Furthermore confirmation comes from a study (Becker et al, 2020) that used standard 
statistical distribution fitting on 88 individual cases in Wuhan, China to find a mean of 6.4 

                                                        
4 This average and standard deviation were not reported in the paper, so these were calculated using the 
original data given in Figure 2 of the referenced paper.  
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days, with standard deviation interval of 5.6- 7.7 days, again values perfectly fitting the 
range of uncertainties estimated in our paper. As another demonstrative example, Casella 
(2020) analyzed the growth and decay of infections using an empirical “control” model that 
is commonly used to tune electronic system response behavior utilizing variable feedback 
loops. As stated clearly by Casella, it has no theoretical foundation but was fitted using 
(limited) infection data from Hubei, China and Lazio, Italy, obtaining a growth exponent of 
3.8 days and 3.1 days, respectively.  
 
Furthermore, we can compare the present theory to the early growth estimates obtained 
by applying SEIR models for the very first cases in Wuhan (Kucharski et al, 2020), looking 
at Equation (5) with positive k=G. At d=d0, the true initial rate is R0 and we can assume, 
reasonably, that the threshold rate for detection/reporting is at best, say, ψ -times this low 
initial value above background infectious diseases or similar (influenza-like) infections: 
then, R ~ψ R0. Numerically, with testing and early diagnosis, the initial rates are of the order 
of a few ~O(1-3) per day (as the real data initially show), and infections are detected and 
“removed” so that the contact removal rate ν ~O(1), yielding from Equation (5) the 
equivalent initial reproduction number, R0 ~1 +ψG. Since the world societal growth data 
indicate 0.04<G<0.2, with a detection threshold only  ψ ~2 times the value R0, we can 
estimate from Equation (5) that 1.08 <R0 < 1.4, well within the mean early onset values of 
1.05< R0 < 2.5 and ±95% of 0.41 < R0 < 4.77 reported in (Kucharski et al,2020). This 
shows that our new societal learning theory presented in this paper, indeed, predicts global 
R0 values consistent with the individual initial transmission estimates, but utilizing a much 
broader global database than that of initial individual infections.  
 
We have further verified the applicability of our analysis at the international level by 
comparing Sweden (total population of around 10M) to rural States in the USA (Iowa, 
Nebraska and Wyoming) far away from large conurbations and with a total combined 
population of about 5M, and that have announced and adopted relatively mild 
countermeasures short of a full “lockdown”. As shown in Figure 3, for 40 days the infection 
rate growth is essentially the same and  1/G ~ 25 days for these apparently very disparate 
regions, reflecting the environmental conditions related to ample personal space and 
decreased opportunity for  transmission, with incubation timescale 1/G increasing by a 
factor  of five when outside heavily urbanized and highly mobile communities. This effect is  
confirmed also in the comparisons between regions and cities with limited total 
populations of less than circa 300,000 (e.g. Idaho and St Louis), which result in similar and 
very low rates (<100 per day). 
 



 
Figure 3 Comparison of trajectories of infection rate growth in relatively little densely populated regions of two 
continents where mild countermeasures have been applied  

One can confirm that, as expected, the underlying cause of the exponentially increasing 
infection growth rate is indeed random person-to-person societal transmission followed by 
incubation. Our analysis demonstrates not only that a similar trend of growth is seen 
globally everywhere, but also it provides a timeframe for readily implementing resilience 
countermeasures to contain the infection spread and, as we shall see in the next section, for 
judging their effectiveness in reducing it.  
 
2.2 Predicting  the infection rate reduction trajectory from the peak 
 
The present analysis illustrates the fact that humans learn how to control the CoVid-19 
outbreak spread and reduce infection rates by using countermeasures (treatments, 
isolation, “social distancing” etc.). Therefore, if these are effective the infection rate must 
reach a peak and, then, decline. In Italy, after some delay in implementing 
countermeasures, the infection rate peaked at about 6000 per day after about 30 or so 
days, as can be seen in the graph of Figure 1 and, then, declined. In our previous paper 
(Duffey and Zio, 2020), using Equation (7), and initially using data from just four countries 
(China, South Korea, Spain and Italy), we demonstrated the finding that the recovery curve 
is universal in shape.  
 
We can now update and further verify this prediction by comparing to other countries that 
have already achieved recovery by adopting effective countermeasures. In particular,  
“island” nations (which include Austria, Australia, New Zealand, Hong Kong and Iceland) 
have been able to control their pandemic and almost completely block entry of any 
imported cases while limiting internal infection spread. The comparison also includes the 
recovery prediction by the elaborate IHME model (IHME, 2020, see also Duffey and Zio, 



2020), a detailed epidemiological computer model used to estimate the evolution of the 
virus diffusion. As shown in Figure 4, these seemingly ideal countermeasures have worked 
effectively and the outcomes in terms of infection rate evolution follow the statistical 
learning theory predictions, providing thus a benchmark for countries where differences in 
trend are a potential cause for concern regarding the effectiveness of their 
countermeasures, and the management and control of the pandemic. 
 

 
Figure 4 Predictions of recovery in agreement with the analytical exponential trend of learning theory 

The key point is that these successful recovery data all follow similar decreasing 
trajectories with, furthermore, the learning curve being nearly the same (k~3), as 
previously found for any learning process on undesired outcomes, accidents, events of 
other modern technological systems operated by humans: we call such a Universal 
Learning Curve the Universal Recovery Curve (URC). 
 
2.3 Ineffective countermeasures and consequent departures from recovery  
 
Ideally, all countries should show or demonstrate some trend of recovery after peaking as 
reported in Figure 4, which plots the evolution of E*, the non-dimensional infection rate 
normalized to the initial peak value, versus N*, the non-dimensional elapsed time of 
experience/knowledge or risk exposure after the rate has peaked (number of days after 
peak/day of peak). However, sometimes the peak is delayed, and may not be well defined,  
so both rate peaking and recovery  do not perfectly follow the ideal theory everywhere.  



 
There are several examples of  “imperfect” learning that can be observed: 
 

1) after the initial rate growth, infection rate values persist somewhat stably, despite  
countermeasures being in effect: this shows in a lack of a steady decline and, rather, 
in the presence of a plateau, as residual cases of infections still contribute to 
balancing the reducing effects of the countermeasures (see Figure 5); 

2) infection rates do not peak but continue to slowly climb, due to the fact that 
countermeasures and/or reporting are not being completely effective;  

3) infection  rates are irregular, showing no clear growth or decline trend and/or 
exhibit occasional or persistent gaps in data reporting. 

 

 
Figure 5 Examples of plateaux in infection rates trajectories 

Formally, the plateau rate, RM, occurs when the countermeasure effectiveness in growth 
reduction precisely balances the increases in  growth rate, which from Equation (8) , since 
RM >>>Rm,  results when 

𝑅𝑀 ≈ 𝑅0𝑒 (𝐺−𝑘)𝑑𝑀   
From Figures 1 and 5, the peak is typically reached by dM ~ 30 days, and from the observed 
initial growth rates 0.1<G<0.2 per day. Numerically, without effective recovery 
countermeasures,  the extreme case is when k<< G, where for the fastest  transmission, G 
~0.2: so, with the  nominal onset threshold of  R0 = 100  per day, and  no immediate  
effective reduction, k~0, the plateau rate is of course given by, RM = 100 e0.2x30 ~ 40000 per 
day, which is close to the observed maximum USA rate in Figure 5, and it is what should be 
expected, whereas the minimum value of the plateau would be when k~G.  



 
Finally, the above analysis of the trajectories of infection rate growth and decline  are based 
on estimates from data and are, thus, inevitably subject to uncertainty due to the many 
endogenous factors related to the virus spreading in the different environmental, social and 
medical conditions, and to the actuation and respect of the countermeasures implemented 
(Rajaonah and Zio, 2020). Still, the findings can provide clear guidance for evaluating the 
situation and reflecting on the best approach to mitigation and control, and on which 
countermeasures to keep, take or eliminate. 
 
 

3. Conclusions 
 
In this paper, we have used statistical theory to predict the growth and reduction of 
pandemic infections using infection rate as a measure of observed outcomes of the 
infection process. We have showed that the traditional person-to-person R0 model  is a 
special case of this new societal learning theory. Based on  publicly available data, the 
analyses for many countries and regions show that the CoVid-19 transmission and 
incubation rate is circa 5 days, independent of global location. After infection rate peaking,   
consistent with  world outcome data, the recovery trajectories follow the Universal 
Learning Curve (Universal Recovery Curve), and different countermeasures result in 
differing growth and decline trajectories.  
The theory and analysis here presented, indeed provide fundamental insights useful  for 
risk handling during the development of and recovery from a pandemic. 
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