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Abstract

The granular structures of energetic materials made of hexogene particles embedded in a matrix are
characterized using a combination of flotation, light-scattering measurements and micro-computed
tomography images. The complementary nature of the three characterization techniques, when
employed with this type of material, allows one to derive accurate estimates for the grain size
distribution and the particle bulk density distribution. Three types of granular formulations, with
the same weight fraction of particles but markedly different grains morphology and shock-sensitivity
properties, are addressed. The particles granulometry and intra-granular porosities differ from one
material to another. The grains spatial dispersion in the three formulations, characterized by the
scale-dependent local density, also varies from one formulation to another. Specifically, we show
that samples containing elongated grains display “abnormal” variance scalings for the grains local
density, as a result of long-range correlations in the granular packing structure. The use of virtual
microtructures to predict the materials mechanical properties is addressed and discussed.

Keywords: Flotation, Light-scattering measurement, Fourier methods, Granular structures,
Virtual microstructures.

1. Introduction

Granular media, made of assemblies of densely-packed grains, may be regarded as discrete sys-
tems of particles that interact with one another. They display a large variety of mechanical behav-
iors (Guyon et al., 1990), owing to highly-nonlinear contact mechanisms between particles (Kaneko
et al., 2003), avalanche phenomena (Peña et al., 2009) and instabilities. Continuum mechanics and
homogenization theories (Milton, 2002) may be used to tackle more simple problems and predict
quasi-static transport properties (Xu et al., 2018). Even then, accurate mechanical predictions
require, in general, an intimate knowledge of the grains packing structure, and of the geomet-
rical factors that monitor the grains shape and spatial dispersion, or their connectivity (Jeulin,
2002). As a straightforward example, in the case where grains are much stiffer than the embedding
matrix, the effective properties of the granular structure depends on the percolation of the grain
packing (Torquato, 2013). Such geometrical effects are difficult to quantify in real materials, which
are random, and must be described by probabilistic models (Stoyan et al., 1995).
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Numerical approaches combining full-fields mechanical computations and “virtual materials”
(Gaiselmann et al., 2014; Wang et al., 2015) based on random probabilistic models (Stoyan et al.,
1995) or machine learning methods, are an efficient method for assessing microstructure-property
relationships (Stenzel et al., 2016; Wu et al., 2018). Even then, thorough characterization tech-
niques combining imaging, mathematical morphology and stereology (Russ and Dehoff, 2012) are
required to construct random models. This approach is not straightforward, however, as pre-
dictions generally depend on the choice of morphological criteria used to fit the parameters of
virtual materials (Neumann et al., 2020) and validation of the predictions require a large number
of experimental data (Neumann et al., 2020). In the present work, our validation of a stochastic
virtual material is based not only on the predicted effective mechanical properties, but also on the
material’s local response.

The present article is devoted to the study of three explosive materials provided by the French-
German research Institute of Saint-Louis (ISL). An explosive material is a material able to release
a great quantity of energy in a small amount of time when thermal thresholds are exceeded. Each
of the three materials is based on RDX organic compound also known as Hexogen (C3H6N6O6),
assembled as a granular set of particles embedded in a wax matrix. The first sample contains
commercial Reduced Sensitivity Hexogen grains (RS-RDX) which present numerous defects such
as solvent inclusions, pores, micro-cracks and twinned grains. The second material is made of
particles noted Raw Very Insensitive Hexogen (RVI-RDX) obtained after a recrystallization of
the RS-RDX particles (Borne, 2006). These particles present sharp edges while crystallization
significantly reduces the number of intra-granular defects (Fig. 1b, top-left). The third material
is made of the ISL patented Very Insensitive Hexogen (VI-RDX) particles with smooth shape
and few internal defects, obtained after a surface treatment of RVI-RDX particles. Intra-granular
defects are well-known to increase the sensitivity to shock of energetic materials. The operations
of recrystallization and surface treatment aim to reduce the sensitivity to shock of RDX based
material, and so, to increase the security by limiting accidental initiation of the explosive. All
manufactured samples are made of 70% mass fraction of RDX particles, and therefore have the
same composition and the same formulation density.

The materials studied in the present work have very different shock sensitivity properties.
Experimental studies have shown that shock sensitivity is driven by microstructural parameters,
notably the size of explosive particles (Moulard et al., 1985), their shape (van der Steen et al.,
1989), extra-granular (Mishra and Vande Kieft, 1988) and intra-granular defects (Borne, 1993;
Baillou et al., 1993; Borne, 1998; Borne and Beaucamp, 2002). In the present work, we seek to
determine if the quasi-static properties of the same material also exhibit differences, and if these
differences can be correlated to the microstructure.

The present work is organized as follows. Sec. (2) is devoted to the morphological charac-
terization obtained from the micro-computed tomography (µCT) images. It also gives a brief
description of the filtering and segmentation techniques applied to the µCT images. Emphasis is
put on the variance properties of the local grains density as a way to evaluate the representativity
of the images. Grain size-distribution and spatial covariance are considered. These measurements
are then compared to experimental data obtained by flotation and light-scattering measurements.
The effective and local elastic response is studied in Sec. (3) making use of full-field Fourier-based
numerical computations. Virtual microstructures are introduced in Sec. (4). Their adequacy for
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predicting the mechanical properties is discussed. We conclude in Sec. (5).

2. Morphological characterization based on micro-computed tomography images

2.1. Image processing and 3D segmentation

Three cylindrical samples with a height of 10 mm and a radius of 5 mm are imaged at the CEA
Gramat by micro-computed tomography (µCT) on a Skycan 1172 device, revealing their inner
microstructures, in three dimensions (Figs. 1a-c). The resolution is set to 3.67 µm for materials
based on RS-RDX and RVI-RDX grains (Figs. 1a-b) and to 3.54 µm for VI-RDX samples (Fig.
1c). To separate neighbouring particles from each other in X-ray micro-tomography images, we use
a combination of standard filtering and watershed transforms (Beucher, 1994) and morphological
criteria relevant to granular structures, which are briefly described below. The reader is referred
to (Chabardès et al., 2017) for a detailed discussion of these segmentation techniques applied to
grains reconstruction.

An adaptive recursive bilateral filter (Yang, 2012) is first applied as a way to remove noise
in the images. The bilateral filter is an edge-preserving filter that acts in a similar way to the
Gaussian filter but introduces less blur. It accepts two kernels: a spectral (or range) kernel and
a spatial kernel that together control the intensity of denoising. Intituevely, a voxel from one
phase (e.g. the RDX grains) should be less affected by a voxel from the other phase (the binder).
The range kernel adapts to the noise and to the difference of the intensity of the different phases.
Similarly, the spectral kernel is used to filter inside the phases without blurring across the particle
borders. As a result, the spectral kernel size should be no wider than the intensity difference of
the phases, and the spatial kernel size should be no wider than the expected particle size. The
reader is referred to (Chabards, 2018) for details how to select automatically the best parameter
values and an extension to multi-phase materials.

Second, a watershed transform (Beucher and Meyer, 1993) is applied to the filtered image,
resulting in numerous over-segmented RDX particles. The markers used for the watershed trans-
form are the local maxima of the distance function from the binder, which is strictly positive
inside the grains. We follow (Chabardès et al., 2017) and introduce a geometric criterion based
on the distance function as a way to detect bottlenecks in-between two adjacent labels, and merge
particles.

The resulting segmentation algorithm, carried out with the Mines ParisTech software library
SAMG (Chabards, 2018), is applied to the three sample images. Despite this treatment however,
about 150 hexogen particles, comprising the most elongated and twinned grains in the RS-RDX
sample, remain over-segmented. This bias is corrected by identifying and merging manually the
labels in this small subset of grains. Some of the resulting segmentations are represented in
Figs. (1d-f). For each of the three materials, four independent µCT volumes are used in the
present study. Each image contains 10003 voxels and represents a volume size of 3.543 mm3 (RS-
RDX, RVI-RDX) and 3.673 mm3 (VI-RDX). To simulate microstructures representative of the
granular materials later on, grains are extracted from the segmented images and saved into a
library of about 15, 000 grain shapes (see Table 1).
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(a) (b) (c)

(d) (e) (f)

Figure 1: Micro-computed tomography images (2D sections) of energetic materials containing different types of
RDX particles. (a) RS-RDX particles with twinned grains indicated in red, (b) RVI-RDX particles with sharp
edges, (c) VI-RDX particle with smooth, rounded shape. (d-f) Segmented volumes. Optical images of the grains
are shown as embedded images, top-left of (a-c).

2.2. Representativity of the segmented images

According to experimental data, the RDX weight fraction is 70% in all materials, which amounts
to a volume fraction of p ≈ 56%. This is in excellent agreement with the volume fraction of RDX
grains as measured in images (Table 1) and suggest even the small grains are present in the
segmented volumes. Nevertheless, the segmented images represent only a small subvolume of
the cylindrical specimens. For the former to be considered as “representative” of the later, two
conditions must hold. First, the granular microstructures must be stationary (i.e. translation-
invariant). This property is assumed here. Second, the size of the imaged volume should be large
compared to the typical size of the heterogeneities, grains, or arrangement of grains, present in the
grain-packing structure. To determine if the segmented images are representative of the granular
materials, we make use of the Matheron’s theory (Matheron, 1989; Lantuéjoul, 1991), which we
briefly describe hereafter.

Let us denote 〈Z(x)〉V the mean over a volume V of a spatial quantity Z(x) and 〈Z(x)〉 the
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Table 1: Number of grains extracted from the segmented images and mean volume fraction, for the three types of
granular materials.

RS-RDX/Wax RVI-RDX/Wax VI-RDX/Wax
Number of grains 13623 22147 25212
Volume fraction 55.6% 56.2% 55.7%
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Figure 2: Average variance D2
Z(V ) vs. subvolume size V for the three materials and corresponding powerlaw fit

with α = 1 or α = 0.7.

mean of Z over R3. The quantity 〈Z(x)〉V is, for fixed volume size V , a random variable with
mean 〈Z(x)〉 and variance D2

Z(V ). For a stationary, ergodic random set, D2
Z(V )→ 0 as V →∞.

Matheron provides the more precise asymptotic expansion (Matheron, 1989):

D2
Z(V ) = D2

Z

A3

V
+ o(1/V ), V � A3, (1)

which relates the variance D2
Z(V ) with the point-variance D2

Z = 〈Z(x)2〉−〈Z(x)〉2 and the integral
range (homogeneous to a volume):

A3 =
1

D2
Z

∫
h∈R3

(
〈Z(x)Z(x+ h)〉 − 〈Z(x)〉2

)
dh. (2)

These expressions generalize to any self-averaging quantity Z(x), however, for simplicity we assume
hereafter that Z(x) is the grains characteristic function so that 〈Z(x)〉V is the grains volume
fraction, estimated over a volume V . The integral range A3 now reads:

A3 =
1

D2
Z

∫
h∈R3

[C(h)− p] dh, D2
Z = p(1− p), (3)

where p = 〈Z(x)〉 is the volume fraction of the grains and C(h) = P{Z(x) = 1, Z(x + h) = 1}
is the covariance function, defined by the probability that two points separated by a vector h are
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Table 2: Values of the exponent, reference volume and point variance in Eq. (4) for the three types of granular
materials, and relative error on the grain volume fraction as measured in images.

RS-RDX/Wax RVI-RDX/Wax VI-RDX/Wax
α 1.0 0.75 0.7
V0 (µm3) 1203 933 723

D2
Z 0.247 0.246 0.247

εrel (%) 0.58 1.41 1.50

in the grains. The integral range may be infinite (A3 = +∞) in materials exhibiting correlations
at infinite length scales, in which case Eq. (1) does not apply, and must be replaced by a new
scaling law. In the limiting case of a Boolean set of cylinders with infinitely-large aspect ratios,
the variance of the volume fraction scales as (Jeulin, 2016):

D2
Z(V ) = D2

Z

(
V0
V

)α
, V →∞, (4)

where V0 is a reference volume. The exponent α < 1 indicates a slower decay of the variance in this
case as compared to (4) and depends on the object type (α = 1/3 and 2/3 for oblate and prolate
cylinders). The factor V0 plays a similar role as the integral range. In a Boolean set of cylinders
with large aspect ratio b/a� 1, where b is the largest dimension and a the smallest, expansion (4)
occurs in the range V � b3 while (1) is recovered in the domain V � b3 (Willot, 2017).

The variance D2
Z (V ) is evaluated by dividing the segmented µCT images into subvolumes of

size V and computing the variance of the apparent grain density. For a given granular material
(RS-RDX, RVI-RDX, VI-RDX), the data is averaged over all sample images (Fig. 2, in log-log
plot). A powerlaw fit of the data is determined in a region of interest of nearly 3 decades. The
scaling law obtained is consistent with Eq. (4), where D2

Z ≈ 0.25 for all materials, whereas the
exponent α and reference volume V0 take on different values for each granular packing (2). The
exponents α ≈ 0.7 and α ≈ 0.75 are indicative of strong finite-size effects and of the presence
of long-range correlations in the RVI-RDX and VI-RDX grain packing types. At this point, it is
useful to note that RVI-RDX and VI-RDX grains have higher aspect ratio than RS-RDX grains, as
will be quantified later on. A wide granulometry distribution with slowly-decaying tail may result
in an asymptotic expansion of type (4), with α < 1 (see appendix Appendix A, where this result is
derived in the case of an ideal Boolean model). The granulometry distributions for the RS-RDX,
RVI-RDX and VI-RDX based materials will be accordingly compared in the next section.

The relative error on the grain volume fraction, also indicated in Table (2), is given by:

εrel =
2DZ (V )

p
√
n

= 2

√
(1− p)V α

0

pnV α
, (5)

computed n = 4 volumes, each of size V = 10003 voxels. The above equation may also be used
to determine the volume required to obtain a given relative error. For instance, a volume of size
of 3.83, 9.03 and 103 mm3 (i.e. 10303, 2, 5303 and 2, 8203voxels) is necessary to measure the grains
volume fraction with a relative error of 1%, for the RS-RDX, RVI-RDX and VI-RDX material
respectively.
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(a) (b)

Figure 3: Morphological granulometry by openings of (a) the RDX grains and (b) the wax binder, for the four
segmented volumes of each material.

2.3. Morphological granulometry and spatial covariance

The morphological granulometry by opening γ, i.e. a sequence of dilation of erosion with a
structuring element of an increasing dimension, is considered to extract the characteristic sizes of
a subset X ⊂ R3, which may be the RDX grains or its complementary set (Serra, 1982). With an
increasing structuring element the opening progressively removes larger grains. The granulometric
curve, equivalent to a cumulative probability distribution Fn, is obtained as:

Fn (X) = 1− |γn(X)|
|γ0(X)|

(6)

where |γn(X)| denotes the volume of the opening γn of set X, the subscript n refers to the size of
the structuring element, and γ0 (X) = X. A cubic structuring element is used.

The granulometry for the RDX grains and for the binder for the four segmented volumes of
each material are represented in Figs. (3). Small variability is observed within different samples
of the same type of material. Moreover, different cumulative distributions are obtained for the
three types of materials. The RDX distribution curves for the RVI-RDX and VI-RDX samples are
shifted to the right compared to RS-RDX, showing that recrystallization increases the grains’ size.
The granulometric curve obtained for the RS-RDX sample is much narrower than that observed
for the VI-RDX and RVI-RDX samples. This is consistent with the slow decay of the variances
for these two materials as compared to the former (see Table 2).

The granulometric curves relative to the binder, represented in Fig. (3b), show small variability
within samples of the same material. The granulometric curves are similar for the RVI-RDX and
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Figure 4: Spatial covariance of the RDX grains for the four segmented volumes for each material. The plateau p2

is plotted in dashed black line with p equal to experimental RDX volume fraction of 0.56.

VI-RDX materials. That of the RS-RDX material is wider in comparison. The presence of large
empty regions in this case suggests that RDX grains are less homogeneously distributed in space in
the RS-RDX material, although other factors, such as the non-convexity of many of the RS-RDX
grains, must also play a role.

The spatial covariance CX(h), defined as the probability that two points separated by a distance
h belongs to set X, is represented in Fig. (4), for each of the segmented volumes. The volume
fraction of the grain is recovered at the point h = 0 (C(0) = p), whereas the slope at the origin is
proportional to the specific surface area. When h is large, the covariance approaches the limiting
value C(h) ≈ p2. The spatial covariances of different volumes for the same material are similar. For
instance, the Pearson’s correlation coefficient calculated between the four volumes for the RS-RDX
and VI-RDX are 0.9999 and 0.9987 respectively. The spatial covariance between all three materials
are quite similar as well, with a correlation coefficient of at least 0.9928 between the RS-RDX and
VI-RDX materials, suggesting that the covariance is unable to distinguish between the different
grain shapes. Interestingly, the covariance function reaches the value p2 at roughly h = 50 pixels,
which is somewhat larger than the largest sizes in the granulometry curves (Figs. 3), highlighting
the presence of correlations between distant points. Such correlations typically appear as a result
of repulsion effects in models of hard-particles that forbid particles interpenetration (Torquato,
2013, Sec. 2.2).
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Figure 5: Experimental density of RS-RDX, RVI-RDX and VI-RDX particles.

3. Comparison between morphological measurements and experimental data

In this section, we compare the segmentation obtained in Sec. (2.1) with the experimental data
(provided by ISL) relative to the granulometry and bulk density distributions of RDX grains which
characterize the amount of pores trapped in the particles.

3.1. Flotation and bulk density distribution

The first characteristic is the bulk density. The bulk density gives information on defects
contained within RDX grains. Bulk densities smaller than ρmax =1.801 g/cm3 reveal the presence
of closed porosities or solvent inclusions. The particle bulk density is measured by the ISL patented
flotation method (Borne and Patedoye, 2009). The RDX particles are immersed in a liquid mixture
whose density is tuned and measured very accurately. After a dispersion of the particles in the fluid
by stirring, they are separated by decantation. The heaviest particles, at the bottom, are extracted,
and weighted. These steps are repeated until all the particles of RDX are extracted (Borne et al.,
1999; Borne and Beaucamp, 2005). To ensure the reliability of the results, the experiment is
performed twice on the same batch. Experiments are performed on 7 g mass particle sample,
equivalent to about one million particles.

The effect of the recrystallization is clearly visible when the cumulative bulk density distribution
of the RS-RDX particles is compared with that of the recrystallized particles (Fig. 5). As RS-RDX
particles contain a lot of intragranular defects, their bulk density is often below the theoretic
density of RDX particles (1.801 g/cm3). On the contrary, the recrystallized particles of RVI-RDX
and VI-RDX contain almost no intragranular defects so that most of the grains have a bulk density
near the theoretic bulk density of RDX grains. We also notice that the cumulative bulk density
distributions of the RVI-RDX and VI-RDX particles are very similar. This is due to the fact that
VI-RDX particles are obtained by applying a surface treatment on RVI-RDX grains which has no
effect on the intragranular defects and so on the bulk density of the particles.
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Figure 6: Classes defined with the experimental data for the first experiment on the RS-RDX grains.

These results are now used to determine the total volume of porosities for each sample. In the
following we assume two opposite hypothesis: either all porosities are voids (zero density), or they
are pure solvent inclusions (density of 1.0 g/cm3).

Making use of experimental results of flotation we now define classes. For instance, the first ex-
periment on RS-RDX particles is made of 7 points of acquisition which define 6 classes (Fig.6). The
first class is composed of particles with a bulk density inbetween 1.8007 g/cm3 and 1.8011 g/cm3

and represents 4.54 % of the total weight of the tested sample (Fig 6). Under the hypothesis that
the particles are uniformly dispersed in each class j, one may calculate the mean bulk density ρj
of each class as:

2

ρj
=

1

ρi−1
+

1

ρi
, (7)

where ρi is the bulk density of the experimental point of acquisition i. The bulk density of some
of the particles, ranging between 3.7% (relative to the second experiment on VI-RDX) and 9.1%
in weight (relative to the first experiment on RVI-RDX), could not be measured. The missing
grains are those grains with a high porosity and a bulk density lower than that of the fluid at the
end of the experiment. These particles constitute a new class, defined in two different ways. The
first method assigns the experimentally measured minimal bulk density to all remaining grains.
For instance, in the case of the first experiment relative to RS-RDX, the class with the missing
particles is made of those particles with a bulk density ρj <1.7946 g/cm3 and represent 8.44 % of
the total weight (Fig 6). The volume of intra-granular defects in this class is thus underestimated.
In the second method, use is made of the µCT images. The segmented grain with the lowest bulk
density is identified and used to define the lowest bound of the new class. The upper bound is
given by the last acquisition point from the flotation experiment. The porosity is determined for
each class, according to the two methods, using:

Φj =
ρmax − ρj
ρmax − ρincl

. (8)
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Table 3: Total volume fraction of intra-granular defect (in %) determined with method 1 (flotation), method 2
(flotation and image analysis). The determination with method 1 only use the experimental data from the flotation.
The determination with method 2 is a combination of the flotation experiment results and the µCT images analysis
results in order to obtained a better accuracy.

RS-RDX RVI-RDX VI-RDX
Defects filled with... air solvent air solvent air solvent
Method 1 exp. 1 0.126 0.284 0.0409 0.0919 0.0474 0.107
Method 1 exp. 2 0.126 0.284 0.0452 0.102 0.0694 0.156
Mean for method 1 0.126 0.284 0.0430 0.0968 0.0584 0.131
Method 2 exp. 1 0.460 0.591 0.183 0.229 0.135 0.189
Method 2 exp. 2 0.471 0.601 0.126 0.177 0.131 0.207
Mean for method 2 0.465 0.596 0.155 0.203 0.133 0.198

Images analysis 0.403 0.090 0.119

Finally, the total volume of intra-granular defects is determined. These results are compared with
the total volume fraction obtained with image analysis on the segmented µCT volumes (Tab. 3).

The results, summarized in Tab. (3), indicate that the two experiences yield different predictions
with respect to the inner cavity within the VI-RDX grains. More experimental points in the second
experience are available than in the first experience relative to low-density particles. Under the
hypothesis that all defects are porosities, the volume increases from 0.047% to 0.069% (column
5, rows 1 and 2, Table 3). These results highlight the importance of the last experimental point
as the total volume of cavities depends on the precision achieved at low density. The volume
of defects determined with both experimental and image analysis results (method 2) is around
twice more important compared to the highest estimate obtained with method 1. In fact, the
use of image analysis in method 2 greatly reduces the discrepancy between the two experimental
results (see columns 5-6, rows 4 and 5, to be compared with rows 1 and 2). Overall, the results
suggest that method 2 is the most accurate. Note that image analysis results for the inner cavity,
obtained from the micro-tomography images solely (row 7, Table 3) do not fall within the range
measured experimentally, as defects smaller than about 1 µm cannot be resolved in the images,
underestimating the total volume of cavities. Flotation experiments can detect these submicronic
intra-granular defects. In effect, the combined use of flotation experiment and image analysis allows
one to determine the intra-granular defects with highest accuracy, whereas any of these methods,
when use together, give underestimated predictions. As expected, the volume of defects for VI-
RDX (or RVI-RDX) is 50% less that of RS-RDX, highlighting the important role of recrystallization
on this property.

The bulk density cumulative distributions are plotted in Figs. (7) for the different materials.
Dots represent experimental results whereas image analysis predictions are shown as colored solid
lines.

Previous experimental studies have shown that closed cavities present during the crystallization
process can contain air, solvent, or both Borne et al. (1999). Thus, image analysis results are
derived under two assumptions: voids are filled either with air or with a solvent of 1 g/cm3. Image
analysis data are in better agreement with experimental data under the hypothesis that voids are
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(a) (b)

(c)

Figure 7: Comparison of experimental density and image analysis density with the hypothesis that the voids are
filled with air or solvent of 1 g/cm3 for (a) RS-RDX, (b) RVI-RDX and (c) VI-RDX.

filled with solvent, not air. Comparing the 3 materials, RS-RDX particles clearly contain much
more pores than the two other materials. We recall that the resolution of the images (3.54 and
3.67 µm) prevent us from taking into account voids smaller than 3 µm in the image analysis results,
unlike results obtained by the flotation method.

3.2. Light-scattering measurements and granulometry

We now examine the granulometry distribution of particles and compare experimental results
with that obtained using image analysis. The size distributions of particle diameters have been
measured with Static Light Scattering (SLS) technique by a COULTER LS230 at ISL. This tech-
nique provides us with diffraction figures. Thus, the SLS-measured diameter is that of a sphere
with closest diffraction figure, whereas image analysis provide a mean and equivalent diameters.
The mean diameter is twice the mean distance between the center of mass and the surface of the
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particle. The equivalent diameters in volume (or surface) are the diameters of equivalent spheres
(or disks) with respect to volume (or surface). The experimental measurements are performed on
a sample made of 450 mg of RDX whereas grains extracted from the four 10003 voxels segmented
volumes, totalling about 125 mg, is assumed to be representative.

The distributions of diameters provided by the COULTER LS230 device are given in Fig. (8).
Care must be taken with the shapes of the distribution curves. These are smoothed result curves
provided by the SLS device and the associated software. A new curve, without the smoothing effect,
is recalculated with SLS raw data and used to compare experimental and image analysis diameters
(Fig. 9). Nevertheless, as shown by the experimental distribution of diameters, recrystallization
plays an important role on the size of the particles. The RS-RDX diameters distribution is narrow
compared to that of the other two materials and centers around a diameter of about 600 µm.

The histogram of the mean, surface-equivalent and volume-equivalent diameters are represented
making use of the classes provided by the COULTER device. Our analysis of the segmented
volumes does not take into account grains lying on the border of the µCT images which are
incompletely segmented. Without correction, the sampling method would be biased toward small
particles, as large particles have a higher probability to lie on the border. To correct this bias, use
is made of the Miles-Lantuéjoul correction (Lantuéjoul, 1980; Miles, 1974), which assigns to each
particle X the weight 1/P{X ⊂ D} where:

P{X ⊂ D} =
(L− Lx) (L− Ly) (L− Lz)

L3
(9)

is the probability that a particle X is completely included within the volume D (Serra, 1982), L
is the size of the volume, and Lx, Ly, Lz are the lengths of the bounding box around particle X.
Both the original and corrected surface-equivalent diameter histogram are shown in Figs. (9b-d)
for information.

Figure 8: Probability distribution of experimental diameters as measured by the COULTER LS230 SLS device, for
the three RDX materials.
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(a) (b)

(c) (d)

Figure 9: Histogram of grains diameters: comparison between experimental data and granulometry distribution
inferred from image analysis. (a) RS-RDX material (various definition of the diameter). (b-d): Surface-equivalent
diameter (RS-RDX, RVI-RDX and VI-RDX resp.).

The surface-equivalent diameter of the RS-RDX particles are bigger than their volume-equi-
valent and mean diameters, as shown in Fig. (9a) where, for clarity, only the heights of the
histogram bins are represented. Similar trends (not shown) are observed for the two other materials.
The surface-equivalent diameters, considered in Figs. (9b-d), is closest to the experimental data.
Experimental data on figure 9 are raw data without any smoothing exhibiting some spikes. The
distribution curve of RS-RDX particles (Fig. 9b), obtained with image analysis, is shifted to the left
compared to experimental data, and contains a higher number of small particles than the latter.
Recall that RS-RDX particles are often twinned and over-segmented during the segmentation
process, therefore not all large particles may be detected in the µCT image. The surface-equivalent
distribution of the RVI-RDX and VI-RDX measured by the experimental device and by image
analysis are in good agreement with each other (Fig. 9c-d). Differences occur mainly along the
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distribution tail, i.e. for large diameters. These small differences are more in particle sizes that
in amount of particles. The histogram is defined in volume, so that the number of particles with
a large volume is small and may not be representative. For example, only three particle with a
surface-diameter larger than 1100 µm are observed in the RVI-RDX library of grains.

4. Generation of virtual microstructures and elastic response

Figure 10: Diagram of the method-
ology used to generate virtual mi-
crostructures

In the following, the segmented micro-computed tomography
images are used to construct a library of grains to generate virtual
microstructures. The virtual microstructures shall have the same
volume fraction, morphological granulometry and spatial covari-
ance as measured in the image, but also, the same effective elastic
properties. The overall behavior as well as the full-field local elastic
response is predicted using the so-called “Fast Fourier Transform”
(or “FFT”) method, originally proposed by Moulinec and Suquet
(1994) for homogenization problems in mechanics. This method,
which makes use of 3D microstructure images as input, does not
require meshing and is especially useful for treating complex hetero-
geneous structures. Stress equilibrium and strain admissibility are
enforced in the Fourier domain whereas the local constitutive law
are computed in the real space. The decomposition of fields into
divergence-free and rotational-free parts is provided by the Green
operator associated to linear-elastic problems (Mura, 1982), and
fast Fourier transforms are used to switch between the two spaces.
Over times, refined FFT algorithms and methods have been pro-
posed. The present work employs the “discrete” Green operator
introduced by Willot (2015), which improves on the accuracy of
the local fields near interfaces. This FFT scheme has notably been
applied to homogenization problems related to energetic materials
(see e.g. Ambos et al. (2015)). Although FFT and finite element
methods have been found to achieve, in general, similar accuracy,
it has been argued that the former performs better in terms of
memory costs (Gasnier et al., 2018).

4.1. Generation of representative virtual microstructures

The Random Sequential Adsorption (RSA) method (Feder,
1980) is used to build virtual structures using the library of grains.
In the RSA algorithm, each grain is implanted sequentially, at a
random position, until the selected grain is adsorbed. A grain
is adsorbed when it does not intersect any previously implanted
grains. The library of grains is composed of grains extracted from
the micro-computed tomography segmented volumes. Each grain
of the library is characterized by several descriptors including volume, surface, size of the minimal

15



(a) (b) (c)

Figure 11: Slices extracted from 10003 voxels volumes of VI-RDX/Wax. (a) Segmented micro-computed tomogra-
phy. (b-c) Generated microstructures with representative grains (b) and with selected grains (c), which are closer
to spheres compared to (a) and (b). These grains have been selected thanks to the sphericity index computed in
the library of particles.

oriented bounded box, sphericity indexes and angularity index. Grains not entirely included in the
segmented volumes are discarded and are not present in the library of shapes.

In the rest of this study, the library of grains is divided into several classes, according to the
volume of the grains (step 1 Fig. 10). We implant the grains sequentially starting with the class
which contains the bigger grains, until the class containing the smallest grains is picked. This
method allows one to generate packing with moderate grain density (in the present case a volume
fraction of 56 %). The grains can be selected randomly in the class. It is also possible to select
grains with specific properties (for exemple a high index of angularity, sphericity, convexity. . . ) as
each grain in the library is characterized with several descriptors (step 2 Fig. 10). The next step
(step 3 Fig.10) is the implantation of the grain in the volume. For the first 20 grains, random
positions are chosen until the grain is adsorbed. For the remaining grains, in case of intersections,
the grain is moved in a random direction. If the grain is not adsorbed once all possible positions
along the line have been tested, a new random initial position is picked. After 50 trials with
the same grain, a new random grain is selected in the class. The volume of grains implanted for
each class is controled to respect the granulometry of the real material. These steps are repeated
until the correct volume fraction from each class is reached and until the final volume fraction is
reached (step 4 Fig. 10). The microstructures generated are periodic. Two examples of generated
microtructures containing VI-RDX grains are presented in Fig. (11) and compared with the µCT
image. When grains are selected randomly without bias, the resulting microstructures are found
to be representative of the real materials in terms of spatial covariance and granulometry (see
Figs. 12). This verification is the final step to generate representative virtual microstructures (step
6 Fig. 10).

4.2. Elastic response of micro-computed tomography volumes

The elastic response of the material is considered hereafter, with the constitutive law σ(x) =
C(x) : ε(x) in which σ(x) is the local stress tensor, ε(x) the local strain and C is the stiffness tensor.
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(a) (b)

(c)

Figure 12: Comparison between the µCT images and generated model of the VI-RDX material in terms of the
morphological granulometry of the grains (a) or binder (b) and their spatial covariance (c). The four µCT images
are represented by blue solid lines, the generated microstructure without morphological closing by a black dashed
line, and the same microstructure with morphological closing by a black solid line.

Small deformations, quasi-static equilibrium, and periodic boundary conditions are assumed. Wax
is assumed to yield an isotropic response with Young modulus 55.7 MPa, Poisson ratio 0.3 (Hossain
et al., 2009). RDX grains are orthotropic crystals with moderate anisotropy, so that the stiffness
tensor comprises 9 independent moduli. Hereafter we use the experimental moduli determined
with Brillouin spectroscopy (Bolme and Ramos, 2014). The crystallographic orientation of the
RDX grains are assumed to be random variables uniformly-distributed on the sphere. Hydrostatic
compression is applied, i.e. 〈tr(ε(x))〉 = 1% is enforced where 〈·〉 denotes a spatial mean over the
unit cell.

The effective bulk modulus K, determined using all four segmented volumes of each material,
vary greatly according to the type of RDX grains (Tab. 4). The VI-RDX/Wax presents the softest
response and is also the less shock-sensitive material (Borne and Beaucamp, 2002). A FFT map
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Table 4: Effective bulk modulus K for the RS-RDX/Wax, RVI-RDX/Wax and VI-RDX/Wax materials.

Material RS-RDX/Wax RVI-RDX/Wax VI-RDX/Wax
K (GPa) 0.471 0.561 0.389

of the stress field in the binder is represented in Fig. (13) for the VI-RDX material. Similar
maps are observed for all types of materials. Stress concentration zones appear to be located
around contact points or in-between grains which are close to one another, a feature noticed
in similar grain packings (Willot et al., 2013). These computations are made on the whole 3D
microstructures. Results may not be clearly visible on the 2D slice shown on figure 13. Most grains,
including the largest ones, are in contact with a few neighboring grains. The mean connectivity,
which corresponds to the mean number of contact point of each grain, is around 2.6 for the three
materials. If we only consider grains with a diameter equivalent in volume higher than 585 µm,
the mean connectivity per grain is around 18.4. Likewise, the number of regions around grains
where the mean stress is highest, and the intensities of these local maxima, depend on the grain
size. This point, which is outside the scope of the present work, is not discussed here.

Such features may be described by means of stress concentration factors that depend on how
close to one another the two grains are, and how stiff they are compared to their embedding
medium (Hyeonbae et al., 2015) (see also McPhedran et al. (1988) for an earlier work in the
context of conductivity). The histogram of the mean stress (1/3)tr(σ(x)) values are represented
in Fig. (14) for the various µCT samples. The mean stress in the grain is higher in the VI-RDX
based material compared to the RS-RDX and RVI-RDX based materials. The former also presents

Figure 13: FFT map of the mean stress (opposite of pressure) in MPa along a 2D slice extracted from µCT image
of a VI-RDX material. Highest stress values are located along contact points between grains.
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the most narrow stress histogram. The histograms of the stress field in both the grains and wax
present asymmetric distribution tails close to powerlaws, features which are consistent with results
obtained in elasticity for polycrystals (Willot et al., 2020).

(a) (b)

Figure 14: Log-Log plot of the histogram of the mean stress (1/3)tr(σ(x)) in the RDX grains (a) and in the wax
binder (b) for the three types of materials. Histograms are computed on several samples of each material: negative
parts of the histograms are represented by the curves shown at the bottom of the graphs. Inset (bottom-left):
distribution in linear scale.

4.3. Elastic response of virtual materials

The same hydrostatic loading is now applied to the virtual microstructures. In this section, we
focus on the VI-RDX material. The effective bulk modulus, predicted by Fourier computations, is
two times softer than that computed using µCT volumes (Table 5). Recall however that the random
sequential algorithm forbids grain interpenetration, or even contact points and thus the grains of
virtual microstructure have weak connectivity. This feature, which is not apparent in covariance
or granulometry curves, is especially important for predicting the mechanical properties since wax
is much softer than the RDX grains. Therefore, we seek for a simple way to increase connectivity
while leaving nearly intact other properties. A morphological closing (erosion of dilation) with
cubic structuring element is employed. This operation fills in narrow gaps in-between grains and
increases the contact surfaces between grains. It also, as a side effect, removes the intra-granular
defects. Consequently, the intra-granular defects are re-implanted after the closing operation.
Changes in the volume fraction, spatial covariance and granulometries are negligible (Figs. 12).
The bulk modulus of the microstructure with higher grain connectivity is greatly increased and
matches that obtained on the µCT image (Table 5) when a cubic structuring element of size 1 is
chosen.

To validate our hypothesis, the histogram of the local hydrostatic stress field is computed for
the two virtual microstructures with and without closing, and compared to the stress histogram
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Table 5: Bulk modulus K of the generated microstructures

Type of microstructure K
Mean on the 4 µCT volumes 0.389 GPa
Generated microstructure 0.202 GPa
Generated microstructure after a closing 0.395 GPa

(a) (b)

Figure 15: Mean stresses distributions in the (a) RDX grains and (b) the wax binder for the VI-RDX/Wax micro-
computed tomography and generated microstructures. The negative values are also plotted (lowest curves). The
distribution on a linear scale is presented on the bottom left.

in the µCT image (Fig. 15). The histogram of the stress field within the virtual microtucture with
closing matches that measured on the µCT image, with a very good accuracy. The same stress
field histogram is very different in the virtual microstructure when no closing operation has been
performed, highlighting the strong effect of grain connectivity with respect to local and effective
properties.

Although the grains’ connectivity has a strong effect on the effective elastic properties, this
is not so for the shape of the grains. Materials made of grains with low or high sphericity were
generated using the same methodology (Kaeshammer et al., 2019b). More precisely, we generated
materials containing grains with sphericity index lower or higher than the mean value (Kaeshammer
et al., 2019a). Their effective elastic bulk modulus, predicted by Fourier computations, was found
to be very close to that of the unbiased simulated microstructures. Moreover, this result was
unchanged whether a morphological closing was applied or not, or when the angularity was used
instead of sphericity. Finally, the stress histograms are found to be quite similar in all cases (see
Fig. 16).
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Figure 16: Mean stresses histogram within generated material with grains representative of the VI-RDX grains
(black) or grains selected with a bias: low (red) and high angularity (green). The negative values are also plotted
(lowest curves). The distribution on a linear scale is presented on the bottom left. The distribution of the angularity
index in each microstructure is presented on the figure on the right.

5. Conclusion

Three types of materials containing granular structures have been studied. They are composed
of RDX grains embedded in a wax matrix. The properties of the constituents are identical for
each of the three materials but the shape of the RDX grains, and so the microstructures differ.
Micro-computed tomography images of these materials have been segmented. The grain shape
and size-distribution, and their spatial distribution have been characterized using morphological
means. This analysis reveals that the three materials have an identical grain spatial distribution
but a different grain size distribution in addition to different grain shapes. The segmented micro-
computed tomography images have been found to be representative of the granular material.
This has been demonstrated by an examination of the variance associated to estimates of the
grain density, but also by comparison with experimental data, light-scattering measurement and
flotation methods, which are similar and validate image analysis results.

We have also shown that the use of micro-computed tomography and image analysis combined
with light-scattering measurement and flotation allows computing accurate size and bulk density
distribution. Moreover, image analysis techniques combined with the flotation method improves
the estimation of the intra-granular defects volume. This is due to the fact that the flotation
method allows the detection of small cavities entrapped in the grains with a good accuracy, but
is not adapted to detect large cavities in only a few grains. On the contrary, the resolution of the
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micro-computed tomography scanner is not high enough to detect intra-granular defects smaller
than 1 µm, but the analysis of the micro-computed tomography images allows to measure the
volume of the biggest intra-granular defects, even in only one grain.

The elastic response of the three materials segmented volumes have been computed and shows
noticeable differences. It reveals the importance of the granular structure on the elastic response
of a material. Virtual microstructures that mimic the granular structures have been generated
using a random sequential adsorption method. These virtual microstructures are representative
of the micro-computed tomography images in terms of covariances and other morphological char-
acteristics; however they yield markedly different (softer) elastic properties. We have shown that
these differences are induced by the lack of connectivity in the grain packing of the virtual mi-
crostructures. A simple method using morphological closing is proposed to increase the grains
connectivity. The elastic properties of the granular materials are recovered once the connectivity
of the particles packing has been adjusted. Furthermore, the local response in the virtual ma-
terials, represented by the stress histograms, are in good agreement with that obtained for the
micro-computed tomography images, once the grains connectivity has been corrected. This result
highlights how quasi-static mechanical properties of granular structures depend on certain regions
of interest in the grain packing, and, conversely, that reconstruction methods, and segmentation,
may greatly affect the predictions of mechanical properties.
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Appendix A. Variance properties of Boolean media with wide granulometry

Let us consider a Boolean random set (Matheron, 1975)M made of the union of primary grains
A(`) of diameter 0 < ` <∞. The grains are compact convex (possibly random) sets with centers
distributed spatially according to a Poisson point process P of intensity θ(`)d`, representing the
mean number of object per unit volume in the range [`; `+ d`], and accordingly:

M =
+∞⋃
i=0

M[id`,(i+1)d`], M[`,`+d`] =
⋃

x∈P(θ(`)d`)

[x+ A(`)], (A.1)

where x+A(`) is the set A(`) translated by a vector x andM[`,`+d`] is a random set with monodis-
perse grain and infinitesimal grain density. Thus, set M is defined by the intensity distribution
function θ(`), equivalent to a granulometry distribution, and by the primary grains A(`), equiva-
lent to a shape function. We recall the expression for the covariance of the complementary set of
the union of two independent random sets M1 and M2 as:

C(M1∪M2)c(h) = P{x, x+ h ∈ (M1 ∪M2)
c} (A.2)

= P{x, x+ h ∈Mc
1}P{x, x+ h ∈Mc

2} = CMc
1
(h)CMc

2
(h).
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Thus, by extension, the covariance of the complementray set of M reads:

CMc(h) = P{x, x+ h ∈Mc} = exp

∫
`>0

logCM[`,`+d`]
(h)

= exp

∫
`>0

−d`θ(`) [2|A(`)| −K(`;h)] , (A.3)

where K(`;h) = |A(`) ∩ [h + A(`)]| is the mean geometrical covariogram of A(`), averaged over
all directions h, and |A(`)| denotes the volume of the grain A(`). Here, use has been made of
the Choquet-Matheron-Kendall theorem (see e.g. Chiu et al. (2013)). Let us now assume that the
shape functions A(`) are homothetic to one another:

A(`) =
`

`0
A(`0), K(`;h) = (`/`0)

dK0(h`0/`), K0(h) = K(`0;h) (A.4)

for some size `0, where d is the dimension. The mean volume fraction of M reads:

f = 1− exp

∫
`>0

−d` θ(`)|A(`)|. (A.5)

Assume that M contains a proportion of very large grains so that the tail of the granulometry
function may be modeled by the power-law:

θ(`) ∼ θ0 (`/`0)
ν , `→∞, (A.6)

with θ0 constant and ν < −(d+ 1) so that f < 1. The use of (A.3) and (A.6) together with (A.5)
entails:

CMc(h) = (1− f)2exp

∫
`>h

d`θ(`)

(
`

`0

)d
K0

(
h
`0
`

)
, (A.7)

where the domain of integration accounts for the fact that function K0(h) is zero whenever h ≥ `0.
Finally:

CMc(h) = (1− f)2exp
{
θ0h

1+ν+d/`ν0I(`0)
}
, (A.8)

I(`0) =
1

`d0

∫ 1

0

dsK0(s`0)s
−ν−d−2 < +∞,

as h� 1. The powerlaw decay of the covariance function (CMc(h) = CMc(∞) + O(h1+ν+d)) may
be compared with results obtained in one dimension for time series problems by Koutsoyiannis
(2002) who introduced multi-time processes to interpret the “Hurst phenomenon”, a slow decay
of the autocovariance function for the time series.

We now specialize these results to d = 3. The variance of the apparent volume fraction, mea-
sured on spherical domains of diameter L and volume V = π/6L3 may be computed as (Lantuéjoul,
1991):

D2(V ) =
1

V f(1− f)

∫
h≤L

dh 4πh2
[
CM(h) − f 2

]
, (A.9)
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where CM(h) = 2f − 1 + CMc(h) is the covariance of M. We obtain:

D2(V ) =
1− f
f

24θ0I(`0)

(ν + 6)`ν0

(
π/6

V

)−(4+ν)/3
+O(1/V ), V →∞, (A.10)

where the first term on the r.h.s. is the leading-order term when −7 < ν < −4. With the choice
ν = −6, the volume fraction of grains of size & ` decreases proportionally to 1/`2 (Eq. A.5), and
the variance scales as D2(V ) ∼ V −2/3.
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