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Abstract

The reader should be aware of the explanatory nature of this article. Its main
goal is to introduce to a broader vision of a topic than a more focused research paper,
demonstrating some new results but mainly starting from some general consideration
to build an overview of a theme with links to connected problems.

Our original question was related to the height of random growing trees. When
investigating limit processes, we may consider some measures that are defined by in-
creasing functions and their generalized inverses. And this leads to the analysis of
Lebesgue decomposition of generalized inverses. Moreover, since the measures that
motivated us initially are stochastic, there arises the idea of studying the continuity
property of this transform in order to take limits.

When scaling growing processes like trees, time origin and scale can be replaced by
another process. This leads us to a clock metaphor, to consider an increasing function
as a clock reading from a given timeline. This is nothing more than an explanatory
vision, not a mathematical concept, but this is the nature of this paper. So we consider
an increasing function as a time change between two timelines; it leads to the idea
that an increasing function and its generalized inverse play symmetric roles. We then
introduce a universal time that links symmetrically an increasing function and its
generalized inverse. We show how both are smoothly defined from this universal time.
This allows to describe the Lebesgue decomposition for both an increasing function
and its generalized inverse.

1 Introduction

Real valued increasing functions can always be inverted, even when they are not bijective,
leading to what is most often called a generalized inverse, but can also be called pseudo-
inverse, quasi-inverse or quantile function. This applies obviously to monotonic functions,
but we keep the focus on increasing functions for the sake of simplicity.

The history of the generalized inverse is difficult to draw since it is a well established
auxiliary notion that was not considered for a dedicated study. The earliest appearance of
the operation is due to Lebesgue (1910) in [13]. This notion has been commonly used in
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measure and probability theories, but also in other domains where it takes other names.
However, with the use of more precise properties, there has been some papers dedicated
to generalized inverses. The fuzzy logic domain has made precise definitions such as [12]
citing [20] and even earlier work of [18] related to t-norms: in these papers the most general
definitions are given at the price of potentially very irregular generalized inverses. In recent
years there was a rising interest to clarify the definitions and the properties of generalized
inverses as in [7, 10]. None of these papers try to link the measure defined by an increasing
function and the one defined by its generalized inverse, so that the result stated in this paper
is new as far as we know, as the symmetric description we introduce for that purpose.

Now, we would like to give some motivation for this study. Consider an homogeneous
discrete Markov growing tree T (t) as in [9] but without deletion. The dynamics is quite
simple: it starts with a unique root T (0) as a node, and then every node gives birth to
children with a Poisson law, independently of all other nodes. The number of nodes (i.e.
the size Y (t) of the tree) is a Yule process, known to grow exponentially (scaling by an
exponential factor gives a limiting exponential distribution). The height H(t) (i.e. the
maximum distance of a node to the root) grows almost linearly. When considering limit
(possibly stationary) processes, one can be tempted to look at what happens when the tree
reaches the height h (at the stopping time th = inft{H(t) ≥ h}) and precisely at the height
H(th) = h, discarding the part of the tree T (th + t) whose height is less than h: it becomes
a forest T ′h(t) (i.e. a set of trees, starting with a single root at t = 0 that was the first node
of the tree T to reach height h) but this is not a difficulty. This procedure is quite standard
to try to build a stationary process (if T ′h is to converge when h→∞). One difficult part is
to compute the time th when the tree T reaches height h. Note that this requires to inverse
height and time: from H(t), we want to compute t(h) = th. Both functions are increasing
and are generalized inverses of each other, and also both can be seen as timelines.

Now, in our search for limit processes, we could also consider scaling in time and in
space: then we have to go for continuous trees, as those beautifully described by Aldous
[2, 1, 3]. These trees are linked to Brownian excursions and the construction makes use of the
maximum of excursions. The same method can be applied for continuous tree construction
directly to a Brownian motion using its minimum and maximum. Again, the generalized
inverse appears: the maximum Mt of a Brownian motion Bt on [0, t] is a continuous increasing
process that is the generalized inverse of an increasing Lévy process. The intensity of the
Lévy process is related to the negative excursions when the Brownian motion reaches its
maximum, explaining the Markov property of this generalized inverse. The maximum Mt is
not Markovian but can be considered as kind of semi-Markov process, where the remaining
time to spend in a state only depends of the time already spent in this state (except at the
transition times where the dynamics is more complex). Here the generalized inverse gives a
Markovian description for a non-Markov process.

Generalized inverses of increasing functions (hence positive measures) therefore look like
an interesting tool to use for some problems related to random processes. There are also other
works relating these two measures. In measure theory, the generalized inverse is linked to
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change-of-variables formulæ for Lebesgue–Stieltjes integrals as in [8]; in probability theory
it is linked to the distribution function of a real-valued random variable: the generalized
inverse appears naturally to transform a uniform random variable into a random variable
with a given distribution function and this technique is widely applied to simulation; for the
same reason the generalized inverse is sometimes called quantile function and the previous
operation a quantile transformation [19]: it is used in statistics (and applied e.g. to insurance
and finance). So several measures can be related by using generalized inverses, but, to our
knowledge, there is no publication describing this operation without conditions. And so we
would like to relate the distribution described by an increasing function (and its Lebesgue
decomposition [14]) with the distribution described by its generalized inverse. At the same
time, we believe that the concepts built for that purpose can be useful for further analysis,
like continuity properties of the transform at a functional level, which is necessary for random
measures.

Since we would like this article to be expository, we emphasize the concepts more than
the results so the structure of the article is as follows. Section 2 sets up a few basic definitions
and properties of increasing functions and generalized inverses. Then we present our clock
metaphor in Section 3 where we build a symmetric representation of the pair made by an
increasing function and its generalized inverse. Section 4 further refines this representation
in order to state a smooth relationship linking the two measures defined by such a pair of
functions. Section 5 finally links precisely the two Lebesgue decompositions with Section 6
presenting our conclusion.

2 Generalized inverses

This section presents a few basic concepts and properties on generalized inverses that are
needed for further analysis. We also intentionally state and prove a few inequalities between
an increasing function and its generalized inverse since even if these inequalities are basic,
one can easily find erroneous inequalities.

We consider a function f that is a mapping from T1 ⊂ R onto T2 ⊂ R where T1 and T2

are finite closed intervals i.e. T1 = [a1, b1] with −∞ < a1 < b1 < ∞ and T2 = [a2, b2] with
−∞ < a2 < b2 <∞.

Throughout the paper we will use the term increasing for non-decreasing functions f :

x > y =⇒ f(x) ≥ f(y) (2.1)

If the right inequality is strict in (2.1) we say f is strictly increasing. Properties of increasing
functions and their generalized inverses can be lengthy if we consider all the special cases
at the endpoints, therefore in the sequel, we will skip these parts of the proofs (e.g. right
below, skip the discussion of the existence of right [resp. left] limits at the upper [resp. lower]
endpoint of our sets).

3



Left and right limits always exist for increasing functions and are denoted by

f(x−)
def
= lim

z↑x
f(z) = sup

z<x
f(z), (2.2)

f(x+)
def
= lim

z↓x
f(z) = inf

z>x
f(z). (2.3)

By definition, f is right-continuous [resp. left-continuous ] at x when f(x) = f(x+) [resp.
f(x) = f(x−)]. And f is continuous at x when it is right and left continuous at x. A càdlàg
function is a function that is right continuous with left limits. Note that, in the following,
we will consider only càdlàg increasing functions.

To ensure correctness of the statements at the endpoints of intervals T1 and T2, we assume
f(a1) = a2 and f(b1) = b2, possibly shifting the endpoints of T2. In line with the càdlàg
property, we take the convention f(a1−) = a2 and f(b1+) = b2. Now, if we consider a map
f defined on (semi-)infinite intervals, most results can be translated by compactification:
g = tanh ◦f ◦ tanh−1 is a map from T ′1 = [tanh(a1), tanh(b1)] into T ′2 = [tanh(a2), tanh(b2)]
using the convention tanh(−∞) = −1 and tanh(∞) = 1 and by extending f at infinity
whenever the corresponding endpoints a1 or b1 are: f(−∞) = lim−∞ f and f(∞) = lim∞ f ;
since f is increasing, these limits always exist (they may be infinite); T ′1 and T ′2 are finite
intervals, g(a1) = a2 and g(b1) = b2. The properties of g can be translated to f by the
relation f = tanh−1 ◦g ◦ tanh, but this requires some care at the endpoints when they go
to infinity, using the continuity (by construction) of g at endpoints. This procedure allows
also to deal with (possibly) unbounded f on a finite open interval, such as tanh−1 on (−1, 1)
that can be extended to [−1, 1].

Figure 1: The ambiguity at jumps. Left: Jumps of an increasing function with an illustration
of “free” value at a jump. Right: Flat sections of an increasing function and the related
concepts: interior (x, y), value of the flat section f(z) and “free” value at the boundaries x
and y.

A function f has a jump at x when f(x−) < f(x+). This means the value f(x) can be
“anywhere” between f(x−) and f(x+) as illustrated by Figure 1. This “ambiguity” plays a
role in the definition of generalized inverses since a flat section is transformed into a jump
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(and conversely) but the choice of the value at the jump is arbitrary; only the left and right
limits are non-ambiguously defined. Note that two increasing functions f and g having the
same left and right limits (i.e. f(x−) = g(x−) and f(x+) = g(x+) ∀x ∈ T1 ) are almost
everywhere equal with respect to Lebesgue measure since there is at most a countable number
of jumps (where left and right limits differ); the minimal such function is left-continuous and
the maximal one is right-continuous. More precisely, this class of functions is equal to the
set of all functions greater than the (unique) left-continuous representative and less than its
unique right-continuous representative.

This discussion is important to understand that there is an arbitrary decision to make
when one defines the generalized inverse: since only left and right limits are unambiguously
defined, all generalized inverses are almost surely equal but one can choose any representative
in each class. We refer to [6] for more details.

To make this arbitrary decision explicit, consider an increasing function f : T1 → T2.
Then to say that g is a generalized inverse for f means that g : T2 → T1 and for each y ∈ T2,
f(g(y)−) ≤ y ≤ f(g(y)+) (remember by convention f(a1−) = a2 and f(b1+) = b2). A
generalized inverse for f is automatically increasing. Let f∧ and f∨ be the functions on T2

defined by f∧(y) = supT1{f < y} and f∨(y) = infT1{f > y}, where the notation {f < y}
is an abbreviation for the set {x ∈ T1 : f(x) > y}, and where supT1 and infT1 denote the
supremum and infimum in T1 , so that supT1 ∅ = a1 and infT1 ∅ = b1. Then a function g on
T2 is a generalized inverse for f if, and only if, f∧ ≤ g ≤ f∨. In particular f∧ and f∨ are,
respectively, the smallest and the largest generalized inverses for f .

In the next sections, all increasing functions will be chosen to be right-continuous (see
Figure 2): this is a consistent choice and it is convenient for our probabilistic background.
It goes with the following definition.

Definition 2.1 (Generalized inverse) Let f : T1 → T2 be an increasing function. The
generalized inverse f∨ is defined by

f∨(y)
def
= inf T1{f > y} (2.4)

For the sake of clarity, we use f∨ : T2 → T1 for the generalized inverse, and f−1 for the
inverse image (as acting on sets).

The generalized inverse has some interesting properties. Lots of them are already demon-
strated but we give a fairly exhaustive list hereafter for the sake of completeness and to help
following proofs.

Proposition 2.2 (generalized inverse properties) The generalized inverse f∨ of an in-
creasing function f has following properties:

1. The generalized inverse f∨ can be alternatively defined by:

f∨(y) = sup T1{f ≤ y} (2.5)

2. f is right-continuous if, and only if, {f ≥ y} is closed for all y ∈ T2;
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Figure 2: The right-continuous generalized inverse.

3. f∨ is increasing, has left limits and is right continuous (càdlàg);

4. the following implications hold for all x ∈ T1 and y ∈ T2:

y > f(x) =⇒ f∨(y−) > x, (2.6)

y ≥ f(x−) =⇒ f∨(y) ≥ x, (2.7)

y ≤ f(x) =⇒ f∨(y−) ≤ x, (2.8)

y < f(x) =⇒ f∨(y) ≤ x, (2.9)

y < f(x−) =⇒ f∨(y) < x, (2.10)

5. (f∨)∨ = f ;

6. f∨(f(x)) ≥ x ∀x ∈ T1 and f(f∨(y)) ≥ y ∀y ∈ T2;

7. f is strictly increasing if, and only if, f∨ is continuous. Similarly f∨ is strictly in-
creasing if, and only if, f is continuous.

Proof : For the first claim, let’s consider y ∈ T2. Define x2 = infT1{f > y} and x1 =
supT1{f ≤ y}: x1 ≤ x2 since f is increasing. Now, by definition of x2, for all x < x2,
f(x) ≤ y which leads to x1 ≥ x2 by applying the definition of x1. Therefore x1 = x2 and
f∨(y) = infT1{f > y} = supT1{f ≤ y}.

For the second statement, consider the set A = {f ≥ y} and x0 = inf T1A. Note that for
any z ∈ A, z′ ≥ z implies z′ ∈ A. Therefore the set is an interval whose upper endpoint is
b1. To prove that A is closed, we need only to prove it includes its lower endpoint x0. By
definition of A, f(x0+) ≥ y. If f is right continuous, f(x0+) = f(x0) ≥ y hence x0 ∈ A and
A is closed. Hence the right-continuity of f implies the closedness of {f ≥ y}.

Reciprocally assume f is not right-continuous: then there exists z such that f(z) <
f(z+). Take y = f(z+) and define A and x0 as above. Since f(z) < y and f is increasing,
x0 ≥ z. f(z+) = y implies f(x) ≥ y for all x > z therefore x0 ≤ z by definition of A. This
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proves z = x0. However z = x0 6∈ A because f(z) < f(z+) hence the set A is not closed. By
contraposition this proves the closedness of {f ≥ y} implies the right-continuity of f and
the equivalence is proved.

For the third point, note first that the sets Ey
def
= {f > y}, for y ∈ T2, are decreasing,

therefore the infimum f∨(y) = inf T1Ey is increasing. We then have to prove f∨ is càdlàg.
Left and right limits always exist for increasing functions. Since the sets Ey are open and
decreasing for y ∈ T2, we have⋃

z>y

Ez =
⋃
z>y

{x ∈ T1 : f(x) > z > y} = {x ∈ T1 : f(x) > y} = Ey

from which we get

f∨(y+) = inf
z>y

f∨(z) = inf
z>y

inf T1Ez = inf T1

⋃
z>y

Ez = inf T1Ey = f∨(y)

so that f∨ is right continuous.

For the fourth point, the implications (2.6)–(2.10) are ordered with respect to the left
condition. We will demonstrate first only (2.6), (2.9) and (2.10). The demonstrations of
(2.7) and (2.8) are postponed after demonstration of the fifth point.

Equation (2.4) yields directly (2.9).
For (2.6), let xn = min(x + 1/n, b1) and take z such that f(x) < z < y. Since f is

right-continuous, f(xn) ↓ f(x) and there exists n such that f(x) ≤ f(xn) < z < y. Now by
definition f∨(z) = supT1{f ≤ z} ≥ xn > x. Since f∨(z) ≤ f∨(y−), we have f∨(y−) > x.

For (2.10), assume y < f(x−). Then take xn = max(a1, x−1/n). By definition of f(x−),
and since y < f(x−), there exists1 n such that y < f(xn) < f(x−), hence f∨(y) ≤ xn < x
is a direct consequence of Equation (2.5). Hence (2.10) is demonstrated.

For the fifth point (f∨)∨ = f , following the proof above, we need to use only (2.6) and
(2.10). Take x ∈ T1 and apply Definition 2.1:(

f∨
)∨

(x) = inf T2{f∨ > x} = sup T2{f∨ ≤ x} (2.11)

The contrapositive of (2.10) yields f∨(z) > x =⇒ f(x) ≤ z. Therefore the second term in
(2.11) is greater than f(x) and (f∨)∨(x) ≥ f(x). Since f∨(y) ≥ f∨(y−), from (2.6) we derive
the softer implication y > f(x) =⇒ f∨(y) > x. The contrapositive yields f∨(z) ≤ x =⇒
z ≤ f(x). Applying this to the third term of (2.11) gives us (f∨)∨(x) ≤ f(x). Therefore
(f∨)∨(x) = f(x).

Let’s achieve now the demonstration of the Implications (2.7) and (2.8). The equivalences
below start with (2.6) which is demonstrated. Then we take the contrapositive and the last

1As we mentioned earlier, for the sake of brevity, endpoints of T1 are not considered in the proofs but do
not pose a serious problem; here for example if x = a1 this sequence is constant and cannot be used for the
proof, but since f(a1−) = a2 by convention, there is no y < a2 and the implication still holds.
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step is to apply the second implication to f∨ (and exchange according to this operation x
and y) and simultaneously use the fifth point (i.e. (f∨)∨ = f). The third implication is
(2.7), which proves it. This reads:(

y > f(x) =⇒ f∨(y−) > x
)
⇐⇒

(
x ≥ f∨(y−) =⇒ f(x) ≥ y

)
⇐⇒

(
y ≥ f(x−) =⇒ f∨(y) ≥ x

)
And we have a similar way of deriving an equivalence between Implications (2.8) and (2.10).

The sixth point, inequality f∨(f(x)) ≥ x, is a direct consequence of Implication (2.7) by
taking y = f(x). The second inequality derives from the first one and the identity (f∨)∨ = f .

Let us demonstrate the seventh point by contrapositive. Assume f is discontinuous at
point x. Then there exists infinitely many y such that f(x−) ≤ y < f(x). Applying
Implication (2.7) to the left inequality yields f∨(y) ≥ x and applying Implication (2.9) to
the right inequality yields f∨(y) ≤ x. Therefore f∨(y) = x for all those y and f∨ is not
strictly increasing.

Assume now that f∨ is not strictly increasing. This means there exists x ∈ T1 and y1 < y2

such that f∨(y1) = f∨(y2) = x. Therefore f∨ is constant on [y1, y2] and f∨(y2−) = x. Taking
Implication (2.8) applied to f∨ instead of f , and using (f∨)∨ = f , we get x ≤ f∨(y1) =⇒
f(x−) ≤ y1. Similarly transforming Implication (2.7) yields x ≥ f∨(y2−) =⇒ f(x) ≥ y2.
Therefore f(x−) ≤ y1 < y2 ≤ f(x) and f is discontinuous.

What we learn from these properties is that f and f∨ play symmetric roles at a func-
tional level ((f∨)∨ = f) but it is not true pointwise (f∨(f(x)) ≥ x). Moreover jumps are
transformed into flat sections and conversely: a smooth f may lead to an irregular f∨ (and
conversely); Therefore, the Lebesgue decomposition of the measure df∨ must be related
to f in a rather irregular way. So we would like to solve these two questions in the next
section: Can we find a representation where f and f∨ play fully symmetric roles? Can this
representation present enough regularities?

3 A symmetric representation

We remind the reader that, guided by our analysis of growing trees, we would like to view T1

and T2 as two timelines to consider an increasing function f as the act of reading a clock on
T2 from our own timeline T1 equipped with its own clock: when our own clock is at time t1,
we read the time t2 displayed by the second clock and we define the function f by f(t1) = t2.
It is quite intuitive that the symmetric operation would build the generalized inverse as
t2 = f∨(t1). The difficulty lies in frozen times: when f is constant, this means time is frozen
on T2 with respect to T1. Reciprocally, there is a jump for f when time is frozen on T1 with
respect to T2. This section presents a symmetric representation of an increasing function
and its generalized inverse with names for concepts derived from this clock metaphor.
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We call a pair (t1, t2) ∈ T1 × T2 an event. The idea is that it could be either of the form
f(t1) = t2 or t1 = f∨(t2). The fact that clocks never decrease means that events can be
totally ordered by the product order in T1 × T2 defined by:

(t1, t2) ≤ (t′1, t
′
2) ⇐⇒ t1 ≤ t′1 and t2 ≤ t′2 (3.1)

We use the strict inequality (t1, t2) < (t′1, t
′
2) as usual for (t1, t2) ≤ (t′1, t

′
2) and (t1, t2) 6= (t′1, t

′
2)

(it means we could have t1 = t′1 or t2 = t′2, but not both at the same time).
Now we introduce a new set — in fact a new timeline — that we call a graph of events.

Definition 3.1 (Graph of events) A set Γ is said to be a graph of events if Γ ⊂ T1×T2 is
closed, totally ordered with respect to the product order and if its projections τ1 and τ2 cover
T1 and T2: τ1(Γ) = T1 and τ2(Γ) = T2.

Note that Γ is closed and bounded, hence compact. This definition imposes (a1, a2) ∈ Γ
and (b1, b2) ∈ Γ: since Γ is totally ordered and compact, we can pick its minimal element
(a, a′). Then (t1, t2) ∈ Γ =⇒ (t1, t2) ≥ (a, a′) and min τ1(Γ) = a hence a = a1, and similarly
a′ = a2. The same reasoning holds for upper endpoints.

Now, we can derive symmetrically a pair of functions from this graph of events:

Definition 3.2 Let Γ be a graph of events according to Definition 3.1. Then we define a
pair of functions (f1, f2) with f1 : T1 → T2 and f2 : T2 → T1 by

f1(t1)
def
= sup T2τ2

(
τ−1

1

(
{t1}

)
∩ Γ
)

= sup T2

{
t2 ∈ T2 : (t1, t2) ∈ Γ

}
(3.2)

f2(t2)
def
= sup T1τ1

(
τ−1

2

(
{t2}

)
∩ Γ
)

= sup T1

{
t1 ∈ T1 : (t1, t2) ∈ Γ

}
(3.3)

This definition makes sense because by Definition 3.1 τ−1
1

(
{t1}

)
∩ Γ is not empty. And the

lowest upper bound of any set within T2 lies within T2 because it is compact. Denote by t∗2
this lowest upper bound: this means f1(t1) = t∗2. Since Γ is compact, it means (t1, t

∗
2) ∈ Γ.

Hence
(
t1, f1(t1)

)
∈ Γ as expected, and symmetrically for f2.

Proposition 3.3 The functions f1 and f2 defined as of Definition 3.2 are increasing and
càdlàg.

Proof : Since Γ is totally ordered for the product order by Definition 3.1, this implies
straightforwardly that f1 is increasing. By symmetry all properties for f1 also hold for f2

hence both functions are increasing.
Now we have to prove the right-continuity of f1. For this, consider any decreasing se-

quence tn1 ∈ T1 converging toward t1 ∈ T1. The sequence f1(tn1 ) ∈ T2 is a decreasing sequence
such that f1(tn1 ) ≥ f1(t1). This sequence converges and since T2 is compact, the limit value
belongs to T2: t′2 = limn f1(tn1 ) ∈ T2 and we have t′2 ≥ f1(t1). Now the whole sequence
(tn1 , f1(tn1 )) ∈ Γ is converging and since Γ is compact, the limit point also belongs to Γ:
(t1, t

′
2) ∈ Γ. The definition of f1 in Equation (3.2) implies that t′2 ≤ f1(t1). Since we also

had t′2 ≥ f1(t1), this means t′2 = f1(t1). Which proves that limn f1(tn1 ) = f1(t1) hence f1 is
right-continuous. By swapping the times, this also proves f2 is right-continuous. Since both
functions are increasing, they always admit left limits hence both f1 and f2 are càdlàg.
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Figure 3: The graph of events Γ and the pair of functions f1 and f2 derived from Defini-
tion 3.2.

We now show that this symmetrical construction indeed builds a pair of generalized
inverses.

Proposition 3.4 The functions f1 and f2 derived from a graph of events Γ as in Defini-
tion 3.2 are generalized inverses of each other.

Proof : Consider y ∈ T2 and x ∈ T1 such that f1(x) > y. Since
(
f2(y), y

)
∈ Γ and(

x, f1(x)
)
∈ Γ, since Γ is totally ordered for the product order, then f1(x) > y, implies(

x, f1(x)
)
>
(
f2(y), y

)
, which in turn implies x ≥ f2(y). Hence we have demonstrated that,

for any y ∈ T2,
f1(x) > y =⇒ x ≥ f2(y) (3.4)

and we can derive, taking the infimum of all such x and applying the definition of f∨1 :

inf T1{f1 > y} = f∨1 (y) ≥ f2(y), ∀y ∈ T2

Now, assume f∨1 (y) > f2(y). Then there exists x such that f2(y) < x < f∨1 (y). The left
inequality, combined with the maximality of f2(y), implies f1(x) ≥ y. The right inequality
x < f∨1 (y) implies f1(x) ≤ y by using Implication (2.9) and (f∨1 )∨ = f1. Therefore nec-
essarily f1(x) = y and

(
x, y
)
∈ Γ as well as

(
f2(y), y

)
∈ Γ. Now the maximality of f2(y)

implies f2(y) ≥ x which is a contradiction, hence our hypothesis is false and f∨1 (y) ≤ f2(y).
Combining with the previous bound, we get f∨1 (y) = f2(y) for all y ∈ T2. By symmetry,
f∨2 = f1 and the proof is concluded.

Since usually one starts with an increasing function rather than with a graph of events,
we would like to conclude this section by building the graph of events that defines f .

Definition 3.5 Let f : T1 → T2 be an increasing function such that f(a1) = a2 and f(b1) =
b2. We define the completed graph Γ(f) as

Γ(f)
def
=
{

(x, y) ∈ T1 × T2 : f(x−) ≤ y ≤ f(x+)
}

(3.5)
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Note that this definition holds for any increasing function f (not necessarily càdlàg). The
endpoints condition means T2 should be taken minimal.

Proposition 3.6 Let f : T1 → T2 be a càdlàg increasing function such that f(a1) = a2 and
f(b1) = b2. Then the completed graph Γ(f) is a graph of events and the functions f1 and f2

derived from it by Definition 3.2 verify f1 = f and f2 = f∨.

Proof : First we prove that Γ(f) is totally ordered. Take 2 elements of Γ, γ = (t1, t2) and
γ′ = (t′1, t

′
2). Without loss of generality, we can assume t1 ≤ t′1. If t1 < t′1, f is increasing so

that f(t1+) ≤ f(t′1−) hence t2 ≤ t′2 and γ ≤ γ′ with respect to product order. If t1 = t′1, we
have either t2 ≤ t′2 or t2 ≥ t′2, hence either γ ≤ γ′ or γ ≥ γ′. Therefore 2 elements of Γ are
always comparable and the product order is a total order on Γ.

Second, we prove that the projections cover T1 and T2. By construction, τ1(Γ) = T1. Take
y ∈ T2 and consider x = f∨(y). Now we apply Implications (2.7) and (2.8) to f∨ and use
(f∨)∨ = f : using (2.7), x ≥ f∨(y−) implies y ≤ f(x) = f(x+) and using (2.8), x ≤ f∨(y)
implies f(x−) ≤ y. Therefore (x, y) ∈ Γ and y ∈ τ2(Γ). This is true for any y ∈ T2, hence
τ2(Γ) = T2.

Third, we prove that Γ is closed. Consider a sequence γn = (t1n, t
2
n) ∈ Γ converging to

γ = (t1, t2) (in T1 × T2): limn t
1
n = t1 and limn t

2
n = t2. Since f is increasing, left and

right limits verify f(t1−) ≤ lim infn f(t1n−) ≤ lim supn f(t1n+) ≤ f(t1+). Since γn ∈ Γ,
f(t1n−) ≤ t2n ≤ f(t1n+) and lim infn f(t1n−) ≤ limn t

2
n ≤ lim supn f(t1n+). Therefore f(t1−) ≤

t2 ≤ f(t1+) and γ ∈ Γ. This proves Γ is closed.

Consider f1 and f2 derived from Γ(f) by Definition 3.2. Let x ∈ T1: the set τ−1
1

(
{x}
)
∩

Γ(f) = [f(x−), f(x+)] by definition of Γ(f). Therefore f1(x) = f(x+) = f(x) because f is
càdlàg. And f2 = f∨1 = f∨.

This graph is unique in the sense that there is no other graph of events such that f1 = f
but for the sake of brevity, we omit a demonstration of this property. It is linked to the fact
that Γ(f) can be also defined as the union of all points (x, f(x)) for x ∈ T1 and (f∨(y), y)
for y ∈ T2, i.e. by all events, as we called them in the introduction of this section. And
uniqueness means any graph of events is made only of events. Uniqueness also implies that,
starting from a graph of events Γ and deriving (f1, f2), we have Γ(f1) = Γ. Γ(f∨) is also
well defined but it is a subset of T2 × T1 and the symmetric of Γ(f) ⊂ T1 × T2.

To conclude, Proposition 3.6 shows that we lose no generality by starting all theorems
with a graph of events so that all statements are symmetric.

4 A smooth representation

In the previous section, we have built the graph of events Γ ⊂ T1 × T2 seen as a symmetric
way to define a pair of increasing functions (f1, f2) that are generalized inverses of each
other. Now, we can go further into the metaphor: we could very well create a clock on Γ,
each event defining an instant on Γ. Then, reading the clocks T1 and T2 from this time —
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that we call universal time — would be simple since events contain all the information on
both clocks T1 and T2. And clearly this clock would never stop, and this means smoothness.

In this section we introduce the concept of universal time, extending times T1 and T2,
which is defined as the graph of events Γ ⊂ R2 itself equipped with the right topology
and therefore seen as a closed interval within R. Furthermore, the times T1 and T2 can be
seen as projections of this universal time, leading to a symmetric decomposition of a pair of
generalized inverses using these projections, which are by nature very regular (1-Lipschitz).

Consider the natural distance d for Γ, as the trace of L1 norm of R2:

d(γ, γ′) = |t′2 − t2|+ |t′1 − t1| = ‖γ′ − γ‖T1×T2

for any γ = (t1, t2) and γ′ = (t′1, t
′
2).

We define the mapping h : R2 → R as h(γ) = t1 + t2. Since h is continuous and Γ is
closed in R2, then T = h(Γ) ⊂ R is closed. Now we consider h as a mapping from Γ equipped
with distance d. By construction, and since Γ is totally ordered (this is used in the left-hand
side), we have

|h(γ′)− h(γ)| = ‖γ′ − γ‖T1×T2 = d(γ, γ′) (4.1)

and h is an isometry, therefore a bijection. Note that Γ being totally ordered, any γ 6= γ′

can be compared and either γ < γ′ or γ′ < γ; moreover it is straightforward to see that this
order is preserved by h: γ < γ′ ⇐⇒ h(γ) < h(γ′). What is to be proved now is that T is
the closed interval [a1 + a2, b1 + b2].

The 2 endpoints of T are a = a1 + a2 and b = b1 + b2 by construction and belong to
T : this is due to Definition 3.1 implying (a1, a2) ∈ Γ and (b1, b2) ∈ Γ. Let us prove there
is no hole in T . Assume there exists a < x0 < b such that x0 6∈ T . Since T is closed, we
can consider the maximal open interval (x, x′) containing x0, hence non-empty: x, x′ ∈ T
and for any x′′ ∈ (x, x′), x′′ 6∈ T . Now, since x, x′ ∈ T , there exist γ < γ′ ∈ Γ such that
h(γ) = x and h(γ′) = x′. Write γ = (t1, t2) and γ′ = (t′1, t

′
2) and consider t′′1 = (t1 + t′1)/2:

by Definition 3.2 we can define t′′2 = f1(t′′1) such that γ′′ = (t′′1, t
′′
2) ∈ Γ. Since γ < γ′′ < γ′,

we have x = h(γ) < h(γ′′) < h(γ′) = x′ with h(γ′′) ∈ T : this is a contradiction, hence our
assumption was false and all a < x0 < b belong to T , hence T is a closed interval.

Since T ⊂ R is a closed interval, define µ as the uniform measure (i.e. Lebesgue’s
measure) on it and the measure µΓ on Γ:

µΓ = µ ◦ h

Note that µΓ is also the uniform measure on Γ for the distance d.
The 2 projections τ1 [resp. τ2] from Γ onto T1 [resp. T2] verify h = τ1 + τ2, hence we have

µΓ = dh = dτ1 + dτ2

Here we have to clarify the expressions dτ1 (and dτ2 and dh). We have defined càdlàg
increasing functions, and the related concepts, on R, not from or onto Γ which is a subset
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of R2, as τ1 : Γ → T1. In order to extend the definitions, we have to use T ⊂ R, that is a
closed interval, isomorphic by h to Γ, hence Γ can be considered as a real closed interval.
Therefore a function like τ1 : Γ → T1 is increasing because γ < γ′ =⇒ τ1(γ) ≤ τ1(γ′)
but we could also define it purely with real numbers by stating it is increasing because
h(γ) < h(γ′) =⇒ τ1(γ) ≤ τ1(γ′) which is equivalent since h(γ) < h(γ′) ⇐⇒ γ < γ′.

Similarly, we can extend the definition of the generalized inverse by extending Equa-
tion (2.4) to get τ∨1 : T1 → Γ or by extending it directly using the isomorphism h:

τ∨1 (x)
def
= inf Γ

{
τ1 > x

}
= h−1

(
inf T

{
τ1 ◦ h−1 > x

})
= h−1 ◦ (τ1 ◦ h−1)∨(x)

Note that the second term of the above equalities shows that h acts like an identity and
there is no dependence on h. We can further extend the differentiation of càdlàg increasing
functions to produce measures, like dτ1. Consider the function τ1◦h−1 : T → T1: it is clearly
a real increasing càdlàg function (more precisely 1-Lipschitz) so that the positive measure
d
(
τ1 ◦ h−1

)
is well defined. Now we can translate this measure into a measure on Γ that we

define as dτ1:
dτ1

def
= d

(
τ1 ◦ h−1

)
◦ h

The same process defines dτ2 and dh on Γ. All these measures are very regular, since they
are defined by isomorphisms and 1-Lipschitz functions. Note that, again, dτ1 and dτ2 do
not depend upon h since it is also perfectly defined by

dτi
(
(γ, γ′]

) def
= τi(γ

′)− τi(γ) i ∈ {1, 2} ∀γ < γ′ (4.2)

The previous demonstrations prove the following proposition.

Proposition 4.1 (Universal time decomposition) Let Γ be a graph of events in T1×T2.
Then Γ is isomorphic to a closed interval and the corresponding uniform measure µΓ can be
decomposed as

µΓ = dτ1 + dτ2 (4.3)

where τ1 [resp. τ2] is the canonical projection from Γ onto T1 [resp. T2] and dτ1, dτ2 are
defined by (4.2).

Note that this property can also be expressed in terms of Radon-Nikodym derivatives:

dτ1

dµΓ

+
dτ2

dµΓ

= 1 (4.4)

Definition 3.2 together with Proposition 3.4 demonstrate that the 2 projections τ1 and
τ2 are sufficient to define an increasing function and its generalized inverse from a graph of
events. More precisely we have the following decomposition.

Proposition 4.2 (Increasing functions decomposition) Let Γ be a graph of events in
T1 × T2, τ1 [resp. τ2] the canonical projection from Γ onto T1 [resp. T2] and (f1, f2) the pair
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of symmetrically generalized inverses that it defines by Definition 3.2. Then we have the
following decomposition

f1 = τ2 ◦ τ∨1 (4.5)

f2 = τ1 ◦ τ∨2 (4.6)

This proposition is a straightforward consequence of the expression of the generalized inverses
of the projections:

τ∨1 (x) =
(
x, f1(x)

)
(4.7)

τ∨2 (y) =
(
f2(y), y

)
(4.8)

To prove Equation (4.7), consider the definition

τ∨1 (x)
def
= inf Γ

{
τ1 > x

}
Clearly,

(
x, f1(x)

)
≤ τ∨1 (x). Now, take xn ↓ x. Since f1 is càdlàg, f1(xn) ↓ f1(x) and(

xn, f1(xn)
)
↓
(
x, f1(x)

)
, so that

(
x, f1(x)

)
≥ τ∨1 (x). Hence Equation (4.7) is proved, and

Equation (4.8) by symmetry.

The beauty of this decomposition — besides its symmetry — is that τ1 and τ2 are very
regular increasing functions since they are 1-Lipschitz and their Lebesgue decomposition have
only absolutely continuous parts. Therefore we can deduce that the singular part (including
jumps) in an increasing function comes from the generalized inverse τ∨1 (or τ∨2 ). This is the
focus of the next section.

5 Lebesgue decomposition of generalized inverses

In the previous sections, we have shown that an increasing function and its generalized
inverse can be considered as a pair of symmetric functions and that these functions can be
smoothly expressed from an intermediary set, the universal time. It leads to a symmetric
decomposition of the pair of generalized inverses using smooth functions that are projections
from the universal time. Now we would like to understand how these tools may apply to
the measures defined by those increasing functions. In particular, we would like to link the
irregularities (the singular parts of the measures) to this decomposition.

From our clock metaphor, we believe the irregularities are due to frozen times. However,
while this is quite simple for jumps (in one-to-one correspondence with flat sections), it
proves to be more difficult for the singular continuous part of Lebesgue decomposition, and
it requires a precise analysis.

First, we define our measures. Let Γ be a graph of events in T1× T2 and (f1, f2) the pair
of symmetrically generalized inverses that it defines by Definition 3.2 and follow the notation
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of Proposition 4.2. We denote by µ1 [resp. µ2] the uniform measure on T1 [resp. T2]. First,
we would like to note that

µ1 = dτ1 ◦ τ−1
1 (5.1)

and similarly for µ2. Note that, as defined earlier, τ−1
1 is the inverse image, as acting on sets,

not a proper inverse function. This comes directly from Equation (4.2). Now, let’s turn to
the measure df1. First, we need the following technical formula, valid for all t1 < t′1 ∈ T1:

τ−1
1

(
(t1, t

′
1]
)

=
(
τ∨1 (t1), τ∨1 (t′1)

]
Consider the right endpoint t′1: τ∨1 (t′1) =

(
t′1, f1(t′1)

)
therefore τ∨1 (t′1) ∈ τ−1

1

(
(t1, t

′
1]
)
. But the

maximality stated in Definition 3.2 implies that for all γ ∈ Γ such that γ > τ∨1 (t′1), τ1(γ) > t′1
hence the lowest upper bound of τ−1

1

(
(t1, t

′
1]
)

is τ∨1 (t′1) and is included.
For the left endpoint, one verifies that τ∨1 (t1) =

(
t1, f1(t1)

)
6∈ τ−1

1

(
(t1, t

′
1]
)
. Then, con-

sidering a sequence xn ∈ (t1, t
′
1] decreasing toward t1, using the càdlàg property of τ∨1 ,

τ∨1 (xn) ↓ τ∨1 (t1) and τ∨1 (t1) is the left endpoint but is excluded.

Using this property, we can compute

df1

(
(t1, t

′
1]
)

= f1(t′1)− f1(t1) = τ2 ◦ τ∨1 (t′1)− τ2 ◦ τ∨1 (t1)

= dτ2

((
τ∨1 (t′1), τ∨1 (t1)

])
= dτ2

(
τ−1

1

(
(t1, t

′
1]
))

This proves that the decomposition of Proposition 4.2 is consistent for our purpose:

Proposition 5.1 (Measure decomposition) Using the notation of Proposition 4.2, the
measures associated with f1, and f2 can be decomposed into

df1 = dτ2 ◦ τ−1
1 (5.2)

df2 = dτ1 ◦ τ−1
2 (5.3)

This relates, as we mentioned before, the regularity (or singularity) of df1 with respect
to µ1 to τ−1

1 . And by considering Equations (5.1) and (5.2) one would like to write the
Radon-Nikodym densities as df1/ dµ1 = dτ2/ dτ1; Even if this is neither elegant nor correct,
it gives the idea: singularities on df1 (w.r.t. µ1) happen when times increases along T2 but is
stopped along T1. Extending classical sets defined for the proof of Radon-Nikodym theorem
(see, e.g. [16, 14, 15, 17]), we can define:

Definition 5.2 Using the notation of Proposition 4.1 and Equation (4.4), a graph of events
Γ can be partitioned into 3 sets

Γ = F1

⊎
R
⊎

F2 (5.4)

with

F1 =

{
dτ1

dµΓ

= 1

}
=

{
dτ2

dµΓ

= 0

}
(5.5)

R =

{
0 <

dτ1

dµΓ

< 1

}
=

{
0 <

dτ2

dµΓ

< 1

}
(5.6)

F2 =

{
dτ1

dµΓ

= 0

}
=

{
dτ2

dµΓ

= 1

}
(5.7)
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Note that these sets are defined µΓ-almost surely, since the Radon-Nikodym derivatives are
so defined. To be sure of the equalities, we have to exhibit two Radon-Nikodym derivatives
dτ1/ dµΓ and dτ2/ dµΓ such that Equations (5.5)–(5.7) hold. Take any Radon-Nikodym
derivatives dτ1/ dµΓ. By definition, 0 ≤ dτ1/ dµΓ ≤ 1 µΓ-almost surely. Hence we can
build a regularization of this function such that these inequalities hold in all points of Γ, e.g.
min(max( dτ1/ dµΓ, 0), 1). By defining dτ2/ dµΓ = 1 − dτ1/ dµΓ, we have build these two
representatives that verify Equations (5.5)–(5.7). Since the sets {0}, (0, 1) and {1} form a
partition of [0, 1], the 3 sets F1, R and F2 define also a partition, i.e. Equation (5.4).

Now we have clearly the following properties for these sets:

dτ2(F1) = 0 (5.8)

dτ1(F2) = 0 (5.9)

dτ1(A) > 0 ⇐⇒ dτ2(A) > 0, ∀A ⊂ R (5.10)

Now, we can use the partition (5.4) in order to define a decomposition for df1

νs1
def
=

(
dτ21I{F2}

)
◦ τ−1

1 (5.11)

νr1
def
=

(
dτ21I{R}

)
◦ τ−1

1 (5.12)

Since dτ21I{F1} = 0, we clearly have df1 = νs1 + νr1 where νs1 is the singular part of f1 with
respect to µ1 and νr1 is the regular part. Now we can further decompose the singular part
into a jump part and the purely singular part of Lebesgue decomposition.

By projection onto T1 and T2, one can define from F1, R and F2 new sets as follows.
O′1 = τ1(F1) is a generalization of the flat sections for f1 since df1 = 0 on F1. S ′1 = τ1(F2) is
a singular part for f1 since µ1(S ′1) = 0 but df1 may increase. And R1 = τ1(R) is a regular
part. We can refine the set O′1 = O1

⊎
K1 into flat sections O1 (the interior of O′1) and a

purely singular set K1 (possibly of positive measure but with no interior) where df1 = 0,
i.e. f1 is flat. And S ′1 = J1

⊎
S1 where J1 is made of the jump points of f1 and S1 supports

the purely singular part of f1 (but may be not closed, hence is not generally the support).
One defines similarly J2, S2, O2, K2 and R2 on T2.

Note that O′1, S ′1 and R1 do not form a partition of T1 since τ1 is not one-to-one. To build
it as a partition is feasible, by considering S ′1 \O′1 and R1 \ (O′1 ∪S ′1). Now, if we want O1 to
really be the flat sections (i.e. the maximal open sets where df1 = 0), we need, before the
previous operation, to consider a careful regularization of the Radon-Nikodym derivatives in
order to avoid some ”holes” in O1 (we could even have a countable number of such holes,
leading to an empty O1 even though there are flat sections).

What is interesting, is that these sets are associated with measures by the generalized
inverses: F1 and O′1 are related to the singular parts of df2; F2 and S ′1 which define the
singular part of df1 are associated to O′2. Finally R1 and R2 are associated and correspond
to the regular parts. It shows that we cannot directly establish the correspondence between
measures, but we rather need to associate sets and measures. This was also clearly empha-
sized by previous studies that demonstrate that the jumps J2 of f2 (i.e. a discrete measure)
are in one-to-one correspondence with the flat sections O1 of f1 (i.e. a set).
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Proposition 5.3 (Lebesgue decomposition of generalized inverses) Let T1 and T2 be
2 intervals and Γ be a graph of events in T1× T2. Using the notation of Proposition 5.1 and
the partition of Definition 5.2, one can define by (5.11)–(5.12) the singular measure νs1 and
the regular measure νr1 (and similarly for f2) so that 2 increasing functions f1 and f2 satisfy:

df1 = dτ2 ◦ τ−1
1 = νs1 + νr1 (5.13)

df2 = dτ1 ◦ τ−1
2 = νs2 + νr2 (5.14)

Moreover, T1 can be partitioned into a countable set J1 of jumps (for f1), a singular set S1

of null measure for the purely singular part of df1, flat sections O1 (a disjoint union of open
intervals), a purely singular set K1 with empty interior (but may have positive measure) on
which df1 = 0 and a regular set R1 such that νr11I{R1} = νr1. Similarly for T2.

From this decomposition, we can also get the following results. Note that, except for
the jumps sets Ji and flat sections Oi, these sets are not uniquely defined (since the Radon-
Nikodym derivatives are not uniquely defined).

� The jumps of f1 are in bijection with flat sections O2 of f2 and symmetrically;

� The purely singular part of f1 is associated to the purely singular set K2 and symmet-
rically;

� The strictly increasing absolutely continuous part of f1 on R1 is associated to the
strictly increasing absolutely continuous part of f2 on R2.

Note that there exists another approach to build these sets, without using the Radon-
Nikodym theorem: it is another proof to the Lebesgue decomposition due to James K. Brooks
[4, 5]. For the sake of beauty we give it here, with simplified notation, but it translates easily
to our decomposition. Take µ1 and µ2 to be finite measures. The collection of measurable
sets A with µ2(A) = 0 is closed under countable unions, so it has an element F1 of largest
µ1-measure. Then on X \ F1 , we have µ1 � µ2 . The collection of measurable sets B with
µ1(B) = 0 is closed under countable unions, so it has an element F2 of largest µ2-measure.
Then on X \ F2 , we have µ2 � µ1 . Now (µ1 + µ2)(F1 ∩ F2) = 0, so we may take F1 and
F2 to be disjoint. Let R = X \ (F1 ∪ F2). Then for each measurable set C ⊂ R, we have
µ1(C) > 0 ⇐⇒ µ2(C) > 0. And we have defined the 3 sets F1, F2 and R of Proposition 4.2.

The novelty of this result, besides the decomposition of Proposition 4.2, lies in the fact
that we have clearly related the singular part of Lebesgue decomposition with frozen times
for the generalized inverse: one can interpret it by saying that the singular increases are
related to universal times when the clock T1 is stopped while T2 goes on ticking. But it is
much more complex than the jumps and the flat sections (that was known) since it leads to
the definition of a rather singular set (of positive measure but no interior) where f1 can be
considered as flat.

This result extends two previous known facts. We already mentioned the first: jumps
are in correspondence with flat sections. The second property is the characterization of real
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increasing diffeomorphisms; Consider an increasing bijection f (hence f∨ is also an increasing
bijection): f and f∨ are diffeomorphisms if, and only if, f and f∨ are differentiable and their
derivatives are strictly positive everywhere; this translates to the condition Γ = R in our
settings. Note that our result shows that we can extend this result the following way: if f1

is purely singular and its support covers T1 (i.e. J1 = O1 = R1 = ∅ and K1 is equal to T1

modulo null set S1), then f2 is also purely singular and its support covers T2; moreover the 2
functions are bijective (with null derivatives almost everywhere, hence not a diffeomorphism).

6 Conclusion

In this article, we have shown the symmetrical relationship between an increasing function
and its generalized inverse and how we can exploit it to relate the measures defined by such
functions. After carefully defining the objects and basic properties in Section 2, we describe
both functions in Section 3 as a pair symmetrically defined from a new set that we call
universal time. Using the intermediary functions (projections, hence smooth), we build in
Section 4 a symmetrical representation of both measures. This leads finally in Section 5 to
a description of the relationship between the Lebesgue decomposition of both measures.

This article shows also a metaphor guiding our construction. Though it is not necessary,
we believe it can help the reader to follow the progress of the construction. Moreover, this
metaphor stems from related topics, like the link between trees and random walks. This
could also be an opportunity for the reader to get to these topics or have a renewed interest
into them. Indeed, the purpose of this article is not only to give an introduction to a point
of analysis, but much more to open perspectives.

We would like to mention a few potential topics to go further. A first point could be to
look at the question of several timelines, not only 2. Equations (4.5)–(4.6) could be clearly
generalized for n indexes, using an n-dimensional universal time. In our example of Aldous’
continuum random tree, this could link the height of several branches. Maybe we could even
relate the height of all branches if n could be infinite.

Another topic could be to refine the description of the relationship between measures as
in Proposition 5.3. If we have a converging sequence of increasing functions, how would the
measures defined by the generalized inverse converge? How would this convergence appear
on the universal time? Since we can shift time and space, and since functions are càdlàg, is
it linked with Skorokhod metric?

We could also consider convergence of discrete structures (e.g. discrete trees) and so study
increasing functions on more general sets than a closed interval, e.g. closed sets since they
encompass both discrete sets (as Z) and closed intervals. When we do so, a new phenomenon
occurs: their may be “gaps” in the timelines, where time necessarily “jumps” (not relatively
to another timeline as the frozen times of an increasing function we have considered in this
paper, but the clock itself jumps, as read from its own timeline). The method developed in
this paper can be generalized to such times, but there are more ambiguities in the definition
of generalized inverses: Γ(f) may not be unique and this cannot be solved by regularization,
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like chosing a càdlàg representative. This difficulty is solved if one starts with the graph
of events, hence its centrality in this article. These ambiguities can be related to ordering
questions in discrete events systems, and such an extension could give a better insight of
combinations of discrete and continuous dynamical systems.

Finally we mention a last topic, taken from our introduction. Some processes — as the
maximum of the Brownian motion — can be turned into a Markov process by considering
their generalized inverse. Is this Markov property readable on the universal time, and the
loss of this property would be an “accident” of the projections? Conversely, can we start
from a Markov process (in time) to define for the generalized inverse a Markov property
in space that would define extensions of semi-Markov processes? How would that relate
to space and time Markov processes, such as the discrete growing trees that motivated us
initially?

These questions do not have the same level of complexity or interest. They are formulated
in the hope of stimulating the imagination of the reader at the end of this expository article,
the same way I have been challenged some time ago by Guy Fayolle during my PhD and
after. This paper represents a modest contribution to thank Guy for his vision of probability
theory and mathematics that he shared with me. And even more, I would like to express
my gratitude to Guy for his contagious cheerful energy.
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