

16 novembre 2020

Analyse thermique du procédé de fabrication par fil fondu de la tête de chauffe à la pièce imprimée

David Xu et Franck Pigeonneau

Figure 1 – Principales étapes en impression 3d polymère par dépôt de fil fondu.

Figure 1 – Principales étapes en impression 3d polymère par dépôt de fil fondu.

Figure 1 – Principales étapes en impression 3d polymère par dépôt de fil fondu.

Figure 1 – Principales étapes en impression 3d polymère par dépôt de fil fondu.

16 novembre 2020 Analyse thermique du procédé FDM

Expériences sur une imprimante Delta WASP 2040 turbo

Outils numériques basés sur la librairie éléments finis CIMLIB :

Polymères : ABS et PP.

2. Fusion du filament

- 2.1 Expérience de Peng et al. (2018)
- 2.2 Simulation numérique
- 2.3 Résultats

3. Dépôt du filament

- 3.1 Expériences
- 3.2 Simulations numériques

4. Solidification

- 4.1 Expériences
- 4.2 Simulations numériques
- 5. Conclusions & Perspectives

2.1 Expérience de Peng et al. (2018)

Peng et al.¹ ont mesuré l'histoire thermique en introduisant un thermocouple dans un filament.

Figure 2 – Montage expérimental de Peng et al. (2018).

1. F. Peng/B. D. Vogt/M. Cakmak : Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing, in : Addit. Manuf. 22 (2018), p. 197-206, url : https://www.sciencedirect.com/science/article/pii/S2214860417303718.

2.1 Expérience de Peng et al. (2018)

Figure 3 - T vs. t enregistré par le thermocouple [Peng et al. (2018)].

2.1 Expérience de Peng et al. (2018)

Figure 3 - T vs. t enregistré par le thermocouple [Peng et al. (2018)].

2.2 Simulation numérique

► Géométrie selon Peng *et al.*².

Figure 4 – (a) Tête de chauffe "E3D-v6" (https://e3d-online.com/) et (b) géométrie utilisé dans les simulations numériques (dimensions en mm).

^{2.} Peng/Vogt/Cakmak : Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing (cf. note 1).

2.2 Simulation numérique

$$\boldsymbol{\nabla} \cdot \mathbf{u} = \mathbf{0}, \tag{1}$$

$$\boldsymbol{\nabla} \cdot [2\mu(\dot{\gamma}, T)\mathbf{D}] - \boldsymbol{\nabla} P = 0, \qquad (2)$$

$$\rho C_{\rho} \frac{DI}{Dt} = \lambda \nabla^2 \theta + \mu (\dot{\gamma}, \theta) \dot{\gamma}^2.$$
(3)

2.2 Simulation numérique

$$\boldsymbol{\nabla}\cdot\boldsymbol{\mathsf{u}}=\boldsymbol{\mathsf{0}},\tag{1}$$

$$\boldsymbol{\nabla} \cdot [2\mu(\dot{\gamma}, T)\mathbf{D}] - \boldsymbol{\nabla} P = 0, \qquad (2)$$

$$\rho C_{\rho} \frac{DT}{Dt} = \lambda \nabla^2 \theta + \mu(\dot{\gamma}, \theta) \dot{\gamma}^2.$$
(3)

$$T = T_{\infty}, \mathbf{u} = 0$$
$$-\lambda \frac{\partial T}{\partial n} = h(T - T_{\infty}), \mathbf{u} = 0$$
$$T = T_{m}, \mathbf{u} = U_{m}\mathbf{e}_{z}$$
$$\frac{\partial T}{\partial n} = 0, \ \boldsymbol{\sigma} \cdot \mathbf{n} = 0$$
16 novembre 2020 Analyse thermique du procédé FDM Cernel Martines for a PSL*

2.2 Simulation numérique

h dépend de la résistance thermique due à la couche d'air entre le filament et la tête de chauffe :

$$h \sim rac{\lambda_{\mathsf{air}}}{e_{\mathsf{air}}} = 200 \; \mathrm{W}/(\mathrm{m}^2\mathrm{K}).$$
 (4)

Pour être en accord avec Peng et al.³:

•
$$T_{in} = 24^{\circ}C;$$

• $T_{\infty} = 325^{\circ}C.$

^{3.} Peng/Vogt/Cakmak : Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing (cf. note 1).

Figure 5 – T vs. z en r = 0 pour (a) $U_{in} = 90 \text{ mm/min et (b)}$ $U_{in} = 180 \text{ mm/min.}$

Figure 6 – (a) T vs. z en r = 0 pour $U_{in} = 270 \text{ mm/min}$ (b) T vs. r à la sortie.

Figure 6 – (a) T vs. z en r = 0 pour $U_{in} = 270 \text{ mm/min}$ (b) T vs. r à la sortie.

→ Le transfert de chaleur entre la tête de chauffe et le polymère est très efficace.

16 novembre 2020 Analyse thermique du procédé FDM

Cemef

PSL 🖈

2.3 Résultats

Figure 7 – T en Kelvin pour trois U_{in} .

16 novembre 2020

Analyse thermique du procédé FDM

2.3 Résultats

Figure 7 – T en Kelvin pour trois U_{in} .

16 novembre 2020

Analyse thermique du procédé FDM

Figure 8 – L_{iso-T_g} vs. $Pe = UD/\kappa$.

16 novembre 2020

Figure 8 –
$$L_{iso-T_g}$$
 vs. Pe = UD/κ .

16 novembre 2020

Figure 8 – $L_{iso-T_g}(T_{\infty} - T_{in})/(T_g - T_{in})$ vs. $Pe = UD/\kappa$.

16 novembre 2020

Vitesse maximale d'extrusion :

$$U = \frac{2.4 \cdot 10^2 \lambda L}{\rho C_p D^2} \frac{T_{\infty} - T_{in}}{T_g - T_{in}}.$$
 (5)

 Pour le PC : $(T_g = 150 \degree C,$ Pour le ABS : $(T_g = 105 \degree C,$
 $\rho = 1200 \text{ kg/m}^3,$ $\rho = 1150 \text{ kg/m}^3,$
 $C_p = 1250 \text{ J kg}^{-1} \text{ K}^{-1},$ $C_p = 2100 \text{ J kg}^{-1} \text{ K}^{-1},$
 $\lambda = 0.2 \text{ W m}^{-1} \text{ K}^{-1})$ $\lambda = 0.21 \text{ W m}^{-1} \text{ K}^{-1})$
 $T_{\infty} = 325 \degree C, U = 18 \text{ m/min};$ $T_{\infty} = 230 \degree C, U = 12 \text{ m/min};$
 $T_{\infty} = 275 \degree C, U = 15 \text{ m/min}.$ $T_{\infty} = 200 \degree C, U = 10 \text{ m/min}.$

 Details dans Pigeonneau *et al.*⁴.

^{4.} F. Pigeonneau et al. : Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer, in : Addit. Manuf. 32 (2020), p. 101001.

Figure 9 – Filaments pour V = 1 m/min et diverses valeurs de U/V.

16 novembre 2020 Analyse thermique du procédé FDM

Cemef

PSL 🖈

3. Dépôt du filament

3. Dépôt du filament 3.1 Expériences

▶ Dépôt de filament unique vs. *U* et *V*.

Figure 10 – Morphologie de la section droite d'un filament avec V = 2000 mm/min et U/V = 2.

3. Dépôt du filament 3.1 Expériences

Figure 11 – A vs. U/V, A = $(\pi D^2/4)(U/V)$.

Figure 12 - A vs. U/V en fonction de morphologies rectangulaire, elliptique ou oblongue.

$$WH - H^2 \left(1 - \frac{\pi}{4}\right) = \frac{\pi D^2}{4} \frac{U}{V}.$$
(6)
Analyse thermique du procédé EDM Cemer

3. Dépôt du filament 3.1 Expériences

Figure 13 - W vs. U/V pour trois valeurs de V et pour l'ABS.

Figure 14 – W vs. $\sqrt{U/V}$ pour trois valeurs de V et pour l'ABS.

Selon Hebda et al.⁵ :

$$W = \alpha D \sqrt{\frac{U}{V}} + C.$$
(7)

5. M. Hebda et al. : A method for predicting geometric characteristics of polymer deposition during fused-filament-fabrication, in : Addit. Manuf. 27 (2019), p. 99-108.

3. Dépôt du filament 3.1 Expériences

Figure 15 - H vs. U/V pour trois valeurs de V et pour l'ABS.

16 novembre 2020 Analyse thermique du procédé FDM

Cemef

PSL 🖈

3. Dépôt du filament

3.2 Simulations numériques

- Résolution des équations Navier-Stokes et de la thermique;
- La viscosité dynamique suit une loi de Carreau-Yasuda.
- ▶ Suivi de l'interface air/polymère par une méthode level-set⁶.

^{6.} J.-F. Agassant et al. : Flow analysis of the polymer spreading during extrusion additive manufacturing, in : Addit. Manuf. 29 (2019), p. 100794.

3. Dépôt du filament 3.2 Simulations numériques

Figure 16 – Morphologies des filaments avec U/V = 2.

3. Dépôt du filament 3.2 Simulations numériques

Figure 17 – Morphologies des filaments avec U/V = 5.

3. Dépôt du filament 3.2 Simulations numériques

Figure 18 - W (µm) vs. U/V pour V = 1 m/min.

Figure 19 – H (µm) vs. U/V pour V = 1 m/min.

3. Dépôt du filament

3.2 Simulations numériques

4.1 Expériences

Figure 20 - Construction d'un mur avec introduction d'un thermocouple.

- Utilisation de thermocouples de type T
- Impression d'un mur de 1 cm de hauteur et de 4 cordons de largeur (~4 mm)

 Impression sur le thermocouple et acquisition de la température

4.1 Expériences

Figure 21 - T thermocouple vs. t pour 3 vitesses U et V = 0.5 mm/min.

Figure 22 - T thermocouple vs. t pour 3 vitesses V et U = 4 mm/min.

6

 t/τ_{dep}

170 -

160 -

150

130

120

110 -

100

ò ż

10 12 14 16

U = 4 m/min: V = 0.5 m/min

= 4 m/min: V = 1 m/min

m/min: V = 2 m/min

4.1 Expériences

Figure 23 - T thermocouple vs. t.

Figure 24 – τ vs. A pour les deux premiers pics.

$$\frac{T - T_{air}}{T_0 - T_{air}} = e^{-t/\tau}.$$
(8)

16 novembre 2020

4.2 Simulations numériques

$$\rho C_{\rho} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + \dot{q}, \quad (9)$$
$$-k \nabla T \cdot \mathbf{n} = h_{\text{surf}} (T - T_{\text{air}}), \quad (10)$$
$$\dot{q} = -\frac{h_{\text{top}} (T - T_{\text{air}})}{\Delta H} (11)$$

Figure 25 – Domaine de calcul avec les deux types de conditions aux limites.

4.2 Simulations numériques

Figure 26 - Impression « numérique » de deux fractions de couche.

Détails sur la méthode numérique dans l'article de Xu et al.⁷.

7. D. Xu/Y. Zhang/F. Pigeonneau : Thermal analysis of the fused filament fabrication printing process : Experimental and numerical investigations, in : Int. J. Mater. Form. 2020, p.

4.2 Simulations numériques

Paramètres d'impression	Unité	Cas 1	Cas 2	Cas 3
U	m min $^{-1}$	4.82	5.36	4.3
V	m min $^{-1}$	1.2	0.663	2.14
ΔH	mm	0.5	0.67	0.5
ΔW	mm	1	1.5	0.5
W	mm	4	6	2
L	mm	100	100	100
t,	S	5	9	2.8
t _f	S	1.25	2.25	0.7
φ_{p}	%	10.7	9.6	21.5
k _m	$\mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}$	0.164	0.165	0.147

Table 1 – Paramètres de simulations pour trois conditions d'impression.

4.2 Simulations numériques

Figure 27 – T vs. t à l'endroit du thermocouple pour le cas 1. 16 novembre 2020 Analyse thermique du procédé FDM Cemer Cemer Armines

PSL★

4.2 Simulations numériques

Analyse thermique du procédé FDM

Figure 28 - T vs. t à l'endroit du thermocouple pour le cas 2.

16 novembre 2020

Figure 29 - T vs. *t* à l'endroit du thermocouple pour le cas 3.

5. Conclusions & Perspectives

- Contact polymère/extrudeur parfait ;
- Écoulement
 « bouchon » ;
- Détermination d'un majorant de U.
- Prendre l'aspect visco-élastique;
- Étendre les calculs à tout l'extrudeur;
- Observations in-situ.

5. Conclusions & Perspectives

- Contact polymère/extrudeur parfait ;
- Écoulement
 « bouchon » ;
- Détermination d'un majorant de U.
- Prendre l'aspect visco-élastique ;
- Étendre les calculs à tout l'extrudeur;
- Observations in-situ.

- Section droite des filaments oblongue vs.
 U/V;
- Modèle « simple » pour déterminer W et H vs. U/V;
- Morphologie retrouvée avec la sim. num;
- Étendre à d'autres polymères;
- Prendre l'aspect visco-élastique;

5. Conclusions & Perspectives

- Contact polymère/extrudeur parfait ;
- Écoulement
 « bouchon » ;
- Détermination d'un majorant de U.
- Prendre l'aspect visco-élastique ;
- Étendre les calculs à tout l'extrudeur;
- Observations in-situ.

- Section droite des filaments oblongue vs.
 U/V;
- Modèle « simple » pour déterminer W et H vs. U/V;
- Morphologie retrouvée avec la sim. num;
- Étendre à d'autres polymères;
- Prendre l'aspect visco-élastique;

- Observation des cycles de chauffe/refroidissement ;
- Refroid. exp. vs. t des dépôts;
- Sim. num. de la thermique d'objets macros;
- Imprimer des semi-cristallins;
- Observation de la déformation ;

Merci beaucoup de votre attention !

Merci beaucoup de votre attention !

Merci aussi à

- CEMEF :
 - Jean-François Agassant;
 - Michel Vincent;
 - Yangeng Zhang.
- CT-IPC :
 - Thomas Joffre.

