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Abstract  

The chapter focuses on fibre reinforced thermoplastics or polymer composites which are mainly 

produced by injection and compression molding using particles having mostly cylindrical shape (short 

or long fibers made up of glass, carbon or flax). The aim of this fibre addition is to improve the 

mechanical properties of final parts. However these properties depends on the fibre orientation and 

therefore the knowledge of link between processing condition and final fiber orientations has a major 

importance.  

First the chapter contains results of experimental observations on fibre length distribution, 

concentration and orientation for complex enough situations in order to describe problems encountered 

in real industrial processes. It is explained how to get experimental measurements on orientation and 

interaction tensors from image analysis on polished cross sections or in situ micro-tomography. These 

information are useful to validate models presented in the next sections.  

The models describing the evolution of fibre orientation in a flow motion are mainly based on 

macroscopic tensors and Folgar Tucker's equation. We present also extensions of this equation which 

takes into account of non-Newtonian behaviour of polymer, confinement effect and interaction 

between fibers. Finally, a variety of theories predicting the total stress of fiber suspensions in a 

Newtonian and complex fluid are exposed.  

In the next section, an industrial software and its inherent numerical methods are described. Examples 

of numerical computations are presented for typical situations. Then the influence of the coupling 

between the fiber orientation and rheological behaviour of the suspension are analysed. The 

comparison with experimental data concerning fibre orientation prediction gives information on the 

validity and the influence of various parameters associated to these models. 
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20.1 Introduction 

The chapter focuses on fibre reinforced thermoplastics. There are two types of materials. Short fibre 

reinforced pellets are obtained by mixing glass fibres and a thermoplastic matrix, polypropylene or 

polyamide for instance. The fibre content is usually between 30 and 50 wt% and the fibre length is 

generally distributed around a mean value of 500 µm. Long fibre reinforced pellets are obtained by 

continuous impregnation of a fibre, by a pultrusion-like process. After solidification, the impregnated 

fibres are cut at a length around 10 mm. The fibre length is the same as the pellet length. Both 

materials are semi-product, adapted for fast production processes such as injection moulding or 

extrusion. 

As any composite, their properties are function of the performances of the matrix, fibres and interface 

between matrix and fibres, but also of the fibre microstructure. This notion covers first the fibre 

orientation. Indeed, fibres get oriented by the flow, and their properties are anisotropic. It also covers 

the fibre length: it depends of the initial fibre length in the pellet, but also on the plasticising and 

injection steps of the process. Lastly, there is the fibre concentration: it is usually around 30-50 wt% 

that is about half in volume for glass fibres, according to the glass and polymer densities. But the 

transport of the fibres by the polymer may be heterogeneous and fibre-rich or fibre poor region may be 

found. 

The second section of this chapter reviews the experimental observation, and the variation of 

fibre length distribution, fibre concentration and orientation are discussed. The experimental 

procedures giving these data are also briefly described. The third section presents the models 

describing the evolution of fibre orientation in the flow motion. The most recent models which deal 

with concentrated suspensions are also discussed, as well as the coupling with the rheological 

behaviour. Finally, numerical computations are performed on three typical examples and the influence 

of various parameters encountered in the models is analysed. Then, the limitations of these models for 

real parts are discussed. 

 

20.2 Observations 

20.2.1 Fibre length distribution 
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As mentioned before, fibre length in the moulding depends on the initial fibre length in the pellet, and 

on the fibre degradation in the screw-barrel system of the plasticising unit and in the mould cavity. 

Most methods for measuring fibre length are destructive (Kamal et al., 1986, Chin et al., 1988, 

Franzen et al., 1989, Gupta et al., 1989, Denault et al., 1989, Akay et al., 1995, Avérous et al., 1997, 

Davidson and Clarke, 1999). The composite matrix is dissolved or burnt out. The fibre lengths are 

measured by image analysis of microscope pictures. The number of fibres is large (nearly 3000 per 

��� for 30 wt% and fibres 300 µm long and 15 µm in diameter!) and a careful representative 

selection must be made. The image analysis technique must be able to take into account a large length 

distribution. 

Glass fibre breakage is more important in the plasticising unit (Gupta et al., 1989) than 

downstream in the runner and mould cavity.  It is a function of fibre concentration (Denault et al., 

1989, Akay et al., 1995, Tremblay et al., 2000). 

Vincent (2009) measured the fibre length distribution in a plaque mould for two reinforced 

polypropylenes, containing 30 wt% of short glass fibre, and 30 wt% of long glass fibres (figure 20.1). 

The average length of the long fibres, initially 12 mm, reduces to 0.87 mm. The short fibres length, 

initially 0.56 mm, reduces to 0.41 mm. Fibre breakage for the long fibres composite is more important. 

Figure 20.2 shows a plaque 150 x 150 x 3 mm3, with seven ribs 25 mm apart from each other. 

The rib thicknesses from the entrance to the tip are 1, 3, 3, 2, 2, 3, 3 mm. The rib heights are 9, 12, 9, 

12, 9, 12, 9 mm. The material is a 40 wt% long glass fibre reinforced polypropylene (pellet length: 12 

mm). Table 20.1 shows the average length at different positions for two mould filling flow rate. There 

is no huge difference between the rib and other regions in the part. The average length reduces by 

about 20 % along the flow direction. The sensitivity to the flow rate is negligible. 

 

20.2.2 Fibre Concentration 

Most authors have found small variations of fibre concentration along the flow direction, around 1 to 2 

wt% for a total amount of fibres of 30 wt% (Hegler and Mennig, 1985; Kubat and Szalanczi, 1974). In 

the thickness directions, the fibre concentration is higher in the core than in the skin of the moulding, 

especially for a high fibre loading of 50 wt% (Kamal et al., 1986; Akay and Barkley, 1991). 
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For the same part shown in Figure 20.3, and with the same material, Figure 20.4 shows the 

fibre concentration. The concentration is higher in the ribs, except in the first one, than in the plaque, 

but overall the deviation from the initial concentration of the semi-product, 40 wt%, is not very large. 

 

20.2.3 Fibre Orientation 

For dilute suspension, fibre kinematics was following using 2D optical approach (Taylor, 1923; 

Binder, 1939; Trevelyan and Mason, 1951; Petrich et al., 2000; Folgar and Tucker, 1984; Stover and 

Cohen, 1990; Stover et al., 1992; Iso and Koch et al., 1996; Iso and Cohen et al., 1996; Gunes et al., 

2008; Yasuda et al., 2002). These aforementioned observations have shown that fibre orientation 

depends on the type of flow. In a shear flow, a single fibre rotates, but spends most of the time aligned 

with the flow direction.  

In a highly concentrated suspension, when fibres are interacting, fibres are mostly oriented in 

the flow direction. In an elongational flow, fibres get oriented in a stable position either parallel to the 

flow with a positive elongation rate, or perpendicular with a negative elongation rate. Interactions with 

neighbouring particles may disturb this orientation. In a real cavity filling situation, the flow is a 

complex combination of shear and elongation. Shear reaches a maximum in the skin, and elongation in 

the core. Elongation always occurs at the junction between the sprue or runners and the cavity itself, 

because the cross-section of the flow increases. This is why a skin-core structure is often observed in 

this region. Downstream, if the flow is shear dominated, fibres in the centre are reoriented in the flow 

direction, but the core region may appear again in case of increase of cross section.  

Figures 20.4 show polished cross sections of long glass fibre mouldings (Megally, 2005). In 

the surface, fibres appear mainly oriented in the flow direction, whereas in the centre, they are 

perpendicular to it. They are mostly parallel to the plan of the part. Short fibre composites show the 

same type of orientation. When the fibres are long enough, more than around 500 µm, some of them 

are broken during the screw plastication but the remaining longer fibres can be slightly curved. 

Otherwise, they appear as straight rods. 



 7

In order to be precise about the orientation, it is necessary to quantify it. The fibre orientation 

distribution function  ���, 
� is defined by the probability  ���, 
�d� of finding a fibre oriented 

between � and � + d� , where � is a unit vector aligned with a fibre (Prager, 1957). The second order 

orientation tensor �� is easier to use in comparing two orientation patterns (Hand, 1961). It is defined 

as the spatial average of the double tensorial product of �, and it is symmetrical and positive definite: 

�� = ��   ��� ���, 
�  d� 20.1 

The trace of the tensor is equal to 1. For random orientation in space, the diagonal terms are 

equal to 1/3, and for random planar orientation, to 1/2. For perfect orientation in direction i, 1iia = , 

and the other diagonal values are zero. A diagonal tensor means that the reference frame axes are the 

principal axes of the tensor. 

In order to obtain the orientation distribution function ψ or the second order orientation tensor 

components, each fibre orientation in a given volume must be determined. Several techniques can be 

used (see for instance Clark and Eberhardt (2002) for a review), and a useful technique for fibre 

orientation characterization in molded parts consists in observing a polished cross-section (as depicted 

in figures 20.4), either by optical or scanning electronic microscopy (Vincent et al., 2005). These 

observations give a rough idea of the fibre state, and quantification is very important to compare 

efficiently the different patterns. Cylindrical fibres making a certain angle with respect to the cutting 

plane appear as ellipses. The measurement of the semi-axes of the ellipse allows the quasi-3D 

reconstruction and leads to the vector � components in 3D. The image analysis technique must be 

accurate enough to separate touching fibres or to measure nearly circular fibre cross sections, and 

corrections must be applied for long fibres for which the probability of intersecting the edge of the 

observed field is higher. Another important correction is necessary because the probability of 

observing fibres perpendicular to the observation plane is higher than when they are parallel to it (Bay 

and Tucker, 1992). 

However, these techniques which work well for semi-dilute suspensions have limitations for 

concentrated fibre suspensions. In addition, they do not offer directly 3D views of fibres and their 

kinematics. The X-ray microtomography (Shen, et al., 2004) which becomes actually a very popular 
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technique can be used. This last technique allows the 3D reconstruction of the fibres in a given volume 

(Faessel et al., 2005; Le et al., 2008; Suuronen et al., 2013). With appropriate image analysis 

procedures, relevant microstructure descriptors such as the position, orientation of fibres and fibre-

fibre contacts can be extracted (Latil et al., 2011; Guiraud et al., 2012; Wegner et al., 2012; Viguié et 

al., 2013). Moreover, recent synchrotron X-ray sources have made possible to acquire 3D images at 

very fast scanning times, and thus to perform real-time 3D in situ observations during the deformation 

of imaged samples (Limodin et al., 2009; Laurencin et al., 2017). For these concentrated suspensions 

another parameter which is the number of contact points per fibre can be measured and linked to an 

interaction tensor ��. In fact, assuming a constant length distribution and a no-interpenetration 

condition, Toll (Toll, 1993; Toll, 1998) expressed the average number of contact points per fibre for 

slender bodies as follows: 

�̅ = 8�  �� � �  20.2 

with  � is the aspect ratio of fibre defined in section 3, �  the fibre volume fraction and � the trace of 

the second-order interaction tensor �� defined as follows (Djalili_Moghaddam and Toll, 2005; Férec 

et al., 2009, Férec et al., 2014): 

�� = ��� ���    ����� ��� × �������, 
� ����, 
�  d�� d��  
� = Trace���� =  ��� ���   ��� ×  �������, 
� ����, 
�  d�� d��  20.3 

where the superscript i refers to the test fibre while j is used for the neighboring fibre and ��� × ��� is 

the Onsager potential (Onsager, 1949) which is maximum and equals one when two rods interact 

orthogonally and is minimum and null when two rods are both parallel. 

The figures 20.5 shows the compression of a concentrated suspension of quasi-aligned polymer fiber 

immersed in olive oil that was studied using in situ observations (Latil et al., 2011). This sample was 

subjected to a vertical compression and Figure 20.5 shows the evolution of the force measured along 

the vertical axis and representations of the fibrous structure deducted from X-thomography 

measurements during the flow. As noted in previous works (Orgéas et al., 2012; Guiraud et al., 2012), 

Figure 20.5 shows that, quantitatively, the Toll’s model forecasts reproduce rather well the 

experimental evolution of average contacts although the theoretical predictions are slightly higher. 
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Another example showing the compression of suspension containing 2770 fibres corresponding to 

fibre volume ratio of 40% can be found in (Laurencin, 2017). 

 

20.2.4 Skin-core structure 

A review of observations in various part geometries, such as plaques or centre gated disks, with 

different composites can be found in Papathanasiou (1997). The skin-core structure is often observed, 

the relative thickness of the skin and core layers depending on the processing conditions. At the flow 

front, fibres are mostly tangential to the front. This is why weld line regions exhibit weaker 

mechanical properties. 

Figure 20.6 shows the gapwise evolution of the orientation tensor component in the flow direction, in 

a 50 wt% glass fibre reinforced polyarylamide plaque, for four cavity thicknesses (Vincent et al., 

2005, Vincent, 2009). The skin-core structure exists for the two largest thicknesses, but vanishes for 

the smallest ones. The shape of the plaque entrance, where the core is created, and the high shear rate 

generated by a small flow gap are responsible for this difference. 

 

20.3 Models 

20.3.1 Fibre orientation: Jeffery theory 

20.3.1.1 A single fibre in a Newtonian Fluid 

Jeffery (1922) considered a single rigid ellipsoidal particle with very small dimensions. Thus, the rate 

of deformation can be considered as homogeneous around the particle, and he supposed that this 

particle was immersed in a Newtonian fluid. The following time evolution equation of the unit vector 

�  aligned with the particle axis was thus obtained: 

d�d
 =   Ω � +  � &'( � −  �'(: �����+ 20.4 

where '( is the rate of strain tensor, Ω is the vorticity tensor, both defined as function of ,, the velocity 

field: 

-( �,� =  ./ �0, +  0,1� 

Ω�,� =  ./ �0, −  0,1� 

 

20.5 
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� is a function of the aspect ratio of the particle � = 2 3⁄  , with L the length and D the diameter of the 

fibre. One gets for ellipsoids (both oblate and prolate spheroids): 

� =  �� − 1�� + 1 20.6 

In this theory, a particle rotates periodically in a simple shear flow, with a period of rotation of: 

67 =  2 �'(̅  9� +  1�: 20.7 

where '(̅ =  ;∑ '(����,�   is the magnitude of the strain rate tensor. This relation has been experimentally 

validated (Moses et al, 2001). If the particle is infinitely long (slender body), the particle does not 

rotate anymore, but tends to orient in the flow direction. In elongation flows, equation (20.4) shows 

that a particle tends to a stable equilibrium position, parallel or perpendicular to the flow direction 

when the elongational rate is positive or negative (Tucker and Advani, 1994). The kinetics of 

orientation are almost independent of the fibre aspect ratio when it is high.  

Later, Bretherton (1962) theoretically demonstrated that any rigid body of revolution has a 

motion in shear flow identical to an ellipsoid, meaning that the theory could be extended to fibre 

motion provided that the correct value of � is chosen (Petrie, 1999).  For straight cylindrical fibre, one 

gets: 

� = 1 −  � = >? �@�AB@C   20.8 

where D ≈ 5.45  is a constant determined by Cox (1971) from the experiments of Anczurowski and 

Mason (1968). Typically, short fibres have a diameter between 10 and 20 µm, and length between 100 

and 500 µm, so that �  is of the order 5 to 50, and �  is larger than 0.92. 

 
20.3.1.1 Effects of non-Newtonian fluids 

However, few experimental, theoretical, and numerical studies focused on fibre kinematics in shear-

thinning and viscoelastic fluids, whereas this rheological behavior is typical for industrial polymers, as 

those that are used in composites. In fact, departures of the fibre orientation from the Jeffery's orbits 

have been observed for non-Newtonian fluids, mostly for shear flows. Hence, using viscoelastic fluids, 

fibres were found to align along the shear or the vorticity directions, depending on the Weissenberg 

number, e.g. by changing the shear rate or the fluid viscoelastic properties (Iso et al., 1996; Gunes et 
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al., 2008). These experimental results were also observed numerically and theoretically (Leal, 1975; 

Brunn, 1977; D’Avino et al., 2014; Borzacchiello et al., 2016). Nevertheless, for power law fluid 

having a shear thinning behaviour, theoretical considerations and experimental observations showed 

that the Jeffery’s equation is found valid assuming a slender body (Férec et al., 2016; Laurencin et al., 

2019). 

 

20.3.1.3 Confinement effects 

Moreover, Jeffery-based theories were established for good scale separation conditions, i.e., when the 

size of fibres is small compared with the typical size of flowing samples. Unfortunately, this critical 

prerequisite is rarely fulfilled by the composite forming conditions. In many situations, composites 

flow through narrow channels or in thin mold cavities with gaps being in the same order of magnitude 

as the fibre length 2. These flow situations correspond to confined regimes (Schiek and Shaqfeh, 1997; 

Diamant, 2009; Snook et al., 2012): the scale separation between the sample and its heterogeneities is 

poor so that fibres are close to the mold walls. It is well-known that when fibres interact with a solid 

wall, departures from the Jeffery's trajectories and orbits are prone to occur (Moses et al., 2001). Few 

theoretical studies proposed modifications of Jeffery's equations to account for confinements and/or 

wall effects (Schiek and Shaqfeh, 1997; Ozolins and Strautins, 2014; Perez et al., 2016, Scheuer et al., 

2016; Scheuer et al., 2018, Laurencin et al., 2019). In these models, the particle rotary velocity is split 

into two terms: the Jeffery rotary component (equation (20.4)) and a confined component which 

depends on the type of flow and the position of touching walls. In particular, Scheuer et al. (2018) 

showed that this decomposition holds for non-Newtonian fluids. 

 

20.3.1.4 Influence of fibre interactions 

Jeffery’s equation (20.4) is valid for dilute suspensions, when the fibre volume fraction  � ≪  1 ��⁄ . 

In the semi-concentrated regime,1 �� ≪  � ≪  1 �⁄⁄ , hydrodynamic fibre interactions occur, whereas 

in the concentrated regime �� ≫  1 �⁄ �, fibre-fibre contacts also appear.  Fibre-reinforced 

thermoplastics are often in this latest regime.  

Since in the concentrated regime one cannot follow each fibre, the orientation distribution 

function, ���, 
�, defined in the previous section is used. The equation of conservation of �  is of the 

Fokker-Planck type and is written (Bird et al., 1987): 

K�K
 +  KK� 9� L�L
 : = 0 20.9 

For concentrated regimes, Folgar and Tucker (1984) introduced a pseudo-Brownian diffusion, giving 
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K�K
 +  KK� 9� L�L
 : =  3N K��K��  20.10 

Therefore, the Jeffery equation was modified by introducing this diffusion term which model fibre 

interactions: 

d�d
 =   Ω � +  �� &'( � −  �'(: �����+ − 3N K ln���, 
�K�  20.11 

This phenomenological term, 3N, is proportional to the effective deformation rate Q ̅( and to a constant 

diffusion coefficient RS , called the interaction coefficient. However, this useful model fails to produce 

slow orientation kinetics for rod suspensions as encountered in non-dilute systems due to the 

interactions (Sepehr et al., 2004). Based on a physical approach at the microscale, Férec et al. (2009) 

exhibited a pseudo-shape factor, ��, that is a function of �: 

�� = 1 − � TU ���    �� ×  �������, 
�  d�� 20.12 

where TU is a dimensionless scalar that relates the intensity of the friction between particles and the 

superscript V refers to the neighboring fibre. This term is due to an interaction flux created by the fibre-

fibre interactions and it is obtained from a global torque produced by neighboring fibres, which acts on 

the test fibre kinetics. With this is approach, the diffusional terms introduced by Folgar and Tucker 

(1984) had to be modified and was expressed as 

3N =  W'(�̅ TU ���    �� ×  �������, 
�  d�� 20.13 

where W is a dimensionless interaction coefficient (similar to RS�.  

 
20.3.2 Fibre orientation: Folgar Tucker model 

The distribution function is a complete and accurate representation of the orientation state. However, 

solving the equation (20.10) requires important computational resources, and for industrial 

applications, it is better and easier to use the second order orientation tensor, ��, defined in equation 

(20.1) . Passing from an orientation distribution function ���, 
� to �� implies a loss of information. 

Thus, one may use higher order tensors, such as �A the fourth-order orientation tensor 

�A =  X ������� ���, 
� d�  20.14 

and may reconstruct ��p, t�, as suggested by Advani and Tucker (1987) from both tensors.  
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To directly solve orientation motion based on the second-order orientation tensor, Lipscomb et 

al. (1984) provided the following equation, after volume averaging of Jeffery’s equation: 

L��L
 =  Ω �� −  �� Ω +  ��Q(�� +  ��Q( − 2 Q(: �A� 20.15 

For more concentrated solutions, the diffusion term added by Folgar and Tucker (1984) to account 

globally for fibre interactions gives: 

L��L
 =  Ω �� −  �� Ω +  ��Q(�� +  ��Q( − 2 Q(: �A� + 2 RS  '( ̅�[ − 3 �� � 20.16 

This model has been extensively used, and is the standard model.  Questions arise when 

treating this equation: how to compute �A from �� ? What are the admissible values for RS ? How to 

extend this model to concentrated suspension? 

 

20.3.2.1 Closure approximations 

The fourth order tensor �A appears in the time evolution equation for ��, thus a closure approximation 

is needed to approximate �A as a function of �� (since to compute �A, one needs also �]). Tests 

carried out in simple flows (shear, elongation, or simple combination of both) showed that the closure 

approximation has a large influence on the quality of the result. The different approaches were 

summarized in figure 4.3 in (Férec and Aussias, 2015) and we recall here the simplest or more 

commonly used closure approximations.  The simplest approximation is the quadratic closure which 

gives exact results when fibres are perfectly aligned (Doi and Edwards, 1986): 

�Â = �� ��   20.17 

and the linear closure which is exact for random orientation (Hand, 1962): 

�A_ =  − �̀a �bb + c + cd� + è ��. �bb + c + cd� +  è �bb + c + cd�. ��    20.18 

where the three fourth-order isotropic tensors are defined in terms of their Cartesian components as 

follows (Bird and Curtiss et al., 1987): 

�bb���fg =  h��hfg     ;      c��fg =  h�g  h�f      ;     c��fgd =   h�f  h�g    20.19 

The hybrid closure approximation is a linear combination, depending on the orientation, of the two 

previous ones (Advani and Tucker, 1990): 
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�Aj = �1 −  ��C� �A_ +  ��C�Â     20.20 

where ��C = 1 − 27 det ���� is a scalar measure of orientation in a 3D orientation field, which varies 

from 0 in the case of a random orientation to 1 in the case of a perfectly aligned orientation. As a 

result, the hybrid closure is exact when the fibres are in random state or in perfect alignment. 

However, this closure tends to accelerate the orientation transients in transient shearing flows.  

Performance studies of theses closure approximations in both shear and elongational flows were 

analysed in Verleye (1995). It was showed that linear closures may provide non-physical oscillations, 

which did not happen with quadratic or hybrid closures. The transient state at shorter time is generally 

overestimated whereas the stationary one reached for larger time is underestimated; fibre alignment 

prediction is very unidirectional. In elongation flows, linear closure may also give unrealistic values, 

whereas quadratic or hybrid approximations provide better results, even if they overestimate the 

transient region. 

One other class of closure approximations includes fitted parameters in simple flows, like the 

orthotropic (Cintra and Tucker, 1995; Wetzel and Tucker, 1999) or the natural closures (Dupret and 

Verleye, 1999). For orthotropic closures, three selected independent components of �A were 

developed as a two order polynomial expansion of the two largest eigenvalues of ��. For natural 

closures, the fourth-order tensor was written as a linear function of the invariants of the second-order 

orientation tensor. Coefficients of the different function corresponding to each approximation were 

obtained by fitting to the analytical solution of the steady-state orientation distribution function for 

several flow situations: shear, elongation and combination of both. 

  Orthotropic closures always provide the best results and are the most commonly used. 

However for low RS values, the first orthotropic closures proposed by Cintra and Tucker (1995) 

suffered from non-physical oscillations when used for simple shear and radial diverging flows. Chung 

and Kwon (2001) have proposed an improvement to overcome this problem. This was achieved by 

introducing fitted flow data that covers the entire range of fibre orientation states, in particular the 

combined shear/planar-elongation flow resembling to radial diverging flow. Finally they showed that a 

third order polynomial expansion of the two largest eigenvalues of �� performed better especially for 
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non-homogeneous radial diverging flows with low RS values. Chung and Kwon (2002a) have also 

developed an extension of natural closures which predicts fibre orientation as accurately as methods based 

on orthotropic closure with lower computational time. Comparisons of these different approaches are given 

in Chung and Kwon (2002b). 

 

20.3.2.2 Interaction coefficient: theoretical, numerical and experimental determination 

For shear flows, the interaction coefficient value is very important in making good predictions of the 

steady-state solution of the orientation tensor: if RS  is high, the orientation becomes isotropic, whereas 

for a weak RS , fibres tend to align in the flow direction. On the other hand, in elongation flows, RS  
influences the orientation transient solution: if RS  is high, fibre orientation attains the steady state 

more rapidly than for lower values. 

In a shear flow, when RS  is around 10lA, m`` is close to 1, meaning that fibres are very well 

oriented in the flow direction. When RS   increases, m`` decreases, and for RS = 1, orientation becomes 

nearly isotropic �m`` =  1 3⁄ �. The fibre aspect ratio �  has a negligible influence on the steady-state 

attained value, even though Hinch and Leal (1973) showed that for very weak diffusion (a very small 

interaction coefficient) it may become important.  

The value of RS can be determined through theoretical, numerical or experimental fittings. In this last 

case, it can be difficult to find only one RS  that fits in the whole flow range. Bay and Tucker (1992) 

used an empirical approach, based on experimental values for injected disks and plaques at different 

polymers and fibre concentrations, to propose: 

RS = 0.0814 nlo.e`Ap � @ 20.21 

On the theoretical side, Ranganathan and Advani (1991) proposed a relationship between the 

interaction coefficient and the distance between fibres, ℎ: 

RS = D 2ℎ 20.22 

where K is a constant determined experimentally and L the fibre length.  

Direct numerical simulation has also been used to estimate RS  values. Yamane et al (1994) 

modelled fibre-fibre interaction for a Newtonian fluid in shear flow, using lubrication forces. The 
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authors obtained very low interaction coefficients �10le <  RS <  10lA�. Fan et al (1998) developed a 

numerical approach to consider both fibre-fibre and hydrodynamic interactions leading to an 

interaction coefficient that has a tensorial form, which will be discussed in the next section. Phan-

Thien et al. (2002) extended the previous approach and proposed the following form for RS: 
RS = 0.03 �1 −  nlo.��A � @ �  20.23 

The values obtained seem of a good order of magnitude �10l� <  RS <  10l��. Furthermore, one 

obtains the interesting result that the interaction coefficient increases with the fibre volume fraction 

and the fibre aspect ratio. This is a point of discussion, since high volume fractions do not often lead to 

isotropic orientations, which are the result of Folgar and Tucker’s model when one considers a 

high RS. The models discussed in the next section will enlighten this fact.  

 

20.3.3 Fibre orientation: recent models with anisotropic fibre interaction 

 

In the previous standard model (0.16), an isotropic rotary diffusion term was added by Folgar and 

Tucker. The diffusivity is proportional to the magnitude of the rate of deformation (scalar), through 

the constant RS. Experimental data has shown that, for concentrated suspensions, kinetics of 

orientation is much slower than are predicted by the standard Folgar and Tucker model. To avoid this 

effect, Wang et al. (2008) and Phelps and Tucker (2009) introduced the Reduced Strain Closure (RSC) 

model in order to slow down the fibre orientation kinetics. The authors wrote �� as a function of its 

eigenvalues ��� and eigenvectors�s�, and supposed that the eigenvalue kinetics was slowed by a factor 

of � and that the eigenvector kinetics was unchanged.  The tensorial material derivative of �� was then 

recalculated, resulting in the following variation of the Folgar and Tucker’s model: 

d��d
 = Ω �� − �� Ω +  � �Q(�� + ��Q( − 2 Q(: &�A + �1 −  ���tA − uA: �A�+�
+ 2� RS  '(�̅[ − 3 �� �  

20.24 

The fourth order tensors tA and uA are function of the eigenvalues and eigenvectors of ��: 

tA =  v �����s�⨂�s��⨂s��⨂s���
�x`

 20.25 
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uA =  v��s��⨂s�⨂�s�⨂�s���
�x`

 20.26 

and parameter �  was determined by fitting experimental data. For short fibre reinforced 

thermoplastics, it ranges from 0.05 to 0.2 (Wang et al., 2008). To avoid the use of closure 

approximations, Wang et al. (2008) have also derived a Fokker-Planck equation including this kinetics 

slow phenomenon. Nevertheless, it remains computationally expensive when compared with the 

tensorial form.   

Using a different approach, Férec et al. (2009), obtained a similar model. The authors have 

considered that orientation kinetics becomes slower with semi-concentrated suspensions because of 

hydrodynamic and fibre-fibre interactions. The force generated by fibre interactions was modelled 

using a linear hydrodynamic friction coefficient proportional to the relative velocity at the contact 

point and weighted by the probability for contacts to occur. The modified Jeffery’s equations were 

depicted in equations (20.11-20.13). Starting from this approach, the authors obtained the following 

orientation evolution equation: 

 
y�Cyz = Ω �� − �� Ω +  � �'(�� + ��'( − 2 Q(: �A�  

            +� TU�'(�� +  ��'( − 2 '(: �A� + 2� � TU W '(�̅{ − 3 �� � 

20.27 

where �  is the average number of contacts per fibre defined in equation (20.3), TU is a parameter 

related to drag, and W is a dimensionless interaction coefficient (namely the group of terms 2� � TU W is 

equivalent to  coefficient RS of the standard Folgar and Tucker model (equation (20.16)). The second 

order interaction tensor �� was already defined in equation (20.3) and can be approximated (Férec et 

al., 2009) by  

�� =  3�8 ��� − �A: ��� 20.28 

whereas the fourth-order interaction tensors �A was also approximated through a quadratic closure 

approximation: 

�A = ��⨂��Trace����  20.29 
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In addition, Férec et al. (2009) have demonstrated that their model can be rewritten as a RSC model 

type. An improvement of this approach can also be found in Férec et al. (2014) in which the Brownian 

terms was not used but the new closure relation for the fourth-order interaction tensor, �A are proposed 

(it was developed as a polynomial expansion of three eigenvalue of  ��). The second orientation 

interaction tensor ��, was expressed as a function of the orientation tensors thanks to an invariant-

based optimal fitting approximation.  For all these expansions, the unknown parameters were obtained 

using a least-square fitting technique with simple and steady solutions computed from the probability 

distribution function. 

Globally, the RSC model behaves well for short fibre reinforced materials. For long fibre 

thermoplastics, it quantitatively generates higher flow aligned fibres which do not agree with the 

experimental values. Thus, anisotropic rotary diffusion (ARD) models have been lately developed 

(Ranganathan and Advani, 1991; Fan et al., 1998; Phan-Thien et al, 2002; Koch, 1995; Phelps and 

Tucker, 2009). Ranganathan and Advani (1991) proposed a model in which the interaction coefficient 

is inversely proportional to the average interfibre spacing (see equation (20.22)). Diffusion is isotropic 

and not really applicable to long fibre reinforced materials. Fan et al. (1998) and Phan-Thien et al. 

(2002) developed a rotary diffusion anisotropic model by replacing the interaction coefficient RS by a 

second order tensor |, computed by performing direct numerical simulations of a REV of a 

concentrated suspension undergoing a simple shear flow (Beaume, 2009). | was then determined 

using the steady state solution, not exploiting dynamic behaviour. Koch (1995) obtained also an 

expression for the tensor | using a mechanistic approach, by considering the influence of 

hydrodynamic fibre-fibre interactions on the orientation development in the semi-dilute regime. This 

tensor is of the form  

| =  } 2�
Q̅(� ln�� &~`�'(: �A: '(�[ +  ~��'(: �]: '(� + 20.30 

with n the number of fibres per unit volume, ~` and ~� are parameters computed by fitting with 

analytical orientation values in elongation flows, �] is the sixth-order orientation tensor. The author 

was then led to the following orientation equation: 
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d��d
 = Ω �� − �� Ω +  � �'(�� + ��'( − 2 '(: �A�  
+ '(�̅2 | − 2 Trace�|� �� − 5 �| �� + �� |� + 10 �A: |� 

20.31 

Since the sixth-order tensor needs to be computed, the Koch model is more computationally costly. It 

does not provide better results than Folgar and Tucker model for long fibre reinforced thermoplastics, 

and the quality of results is also dependent on the ratio between ~` and ~� (if ~` is much larger than 

~�, diffusion becomes mostly isotropic and the model close to Folgar and Tucker’s one).  

Recently, Phelps and Tucker (2009) developed a phenomenological anisotropic rotary 

diffusion model, using also a second-order tensor to describe interaction, by allowing the diffusion 

term to depend on the orientation state and on the rate of deformation tensor, using the final expression  

| =  ~`[ +  ~� �� +  ~� ��� +  ~A'(̅ Q( +  ~a'(̅�  Q(� 20.32 

The five scalar parameters ~`, ⋯ , ~a are fitted in order to get steady state orientation solutions in 

simple shear flow and various elongation flows, ensuring stable steady state positive eigenvalues, as 

well as physical solutions. The complexity of determining valid parameter sets for this model led 

Tseng and co-workers (Tseng et al., 2013; Tseng et al., 2016;  Tseng et al., 2018) to develop the 

iARD (improved Anisotropic Rotary Diffusion) model which assumes that anisotropy of diffusion is 

only controlled by the deformation mode: 

| =  RS �[ −  4R�  '(�'(̅�� 20.33 

where the new parameter R� controls anisotropy and this approach is actually used in Moldex3D.  

Recently, Bakharev et al. (2018) have introduced a model in which the rotary diffusion tensor depends 

only the local fibre orientation through eigenvalues of ��: 

| =  RS � v �3� s�⨂s�
�

�x`
� 20.34 

where the coefficients 3� are  associated to eigenvalues �� sorted in descending order and these default 

values of �3` = 1, �3� = 0.8 and �3� = 0.15 are used in Moldflow (Autodesk Help, 2018) and is 

denoted as MRD model. A similar model called pARD is proposed in Moldex by Tseng et al. (2018).  
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Recently, Favaloro and Tucker (2019) have re-cast the general equation (20.31) in a new, 

interpretive form that readily identifies an effective scalar interaction coefficient R�̀ and a target 

orientation tensor �� : 

d��d
 = Ω �� −  �� Ω +   �Q (��� +  ��Q (� − 2 Q (�: �A� +  6RS�  Q̅( ��� − 3 �� � 20.35 

where Q (� =  � Q ( − 15 RS�  Q̅( �� , RS� = Trace�|�/3, �� = | Trace�|�⁄ . The authors re-write a lot of 

anisotropic rotary diffusion model in this form. Then, they got the parameter needed of each model to 

fit a steady-state orientation in a shear flow. Finally, the comparisons of transient behaviour shown 

differences and they concluded that the last model (20.35) is the most attractive as the needed 

parameters can be easily obtained to measured final orientations. 

Finally, the Reduced Strain Closure model and Anisotropic Rotary Diffusion model can be collected 

in an unique model (so-called ARD-RSC model) which is thus written as: 

d��d
 = Ω �� − �� Ω +  � �Q(�� + ��Q( − 2 Q(: &�A + �1 −  ���tA − uA: �A�+� 
+ Q̅( �2 &| − �1 −  ��uA: |+ − 2� Tr�|��� − 5�| �� + �� |�

+ 10 &�A +  �1 −  ���tA − uA: �A�+: |� 

20.36 

This latest model has shown to be predictive for long fibre thermoplastic composites; even though 

there is a large number of parameters to fit (Tseng et al., 2017) and it can be used in Moldflow 

software. 

 

20.3.4 Fibre orientation: confinement effects and non-Newtonian fluids 

In the sections 20.3.1.3 and 20.3.1.3, extensions of Jeffery’s model have been proposed to take into 

account of confinement effect and the non-Newtonian behaviour of fluid. As the Jeffery equation was 

not modified for power law fluid, the Folgar and Tucker model discussed previously can always apply. 

For second-order fluid model Brunn (1977) gave a general expression of particle orientation (or 

Jeffery equation) which was used by Borzacchiello et al. (2016) to derive a complex mascroscopic 

description which involves moments up to sixth order of the orientation distribution. Therefore, the 

authors proposed a simplified modelling framework valid for low Weissenberg number that allows 

one to extend to viscoelastic suspending fluids the standard Folgar and Tucker model. 
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For simple shear flows and moderately confined flow conditions, Mezher et al. (2016) have 

shown that the orthotropic closure within the classical Folgar and Tucker framework captures the 

orientation evolution. However, in strongly-confined situations, they concluded that two approaches 

can be followed: either use of a set of microstructure descriptors richer than the single second-order 

orientation tensor (Perez et al., 2016), or look for better closure relations involving the second-order 

moment only that could be fitted in confined flow conditions, following the same rationale that was 

considered for deriving the orthotropic closure approximation (Chung and Kwon, 2001). 

 

20.3.5 Rheological models 

In the most general case, we consider that the extra stress tensor is the sum of the contribution of the 

fluid and of the particles (Batchelor, 1971), and that a reinforced polymer is a suspension of rigid 

particles in a Newtonian fluid (Tucker, 1991). In this case, most theories have derived the following 

expression for the stress tensor (Tucker, 1991):  

� =  −�{ + 2 	S�Q( +  ��Q(: �A + ���Q( �� +  �� Q(�� 20.37 

where 	S , ��, �� are parameters depending on the fluid viscosity, fibre aspect ratio, fibre orientation 

and fibre concentration. They can be obtained from rheological experiments that are difficult to 

perform in the concentrated case. On the other hand, theoretical expressions obtained for each of these 

parameters depend on the concentration domain. It is most often the dilute and the semi-concentrated 

regime which limits greatly their wide application. Three type of approaches are used in the literature 

to obtain �� and  ��: the slender body theory, where a particle is considered as an  infinitely thin fibre 

(of negligible thickness) (Batchelor, 1971; Dinh and Armstrong, 1984; Shaqfeh and Fredrickson, 

1990); the derivation of known results for suspensions of ellipsoidal particles, valid for finite fibre 

aspect ratios (Hand, 1961; Hinch and Leal, 1973; Lipscomb et al., 1988); a modification of this later 

model which assumes a nonlinear dependence of the effective viscosity with the fibre fraction (Phan-

Thien and Graham, 1991). In all the above theories, �� is larger than  �� for high aspect ratios. 
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20.3.5.2 Slender body approximation and slender ellipsoidal particles theories for dilute and semi-

dilute suspension. 

 In the approximations based on the slender body theory, 	� is equal to the fluid viscosity and �� = 0. 

They are valid for dilute (for � ≪ 1 ��⁄ ) (Batchelor, 1970) or for semi-concentrated suspensions 

(Batchelor, 1971; Dinh and Armstrong, 1984; Shaqfeh and Fredrickson, 1990). For dilute suspensions, 

Batchelor (1970) proposed the following expression 

�� =  ���3 ln ��� 20.38 

To extend the approach to the semi-concentrated regime, authors have considered hydrodynamic and 

fibre-fibre interactions, as well as lubrication forces. Hence, Batchelor (1971) gave  

�� =  � ��
9 �ln�2�� − ln �1 + 2�;��� − 1.5� 

20.39 

whereas Dinh and Armstrong (1984) considered the influence of orientation by providing �� as  

�� =   � ��
3 ln �2 ℎ3 � 20.40 

and h represents the characteristic distance between two neighbour fibres which depends on the 

particle orientation: 

2 ℎ�>��?�y3 = ��
�

  for aligned orientation ; 2 ℎ��?y ¡3 =  �2� �   for random orientation 20.41 

In the simulation Chung and Kwon (1996) assumed that this average distance from a given fiber to its 

nearest neighbours ℎ   is linear in terms of the scalar measure of orientation ��C (defined in equation 

(20.20)):  

ℎ = �1 − ��C  � ℎ��?y ¡ + ��C ℎ�>��?�y     for  �4�� <  � < �4�  
  ℎ =  ℎ�>��?�y   for  BA@ <  � < BA  

20.42 

in which, the average distance between is chosen to be the same as for the aligned orientation state if 

fibre fraction is greater than  � 4�⁄ . 
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A similar expression has been obtained by Shaqfeh and Fredrickson (1990) by using a 

multiscattering expansion to represent the hydrodynamic interaction between fibres. Results are 

obtained for both random and aligned orientation states, and are found to be the same except for the 

numerical value of the constant, which is different for aligned orientation states and random 

orientation states: 

�� =  16 � ��
3 ln �1 �⁄ � �1 − ln ln�1 �⁄ �ln�1 �⁄ � + Rln�1 �⁄ � �  ;   R = £ 0.1585 �aligned fibres�0.6634 �random fibres� 20.43 

 Then, the Shaqfeh and Fredrickson theory shows a little variation of coefficient �� with fibre 

orientation. This difference with Dinh and Armstrong theory arises from the method used to calculate 

the cell size or the hydrodynamic screening distance: Dinh and Armstrong base their cell size on the 

nearest-neighbor distance, while Shaqfeh and Fredrickson use explicit modeling of the hydrodynamic 

interactions between multiple fibers. Finally, Ranganathan and Advani (1991) proposed a modification 

to the Batchelor (1970) model using a corrective factor function of the fibre aspect ratio, providing 

better results, but very sensitive to this correction.  

Other expressions are based on ellipsoidal particles theories (Hinch and Leal, 1973; Lipscomb 

et al., 1988), where �� is different from zero but much smaller than N§, and 	S is different from the 

fluid viscosity. For dilute suspensions, they take the form: 

�� =  �1 + 2� ��
2&ln�2�� − 1.5+  ; �� =  �1 + 2�6 ln�2�� − 11��  ;   	S =   	 �1 + 2�� 20.44 

Extensions of this model have also been proposed, to improve the results when going towards the 

semi-concentrated regime. In particular, Phan-Thien and Graham (1991) developed a 

phenomenological constitutive equation, which states that, at high volume fraction, the effective 

viscosity diverges and therefore they empirically got the coefficient 

�� =  � ��
2&ln�2�� − 1.5+    �2 − � �¨�⁄

�1 − � �¨⁄ ��  ; �� =  0 ;   	S =   	  20.45 

in which �¨ denotes the maximum volume packing. It can be evaluated by  

�¨ =  0.53 − 0.013 �   ,    5 <  � < 30 20.46 
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20.3.5.3 Model with interaction tensor for concentrated suspension 

Djalili-Moghaddam and Toll (2005) hypothesised that the hydrodynamic interactions between 

particles in the suspension may be divided into two parts: long-range interactions which are covered 

by semi-dilute theory, and short-range interactions, which correspond to local lubrication forces due to 

the high shear rate in the gap between two nearly touching fibers. Thus, the total stress may be 

separated into four contributions: the static pressure, the Newtonian fluid stress, an extra stress due to 

fluid particle interactions and long-range particle–particle interactions, and an extra stress due to short-

range particle–particle interactions. For semi-concentrated suspensions, Férec et al. (2009) added an 

additional stress contribution due to the contact forces acting on the fibers. The total stress has a new 

term depending on the interaction tensor �A and becomes: 

� =  −�{ + 2 	S�Q( +  �� Q(: �A +  �©Q(: �A� 20.47 

with   

�� =  � 3�ª«12 �  ;  �© =  2 � �3�¬3 �  20.48 

where ª«  is the parallel drag coefficient to the fibres, dependent on the nature of the fibre-matrix 

contact, and k is dimensionless geometric factor. For very low fibre volume fractions, �© becomes 

insignificant and the total stress reduces to the Dinh and Armstrong (1984) model. 

 

20.3.5.4 Model for non-Newtonian matrix suspension 

To our knowledge, few models in the literature take the non-linear behavior of suspending fluid into 

account. From the Batchelor (1971) approach (labelled as "cell model") on particles aligned in a 

Newtonian matrix, the first works concerning these suspensions were initiated by Goddard, (1978) for 

a shear-thinning fluid modelled by a power law.  Following these anterious works, Souloumiac and 

Vincent (1998) used this method to describe the contribution of fibers to tensor of the constraints for a 

suspension of fibers in a power law fluid. In this approach, a cylindrical fiber of radius R is included in 

a cell of radius ℎ. The relative speed of the fluid with respect to the fiber is assumed to be undisturbed 

by its presence from the distance ℎ. The fluid speed gradient ∇® is assumed to be constant along the 
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fiber. The Souloumiac and Vincent model is based on the assumption that interactions hydrodynamics 

between fibers are weak. The stress tensor is then written in the following form: 

� =  −�{ + D '( ̅¯l` Q(  +  � = �  @°±² ¯³�    � `l¯¯&`l�´ µ⁄ ��²¶°� °⁄ +�¯

    

X   |0¸: ���|¯l` �0¸: ������� ���, 
� d�  20.49 

where } is the index sensitivity to the rate of  fluid deformation and D its consistency. If } tends 

towards 1, the equation is reduced to the expression of Dinh and Armstrong (Equation (20.40)). This 

result is also in agreement with the work of Goddard (1978) who also finds that the constraint is 

proportional to �¯³`. 

Some works (Ait-Kadi and Grmela, 1994; Azaiez, 1996; Ramazani et al., 1997; Ramazani et al., 

2001) concerning the modeling of the rheological properties of suspensions in viscoelastic matrices 

have shown that in this case the stress tensor is split as follows: 

� =  �¹ > +  º§  + º»  20.50 

in which, the contribution of the fluid to the constraint tensor of suspension is seen as the sum of the 

contributions due to the solvent �¹ > and the polymer º§ and the fiber contribution º» is computed by  

taking the whole viscosity (solvant and polymer) in order to take into account of non-newtonian input. 

 

The equation general form of stress tensor (20.37) induces that the viscosity of fiber suspension is 

anisotropic and therefore can be express as a fourth-order tensor. Expressions of these fourth-order 

viscosity tensors are proposed by looking at particular configurations (Sommer et al., 2018; 

Wittemann et al., 219;. More recently, (Li and Luyé, 2019; Favaloro et al., 2018; Tseng and Favaloro, 

2019) have proposed to replace this fourth-order viscosity tensor by an optimal scalar model which is 

implemented in both Moldflow Insight API framework and Moldex3D software. 

 

20.4 Computation of fibre orientation in injection moulding 

 

We present computational examples of fibre orientation in injection moulding for which experimental 

data exist. The various moulds are geometrically complex enough to describe problems encountered in 
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real industrial processes.  In the first example, we check whether the skin-core effect is accurately 

computed in a rectangular plaque. Moreover, the influence of the orientation-rheology coupling and of 

the interaction coefficient RS is analysed by computing the orientation near the inlet gate. The second 

example is a U-shape with thin walls and ribs which is used in the automotive industry showing that 

we are able to compute the appearance and location of weld lines. The third example is the plaque 

with seven different ribs (see Figure 20.2) which gives information on the orientation state in small 

parts. 

First of all, the numerical methods are briefly described. The methodology is that used in 

Rem3D software and it is based on an Eulerian approach (the whole injection cavity is meshed) and a 

stabilised Galerkin method, using a continuous approximation of the orientation tensor coupled to flow 

(Generalized Stokes behaviour), the thermal equation, the flow front evolution (using a level set 

method) and fibre orientation equations (Silva et al., 2016).  

 

20.4.1 Numerical methods 

 

A weakly coupled approach is used meaning that the problem is solved in two steps. This weakly 

coupling did not need internal loop to achieve convergence between velocity and orientation 

computations. Indeed, the computation of the moving fluid/air interface (equation (20.54)) imposed a 

rather small time step which has made it unnecessary.  The first step involves the solution of the 

mechanical problem, assuming that the polymer is incompressible and neglecting gravity and inertia:  

∇. � = 0  and  ∇. , = 0 20.51 

with an isotropic orientation at the first step or an orientation tensor determined at the previous time 

step for the other instants. Its contribution is taken in account thanks to equation (20.37) and the 

fourth- order tensor is approximated with a quadratic relation (20.17). A classical mixed finite element 

method (Pichelin and Coupez, 1988) is used, in which the orientation tensor is implicitly considered.  

The fluid is supposed to follow an incompressible shear-thinning behaviour, represented by a Carreau-

Yasuda and Arrhenius laws for the viscosity	: 
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	 =  	o�6� ¼1 + �	o�6� ½¾(  ¿À�ÁÂÃ¶²Ä
  and  	o�6� =  	o�6��»� exp ��Æ ÇÆ̀ − `ÆÈÉÊË�  20.52 

The parameters occurring in these laws are given in Tables 0.2 for the fluid studied 

As viscosity depends on temperature, the energy equation resolution is coupled and solved: 

ÌR� 9K6K
 + ,. ∇6: =  ∇. �¬Æ∇6� +  	 Q ̅(� 20.53 

 

where Ì is the volume density, R�  the specific heat, ¬Æ  the thermal conductivity, and the last term 

represents the viscous dissipation. These parameters are considered to be constant. Finally, heat 

conduction towards the mould walls and viscous heating are also taken into account.  

The second step involves the computation of fibre orientation with velocity field obtained in 

the previous step, through the resolution of evolution equation (20.16). Numerical resolution of Folgar 

and Tucker’s equation has been performed by Kabanémi and Hétu (1999) using the fourth order 

Runge-Kutta method, by Martinéz et al.  (2003) with the method of characteristics, by Pichelin and 

Coupez (1999) and Redjeb et al. (2005) with a space-time discontinuous Galerkin scheme. Miled et al. 

(2008) have proposed a standard Galerkin method associated to a RFB or SUPG stabilisation, which 

prevents inaccurate oscillations due to the hyperbolic character of this equation. Moving interface 

(such as fluid/air) is also calculated at each time step by solving a convection equation (Ville et al., 

2011) associated to a signed distance function which defines the fluid domain (its value is positive in 

the fluid and negative in the empty region): 

KÍK
 + ,. ∇Í = 0 20.54 

Finally, all parameters and equations are extended to the whole computational domain, as the weak 

formulation of the finite element method ensures the continuity of stress, velocity, orientation tensor 

and temperature (Batkam et al., 2004).  

The numerical approach detailed here is largely used in multiphysics, multidomain and multiphase 

modeling of composites as summarized in Silva et al. (2016). Theses advanced numerical techniques 

are based on mixed stabilized finite elements, Eulerian approaches and modified level-set techniques 
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(Nakhoul et al., 2018), automatic anisotropic mesh adaptation and parallel computing (Digonnet et al., 

2019). 

 

20.4.2 Representation of orientation 

 

The problem is now to get practical information from the computed orientation tensor. In an 

orthonormal Cartesian basis, the diagonal term m�� of the orientation tensor quantifies the fibre 

alignment along the main axis. As already mentioned in the first section, m`` = 1  means that all the 

fibres are oriented along the direction Î`. Moreover, m`` = 0 indicates that all the fibres are 

perpendicular to the axis Î`, that is, they belong to the plane �Î�, Î��. The components m�� with Ï ≠ V 

quantify the asymmetry of the distribution of orientation relative to the directions Î�  or  Î�. For 

isotropic orientation in 3D, the components are m�� =  1 3⁄  while m�� = 0 for Ï ≠ V. 

 

Another way to describe the computed orientation is to plot the ellipsoid associated to the 

eigenvalues, ���, and eigenvectors, �s�, of the orientation tensor �Ñ� (Advani and Tucker,1987)  (Altan 

et al., 1990). The eigenvectors and eigenvalues of the orientation tensor give, respectively, the 

direction and length axes of the ellipsoid as shown in figure 20.6. 

In order to determine the degree of anisotropy, a Von Mises effective orientation, mÒ, can also be 

computed: 

mÒ =  ��m`` − m���� +  �m�� − m���� +  �m`` − m���� + 6 �m`�� +  m`�� + m��� �2  20.55 

 

 It is null for an isotropic orientation and equals to 1 if all fibres are oriented along a principal 

direction. 

 

20.4.3 Rectangular plaque with inlet gate 
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We consider the injection moulding of a three-dimensional plaque (figure 20.8), and in particular we 

study the orientation development near the injection gate. Dimensions of the plaque are given in figure 

20.7. Only half of the plaque will be considered in the simulation, since the geometry presents a 

symmetry plane.  

The polymer is a polyarylamide (Solvay Ixef 1022) reinforced with 50% weight (31.6% volume) glass 

fibres. The fibre aspect ratio is considered constant and equal to 10. The injection is done at a flow rate 

of 20 Ó�� Ô⁄  and the initial polymer temperature is 270 °C. The mould temperature is kept constant at 

130 °C, and the mould is filled in 2.70 s.  The computational time step is 0.002 s. The orientation 

distribution is analysed after 1300 time iterations, almost at the end of cavity filling. 

In order to reduce the computational time, the long circular channel has not been taken into account. 

The inlet of the cavity is just after the last curve of the feeding channel. The computations are made on 

a half mould with symmetric boundary conditions on the plane  �Î`, Î��. The problem is now to impose 

an initial orientation at the cavity inlet as we do not take into account the cylindrical channel. Usually 

one considers an isotropic initial orientation. But the flow in the channel is dominated by shear 

deformations, which are known to orient fibres mainly in the flow direction (namely the Î`axis) at the 

entrance of the triangular gate. Nevertheless, the two curves in the cylindrical channel can disturb this 

orientation. So, computations are made for two different initial conditions (isotropic case, m�� =  1 3⁄ , 

and unidirectional case, m`` = 1) and a hybrid closure approximation. Moreover, two values of the 

interaction coefficient (RS = 0.001 and 0.04) and two values of the rheological coupling coefficients 

(�� = 0, 100 and �� = 0) will be tested. 

Figures 20.7 show cross sections in the  �Î`, Î�� plane at the end of filling and the distribution of the 

diagonal orientation tensor components. We notice that the tensor is almost diagonal, so the 

 �Î`, Î�, Î� � axes are the principal axes of the orientation tensor. Also, the skin-core effect initiated at 

the end of the gate is preserved until the end of the plaque. Computed values of m�� are very small, 

except at the junction between the divergent region and the plaque. This means that fibres are parallel 

to the  �Î`, Î�� plane in the areas where experimental observations are made. This is in agreement with 

the observations and we will focus on the component  m`` which quantifies the degree of alignment 
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with the flow direction. The triangular gate region is divergent in the plane �Î`, Î��  and convergent in 

the plane  �Î`, Î��  (see figure 20.7). The negative elongation rate along the Î� axis dominates over the 

positive one along Î` axis and an orientation perpendicular to the Î` direction develops in the core. 

This orientation is transported at the junction between the gate and the plaque so that at the entrance of 

the plaque, we obtain a skin-core orientation, with a skin oriented in the flow direction, and a core 

perpendicular to it. These calculations show how a gate can lead to a skin-core structure in moulded 

parts. The computations are qualitatively in agreement with the observations. 

In figures 20.9, the evolution of m``  with  Õ�, the plaque thickness, is shown at the four positions A, 

B, C and D where the experimental measurements were made (see figure 20.7b). Computations were 

performed with an isotropic initial orientation showing that: 

1. A skin-core structure is rapidly formed in zone A, and it remains even in D after the junction gate-

plaque. As shown in the experiments, the skin/core structure is less significant for position C than 

for position D; 

2. For a partially coupled calculation (�� = 0), when the interaction coefficient RS  increases, near 

the surface, fibres are less oriented in the flow direction. For example, in the first position A for 

the lower wall (Õ� = 2.5 ��), one gets m``~ 0.7 for RS = 0.04  and m``~ 0.9 for RS = 0.001. 

This can be explained by the fact that shear is dominant near the walls, and it tends to orient fibres 

in the flow direction. The interaction term tends to disorient fibres, and its effect increases with RS. 
The orientation in the core does not really change when RS varies;  

3. An increase of �� from 0 to 100 (that is comparison between coupled and partially coupled 

calculations) leads to complex tendencies in the skin regions. In the lower skin region, that is for 

Õ� = 2.5 ��, 11a decreases in position A and B, but the change is negligible in positions C and 

D. At the opposite skin, there is no noticeable effect for positions B and D. The trends are opposite 

in region A (m`` increases) and C (m`` decreases); that phenomenon points out the complex 

coupling effect on the flow velocity. 
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4. In the core region, taking into account the rheological coupling leads to a small increase of m``, 

except in position D for RS = 0.04. In position D, the lowest value of m``  is for �� = 100 and 

RS = 0.04. 

Computations realised with unidirectional initial orientation (see figures 20.10) show that: 

1. For the weakly coupled calculations (�� = 0) and RS = 0.04, a skin/core structure is formed 

as for the isotropic initial orientation.  Nevertheless, the core is less oriented perpendicular to 

the flow direction: we get m`` around 0.3 - 0.4 for positions A, B, C, instead of 0.2 - 0.3. The 

behaviour is completely different for RS = 0.001 : orientation is in the flow direction on the 

whole thickness at positions A and B. m``  begins to decrease a little in the core in position C, 

and in D the orientation is isotropic (m`` = 0.5); 

2. when ��  goes from 0 to 100, in the skin and core regions, m`` decreases a little, or remains 

nearly constant, depending on the position and the value of RS; 
3.  The influence of the initial orientation is not very important in the last probe D, especially at 

the surfaces, except for RS = 0.001  and �� = 0 in the core: orientation is 2D isotropic in 

plane �Î`, Î�� for a unidirectional initial orientation (m`` = 0.25), whereas a transverse 

orientation is formed with an isotropic initial orientation (m`` = 0.25). 

Numerical results have been compared to the experiments (Redjeb, 2007).  The measured points are in 

between the results obtained with both initial orientation, but the agreement is better for the 

unidirectional initial orientation. This is not surprising, as a circular channel orients fibres mainly in 

the flow direction. In the skin regions, the agreement is quite good with RS =  0.04 for the four 

locations A, B, C and D. The coupled calculation does not improve significantly the quality of the 

agreement. In the core region, agreement is better for RS =  0.001. These results show that the 

interaction coefficient may depend on the orientation. However, the computed skin/core orientation at 

the beginning of the plaque remains more important with respect to the measurements. 

 

20.4.5 U-shaped part with thin walls and cross ribs 
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The studied part is presented in figure 20.12a. The computations have used a mesh generated by a 

topologic mesher (Gruau and Coupez, 2005) or (Coupez, 2011) governed by a natural metric in order 

to capture the thin walls. This metric takes into account, for each area of mould, a specified mesh size 

in each principal direction ensuring an appropriate number of elements in the whole thickness of the 

part. The injected material is a polypropylene referenced as STAMAX P30YM240. This material is 

also modelled by a Carreau-Yasuda law for the rheology and an Arrhenius law for thermo-dependency 

(the parameters are given in table 20.3). The polymer is injected at 250°C and we assume that the 

mould is fully regulated at 40°C. Initially, the air inside the cavity is also considered at a temperature 

of 40°C.  

To compute the fibre orientation, one takes a fibre aspect ratio � = 10, an interaction coefficient RS =
0.001, a hybrid closure approximation and a weakly coupling, �� = 0.  The orientation is analysed 

after a total filling time of 3.7 s (the time step is  3 10lA Ô ).  The dynamics of filling is important 

because it helps to understand the dynamics of fibre orientation. The flow is fully symmetrical and it 

starts from inlet to fill the bottom, the walls and the crossing central ribs simultaneously. At the 

beginning, the wall filling is slightly delayed compared to central ribs. This delay disappears and is 

reversed as soon as the cavity is half filled.  

Finally, the part having cross-ribs has two weld lines as the material fronts flowing in  the flank and 

ribs intersect twice. The first weld line is located on the sidewall after crossing the first rib. The second 

weld line is located at the second row of crossing ribs, as the flow front from the sidewall is faster and 

has time to penetrate the rib. 

We focus now on the first weld line which is easily detected by the computation. Figure 20.12b is 

photography of part which shows the weld line. The injection gate is located at the bottom right and 

the presence of fibres at the surface allows seeing this line which is located in the middle of wall. This 

line is slightly oriented in the direction of flow.  

Tracing the isosurfaces of components of the orientation tensor (see figure 20.13), it is possible to find 

this weld line. The orientation on the side wall becomes unidirectional along the Î` direction: m`` 

increases while m�� remains relatively low. At the intersection of the two fronts in the region where the 
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ribs are connected to the wall, we can observe a decrease of component 11a along the entire weld line 

and an increase of component m��. Therefore, the weld line is well located and predicted where there 

is a disturbance of the orientation tensor. 

20.4.5 Square plaque with ribs 

The studied part is presented in figure 20.2. It is a plaque with seven ribs and it is filled from one side. 

The variation of fibre concentration inside the part described in the second section is not considered in 

our model although it is important in terms of mechanical properties. The part has a plane of symmetry 

and computations are made only on half of the cavity. These computations are made for aspect 

ratio � = 30, RS = 0.023 and ��, �� = 0. The fluid is a Stamax P40YM243 composed by a 

Polypropylene matrix and 40% of glass fibres.  The total filling time is around 1 s.  Finally 

computations are compared to experimental observations. 

In figures 20.14 and 20.15, the ellipsoids associated to orientation tensor are plotted and they are more 

or less elongated according to fibre orientation. They are also coloured by von Mises scalar (equation 

(20.55)) in order to give information on the anisotropy of fibre orientation.  In figure 20.12, the skin-

core phenomenon is observed in plaque as shown in experiments. However, with the Folgar and 

Tucker model, an isotropic orientation is obtained in the core instead of an orientation perpendicular to 

the flow motion in the experiment. In the skin region, the orientation along the flow motion is 

observed both in experiments and computations. 

For the ribs, the orientation changes during filling: first during rib filling, a core/skin orientation is 

observed; secondly, there is a "disorientation" of fibres once the rib is filled. Finally only the base of 

the rib maintains a non-isotropic orientation.  

In figure 20.14, we compare the simulation with the experimental observation when the mould is fully 

filled (experimental picture is slightly larger than the image obtained by the simulation). 

We deduce that the simulation allows reproducing the increase of the thickness of core area at the base 

of the ribs. Moreover, the numerical model reproduces the arch drawn orientation. As in experimental 

observations, a homogeneous orientation is recovered inside the rib. However, this orientation is 

isotropic in simulations, whereas the fibres are oriented in a direction parallel to the rib in experiments. 
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Moreover, the arch orientation depends on the time of packing which was not taking into account in 

our simulations. 

Finally, Rem3D software recovers reasonably faithfully the orientation encountered in the 

experiments. Only the areas having an isotropic orientation are not in agreement with the experiments. 

To overcome this discrepancy, a tensorial interaction coefficient RS has to be introduced as prescribed 

by anisotropic rotary diffusive models. In this way, the anisotropy of the plaque will be taken into 

account (the vertical direction is smaller with respect to the two others). 

 

20.5 Conclusions 

 

Fibre structure in reinforced moulded components is directly related to the process. Fibre length 

degradation takes place mostly in the plasticising unit but the fibre length distribution is not yet 

considered in our modelling. Fibre concentration can be considered as constant in first approximation 

even though, in the plaque with ribs, we measured some important fluctuations inside the part. 

Therefore the evolution of fibre concentration may have an influence on the evolution of fibre 

orientation during the process.  Fibre orientation varies a lot throughout the part, especially in the 

thickness. A core region with fibres transverse to the flow direction is almost always created in the 

gate region, because of high elongation rates. Near the surfaces, fibres are predominantly oriented in 

the flow direction.  

Quantification of fibre orientation is time consuming, with several causes of errors. Modelling of flow-

induced fibre orientation is usually carried out supposing an equivalent viscous behaviour for the 

composite. This gives valuable information for mould design, and especially gate location. The closure 

approximation has a larger influence on the results than does the interaction coefficient. Full 3D 

computations give a precise kinematics description in the gate, at the flow front, which increases the 

precision of the orientation calculation. Coupling between rheology and orientation becomes 

important, raising the issue of the validity of constitutive equations based on dilute or semi-dilute 

Newtonian suspension, and of the determination of rheological parameters. The numerical 

computations describe reasonably well the orientation encountered in the experiments. The 
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discrepancy could be overcome by making the model more complex (as the RSC model described in 

section 20.3.3), but the number of parameters increases and there is no simple way to get them. Then, 

both the experimental setup and numerical procedures (inverse analysis) have to be developed to 

identify these parameters for the polymers used in industrial process. For example, a systematic 

procedure to minimize the discrepancy between the numerically predicted and the experimentally 

measured fiber orientation results on an injection-molded part is proposed in (Li and Luyé, 2018) 
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Position Q = 9 cm3.s-1 Q = 122 cm3.s-1 

First rib 1200 1300 

Plaque near the first rib 1200 1300 

Plaque between 4th and 5th rib 1000 900 

Plaque near the 5th rib 900 1000 

5th rib 1000 1000 

 

Table 20.1: Average length in µm for different positions in the part shown in figure 20.2. 
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 PAA50 P30YM240 P40YM243 

 ×Ø 
 

0.154 MPa 
 

 
0.0411 MPa 

 

 
0.02626 MPa 

 
	o�T��»� 

 
570 Pa.s 

 
252 Pa.s 

 
636.6 Pa.s 

 Í 
 

0.55 
 

 
1 
 

 
1 

 � 

 
0.3 

 

 
0.22 

 

 
0.271 

 T��» 
 

549 K 
 

 
523 K 

 

 
493 K 

 �Æ 
 

7764 mole.K 
 

 
4450 mole.K 

 

 
4450 mole.K 

 ¬Æ 

 
0.3 W/m.K 

 

 
0.25 W/m.K 

 

 
0.15 W/m.K 

 R� 

 
1766 J/Kg.K 

 

 
2180 J/Kg.K 

 

 
3100 J/Kg.K 

 Ì 

 
1 522 Kg/m3 

 
 

 
1 000 Kg/m3 

 

 
1 000 Kg/m3 

 

Table 20.2: Parameters used in equations [20.52] and [20.353] for PAA50, Stamax P30YM240 and 

P40YM243: R� is the specific heat, ��  is the thermal conductivity. 
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Figure 20.1: Fibre length repartition in a 30 wt% long and short glass fibre reinforced polypropylene 
moulded plaque 
 

Figure 20.2: Geometry of the plaque with 7 ribs:  the size is 150 × 150 × 3  �� and the ribs spaced 

of 25 �� 

 

Figure 20.3: Fibre weight concentration (wt%)  in the part shown on figure 2 

 

Figure 20.4: Pictures of fibre reinforced polymer moulded plaque (polypropylene having 30% of 12 

mm long fibers). The thickness is in the vertical direction. On the left (a) the flow direction is 

perpendicular to the observation plane. On the right (b) the flow direction is parallel to the large side 

of the picture. 

 

Figure 20.5:  Upper graph: compression of a concentrated suspension of quasi-ordered fibers with 3D 

in situ observations of its deformation (Latil et al., 2011). Evolution of the compression stress σ as a 

function of the fiber content φ and corresponding evolution of the fibrous microstructure. Lower 

graph: corresponding evolution of the average number of contacts �̅ as a function of the fiber content 

� : the marks represent the experimental data, the continuous line represents the prediction given by 

Toll’s model (equation 20.2) and the dotted line represents the prediction of the tube model without 

the spatial homogeneity assumption.  

 

Figure 20.6: Orientation tensor component in the flow direction for four plaque thicknesses from 1.1 

to 5 mm (after Vincent, 2009) 

 

Figure 20.7: Ellipsoid representation of orientation tensor ��. 

 

Figure 20.8: Mould schematic view (a) and zoom (b) on the inlet with positions of sensors. 
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Figure 20.9: Isovalues of m`` at the end of filling in a cross section �Ï`, Ï�, Ï� = 0�for the PAA50 with 

isotropic initial orientation, �� = 0  and  RS = 0.001 

 

Figure 20.10: Values of orientation tensor coefficient m``  for the four sensors A (a), B (b), C (c), D 

(d) for PAA50 and isotropic initial orientation: RS = 0.001, 0.04; �� = 0, 100. 

 

Figure 20.11: Values of orientation tensor coefficient m``   in the four areas A (a), B (b), C (c), D (d) 

for PAA50 and unidirectional initial orientation: RS = 0.001, 0.04; �� = 0, 100. 

 

Figure 20.12: Geometry of a cross with thin walls (a); focus on the weld line located on the wall (b) 

 

Figure 20.13: Isovalues ofm``, m��  on the wall where is located the weld line 

 

Figure 20.14: Ellipsoids represented orientation tensor coloured by Von Mises scalar for the plaque 

with ribs: isotropic orientation (white), unidirectional orientation (black) 

 

Figure 20.15: Final arch drawn orientation near the third rib (a); comparison with the experiment (b) 

 

 

 

 

 

 

 

 

 

 

 

 



 50

 

 



 51

 

 

 



 52

 



 53

 



 54

 

 

 

 



 55

 

 

 

 

 



 56

 



 57

 

 



 58

 

 



 59

 



 60

 



 61

 



 62

 

 

 

 



 63

 

  



 64

 

 

  



 65

 

 


