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Abstract

The mass transfer of a rising bubble in creeping flow regime is numerically investigated. A
reversible oxidation-reduction reaction is taken into account. Two coupled equations are
needed to study the oxygen and reduced species transport. Three dimensionless numbers
are involved: the Péclet and Damköhler numbers and the ratio of the diffusion coefficient
of the reduced species to the diffusion coefficient of oxygen. Numerical computations are
applied to a soda-lime-silica and a borosilicate glass-forming liquids. Results are focused
on the determination of the Sherwood number. The mass transfer enhances strongly when
the chemical reaction is very fast, i.e. at large value of Damköhler number. Correlations
to determine the enhancement factor are proposed in the two limits of small and large
Péclet numbers. The Sherwood number enhances when the diffusion coefficient of the
reduced species increases. A correlation of the Sherwood number is proposed taking into
account advection and reaction.

Keywords: glass melting; mass transfer; oxidation-reduction reaction; finite element;
Sherwood number

1. Introduction

The mass transfer between dispersed and continuous phases occurs in many indus-
trial applications (Cussler, 2009, Chap. 8), in nature (Mason et al., 2006) or in food
(Liger-Belair, 2005), among others. As it is well known in chemical engineering, the
mass transfer between the dispersed and the continuous phases is enhanced by the mo-
tion of the discrete phase (Levich, 1962; Clift et al., 1978) with a boundary layer forma-
tion. When chemical reactions are involved and according to the “film theory”, the mass
transfer enhances due to chemical reactions (Sherwood and Pigford, 1952; Danckwerts,
1955; Olander, 1960).
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In glass melting processes, in which the out-gassing process called “fining process” is
the limiting stage, the mass transfer is fundamental to study the overall bubble dynam-
ics in a glass bath (Shelby, 2005). To describe the bubble release at large scale using
two-phase Eulerian models (Marchisio and Fox, 2013), the mass transfer coefficient is
crucial to know as a function of the bubble motion and chemical reaction rates. The
fining process is mainly achieved by adding multivalent elements in raw materials. At
high temperature, the multivalent elements are in reduced states, increasing the oxygen
solubility (Shelby, 2005). Consequently, the redox state of the glass-forming liquid plays
a crucial role during the fining. How oxygen species is transported in glass-forming liq-
uid stays an open question in glass science. Among the main contributors, Schreiber
(1986) and Schreiber (1987) compiled redox states for various multivalent elements in
synthetic glasses close to natural glass compositions. Schreiber et al. (1986b) studied
the redox kinetics for borosilicate glasses. Cicconi et al. (2015) studied the redox equi-
librium between two multivalent couples, Eu and Fe in magmatic silicate melts. Using
in-situ X-ray absorption spectroscopy, they monitored in real-time the behaviour of the
two elements as a function of the temperature and oxidation-reduction condition. More
recently, Le Losq et al. (2020) performed in-situ XANES spectroscopy in natural silicate
(phonolitic melt) to study oxidation and coordination of iron. As already underlined
by Cochain et al. (2009), they claimed that the redox transport is strongly correlated to
oxygen diffusion.

It is usually assumed that oxidation-reduction reactions in glass-forming liquid are
in equilibrium. Nevertheless, due to various species, the chemical equilibrium is not so
obvious. Beerkens and de Waal (1990) in the same spirit of works of Crank (1948) took
into account the chemical reactions assuming that these reactions are instantaneous.
Yoshikawa et al. (1998) followed the same approach in which the moving interface is also
introduced. In the last contributions, nothing was achieved to determine the dimen-
sionless mass transfer coefficient, the so-called Sherwood number which will be defined
latter. Pigeonneau (2009) studied the mass transfer coefficient for a bubble rising in
a glass-forming liquid in which the instantaneous reaction model is derived. Using the
boundary layer theory, a simple relation to determine the Sherwood number has been
established and applied to study the O2 bubble shrinkage in soda-lime-silicate glasses
doped in iron oxide (Pigeonneau et al., 2010) and more recently in borosilicate glass
doped in cerium oxide (Pereira et al., 2020). Nevertheless, in (Pigeonneau, 2009), the
chemical rate is proportional to the material derivative of the O2 concentration meaning
that without motion, the enhancement due to the chemical reaction is vanished.

Beside the chemical reaction contribution, the deformation of gas or liquid inclu-
sion plays an important role on the overall mass transfer. The effect of the bubble shape
has been addressed by Figueroa-Espinoza and Legendre (2010) solving the Navier-Stokes
equations coupled with advection-diffusion equation for Reynolds numbers larger than
one for elliptic bubbles. This work has been extended by taking into account the bubble
deformation using an arbitrary Lagrangian-Eulerian method by Jia et al. (2019) or with
a Volume of Fluid method by Panda et al. (2020). The mass transfer is also strongly
affected by the mobility of the interface between bubble and liquid. Sadhal et al. (1997)
provide syntheses of this problem. The rigidity of the interface is mainly due to its
contamination. Dani et al. (2006) present a numerical study where the effect of contam-
ination is taken into account on spherical bubble with a partial contamined area at the
rear of the bubble. This problem has been particularly studied for bubbles in water by
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Mclaughlin (1996); Liao and McLaughlin (2000b,a); Ponoth and McLaughlin (2000) in
which the bubble shape is adapted by satisfying the normal stress balance according a
method developped by Ryskin and Leal (1984).

The influence of chemical reaction kinetics on mass transfer around of a spherical
gas inclusion has been addressed by Ruckenstein et al. (1971) for first-order irreversible
reaction and for small and large Reynolds numbers. Irreversible chemical reactions in
unsteady regime have been studied by Soung and Sears (1975). The enhancement of mass
transfer due to reaction kinetics has been investigated by Kleinman and Reed (1995) for a
quiescent spherical inclusion with a first order irreversible reaction. This work has been
extended to a moving drop, bubble or particle in (Kleinman and Reed, 1996). Juncu
(2001, 2002b) determined the mass transfer around drop or bubble for first or second
order irreversible reactions. Koynov et al. (2005) solved the two-phase flow problem with
a front tracking interface method to follow the bubble/liquid interface coupled with mass
transfer and two irreversible reactions. Wylock et al. (2008) determined the mass transfer
coefficients where four species and two reversible reactions are involved. This contribution
has been extended by taking into account the interface contamination and the bubble
shape in (Wylock et al., 2011). Bothe et al. (2011) determined the mass transfer for an
irreversible chemical reaction of sulfite oxidation using a Volume of Fluid method. The
mass transfer coupled with irreversible reactions has been also addressed by Weber et al.
(2017); Falcone et al. (2018) for which the bubble interface is tracked by an arbitrary
Eulerian-Lagrangian method. Weiner et al. (2019) used the laser-induced fluorescence
to experimentally determine the coefficient of mass transfer when a sulfite oxidation
reaction is involved. Experimental results are compared to numerical computations using
an Arbitrary Eulerian-Lagrangian to track interface.

In framework of glass science, Subramanian and Chi (1980) studied the mass trans-
fer around a single bubble at rest in a molten glass taking into account the chemical
kinetics of a first-order irreversible reaction. Pigeonneau et al. (2014) studied the case
of reversible reaction between two species in the case of rising bubble in Stokes regimes.
Based on approximate solutions, simple expressions of the Sherwood number are also
established. Even when the bubble does not move, the enhancement due to chemical
reaction is established. Nevertheless, chemical reactions studied in the previous con-
tributions are limited to simple reaction like A −−→ B or A −−⇀↽−− B meaning that the
chemical reaction rate remains linear. However, the oxidation-reduction reactions in glass
are usually non-linear. Consequently, the purpose of this work is to determine the Sher-
wood number for the coupled problem of advection-diffusion-reaction with non-linear
oxidation-reduction reaction. The effect of the diffusion of the multivalent element is
carefully addressed. The purpose is to find expressions to easily evaluate the Sherwood
number.

In the following, section 2 describes the problem statement of advection-diffusion-
reaction equations. The numerical method to solve the system of equations is detailed in
§ 3. Results and discussion are the purpose of section 4. Finally, conclusions are drawn
in the last section of the article.
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2. Problem statement

2.1. General formulation

A spherical bubble of radius a is rising in a glass-forming liquid at rest. The bubble
size is assumed constant even in the presence of mass transfer. Due to the time scale
separation, the assumption of constant radius is justified, see (Pigeonneau et al., 2010) for
more details. Experimentally, the growth or shrinkage rate is three orders of magnitude
lower that the rising velocity of the bubble (Pigeonneau et al., 2010; Pereira et al., 2020).
The Reynolds number is assumed to be small, corresponding to small bubbles rising in a
viscous liquid. According to Clift et al. (1978), the conditions to have spherical bubble
and creeping flow are fulfilled. Moreover as it has been shown in (Jucha et al., 1982;
Hornyak and Weinberg, 1984; Li and Schneider, 1993), the bubble/glass-forming liquid
interface is considered completely mobile (shear free boundary condition). Consequently,
the general solution established by Hadamard (1911) and Rybczynski (1911) is used to
describe the flow motion around the bubble. The balance between the drag and the
buoyancy force gives the terminal rising velocity:

VHR =
ga2

3ν
, (1)

where g is the gravity acceleration, ν = µ/ρ is the kinematic viscosity of the liquid and
ρ the liquid density.

Let an oxidation-reduction reaction between oxidised species M(n+k)+ and reduced
species Mn+ given by (Schreiber et al., 1986a)

M(n+k)+ +
k

2
O2−

⇋ Mn+ +
k

4
O2. (2)

It is usually admitted that the activity of the anion O2– in glass-forming liquid is
one. This activity is linked to the basicity of the liquid depending on the composition
(Duffy and Ingram, 1976; Bach et al., 2001). The equilibrium constant is then written
as follows

KM(n+k)+/n+ =
CMn+C

k/4
O2

CM(n+k)+

, (3)

in which CMn+ and CM(n+k)+ are respectively the molar concentrations of reduced and
oxidised species of M and CO2

the molar concentration of dissolved oxygen. Remark that
the oxygen solubility, defined below, is taken into account in the equilibrium constant as
explained in (Beerkens and de Waal, 1990; Pigeonneau, 2009).

At the bubble/liquid interface, the chemical potentials in the two phases are com-
monly used. This equilibrium is a function of the partial pressure of oxygen inside the
bubble PO2

and the molar concentration in the liquid given by the Henry’s law:

CO2,0
= LO2

PO2
, (4)

in which LO2
is the oxygen solubility depending on the temperature and the liquid

composition (Pye et al., 2005). Far away from the liquid/bubble interface, the glass-
forming liquid is considered in chemical equilibrium with an oxygen concentration CO2,∞

.
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The total concentration of the species M is considered constant such as CM = CM(n+k)+ +
CMn+ is conserved.

Due to the concentration gradients, it is expected that both oxygen and multivalent
species diffuse through the liquid. If we consider that the oxidation-reduction reaction
is not at equilibrium, the problem must take into account both diffusion and chemical
reaction phenomena. Oxygen and the multivalent species are assumed to be diluted
in the glass-forming liquid. Consequently, only the diffusion coefficients of oxygen DO2

and DMn+ for the reduced species in the liquid are required. Moreover, for convenient
reasons, the framework is attached and centred on the bubble centre meaning that the
problem can be considered in quasi steady-state regime. Due to symmetry, cylindrical
polar coordinates (r, ϕ, z) are used for which the ϕ-component of the velocity and all
derivatives with respect to this coordinate are equal to zero. So, the advection-diffusion-
reaction equations are the following

ur

∂CO2

∂r
+ uz

∂CO2

∂z
= DO2

[

1

r

∂

∂r

(

r
∂CO2

∂r

)

+
∂2CO2

∂z2

]

+
kζ̇

4
, (5)

ur
∂CMn+

∂r
+ uz

∂CMn+

∂z
= DMn+

[

1

r

∂

∂r

(

r
∂CMn+

∂r

)

+
∂2CMn+

∂z2

]

+ ζ̇. (6)

The velocity components (ur, uz) are given by the Hadamard-Rybczynski’s solution, see
equations (18) and (19). The quantity ζ̇ is the chemical reaction rate which can be
written as follows

ζ̇ = k+CM(n+k)+ − k−CMn+C
k/4
O2

, (7)

in which k+ and k− are the forward and backward kinetic constants respectively. If the
chemical equilibrium is fulfilled, the rate of reaction is equal to zero and the ratio k+/k−
is equal to the equilibrium constant KM(n+k)+/n+ given by eq. (3).

2.2. Normalisation of the problem

The problem is normalised such as the space coordinates are divided by the bubble
diameter 2a. The terminal velocity VHR, eq. (1), is used to normalise the velocity field.
The dimensionless oxygen concentration is written as follows

C1 =
CO2

CO2,0
, (8)

and the reduced species is normalised by

C2 =
CMn+

CM
. (9)

The dimensionless concentration C1 corresponds to the local oxygen saturation while C2

is the redox state.
The dimensionless system of two advection-diffusion-reaction equations takes the fol-

lowing form

ur
∂C1

∂r
+ uz

∂C1

∂z
=

1

Pe

[

1

r

∂

∂r

(

r
∂C1

∂r

)

+
∂2C1

∂z2

]

+
kDa

4Pe
ζ̇(C1, C2), (10)

ur
∂C2

∂r
+ uz

∂C2

∂z
=

D
Pe

[

1

r

∂

∂r

(

r
∂C2

∂r

)

+
∂2C2

∂z2

]

+
βDa

Pe
ζ̇(C1, C2), (11)
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in which Pe, Da, D and β are defined by

Pe =
2aVHR

DO2

, (12) Da =
4a2k+CM

CO2,0
DO2

, (13)

D =
DM(n+k)+

DO2

, (14) β =
CO2,0

CM
. (15)

The first dimensionless number Pe is the Péclet number ratio between the character-
istic diffusion time to the advection time. The second dimensionless group is the second
Damköhler number measuring the importance of the chemical kinetics with the diffusion
process (Cussler, 2009). The dimensionless parameter D is the ratio of the diffusion

coefficient of M(n+k)+ to the diffusion coefficient of oxygen. The last parameter is a ra-
tio of the oxygen concentration at the bubble/glass-forming liquid interface to the total
concentration of M. This quantity is expected to be small as it will be verified in § 4.

The two equations (10) and (11) have to be completed by boundary conditions. At
the bubble surface, the Henry’s law is used while the reduced species is assumed to have
no flux (homogeneous Neumann condition). Far away from the bubble interface, the
chemical equilibrium is fulfilled. In dimensionless form, the boundary conditions are the
following:

For ‖x‖ = 1/2:

C1 = 1, (16a)

∂C2

∂n
= 0, (16b)

and when ‖x‖ → ∞:

C1 → Sa∞, (16c)

C2 → C2,∞, (16d)

with

Sa∞ =
1

CO2,0

[

KM(n+k)+/n+(1− C2,∞)

C2,∞

]4/k

, (16e)

and C2,∞ the redox state far away from the bubble interface.

The dimensionless rate of reaction ζ̇ is equal to

ζ̇ = 1− C2 −
(1− C2,∞)C2C

k/4
1

C2,∞ Sak/4∞

. (17)

Finally, recall that the dimensionless velocity components in the cylindrical polar co-
ordinates (r, ϕ, z) given by the Hadamard-Rybczynski’s solution are (Pigeonneau, 2009)

ur =
rz

4 (r2 + z2)
3/2

, (18)

uz = −1 +
r2 + 2z2

4 (r2 + z2)
3/2

. (19)
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∂Ωb
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∂ΩN∂ΩN

∂ΩD∂ΩD

Pe < 1 Pe > 1

(a) (b)

Figure 1: Axisymetric computation domain around a rising bubble with (a) the centred bubble domain
used for small Péclet number and (b) the domain outside the bubble is shifted forward to take into the
bubble wake.

3. Numerical method

The dimensionless equations (10) and (11) completed by the boundary conditions
(16a)-(16d) are numerically solved using the C++ library Rheolef developed by Saramito
(2018). According to Pigeonneau et al. (2014), the finite computational domain is adapted
as a function of the Péclet number as shown in Figure 1. When the bubble motion is
weak, i.e. for Pe < 1, the mass transfer is driven by the diffusion process. In this limit,
the spherical symmetry is predominant. Consequently, the computational domain is cen-
tred on the bubble as shown in Figure 1(a). The radius of the external circle is taken
equal to 5, i.e. ten times of the bubble radius. Conversely, when the bubble motion
is larger, i.e. for Pe > 1, a solutal wake appears at the rear of the bubble. To catch
this wake, the domain is centred downward as shown in Figure 1(b). The radius of the
external circle is taken equal to 20, i.e. forty times larger than the bubble radius.

Boundaries are decomposed in three parts. The first corresponds to the bubble in-
terface, noted ∂Ωb in Figure 1. For the outer boundary, the circle is cut in two parts,
∂ΩD in the upward area of the bubble and ∂ΩN in downward area of the bubble. This
decomposition comes from the sign change of the dot product of u and the exterior unit
normal n. On ∂ΩD in which u · n < 0, Dirichlet boundary conditions corresponding to
the inflow conditions are both applied on C1 and C2 while on ∂ΩN , the natural Neumann
conditions are imposed on C1 and C2. This unique decomposition ensures the numerical
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Figure 2: Mesh and C1 concentration obtained after five remeshings around the bubble when Pe = 104

and Da = 102.

stability. In summary, the boundary conditions are the following

C1 = 1,
∂C2

∂n = 0,

}

∀x ∈ ∂Ωb, (20)

C1 = Sa∞,
C2 = C2,∞,

}

∀x ∈ ∂ΩD, (21)

∂C1

∂n = 0,
∂C2

∂n = 0,

}

∀x ∈ ∂ΩN . (22)

To ensure numerical stability, a discontinuous Galerkin finite element formulation
is used to solve the two coupled equations. The upwing bilinear form as presented in
(Di Pietro and Ern, 2012) is used to preserve the coercivity property. The discretisation
of the domain is achieved using triangles. A quadratic discontinuous Lagrange elements
P2d are used.

Due to the non-linearity of the chemical reaction source terms, the coupled equation
is solved using a damped-Newtow method (Saramito, 2018). Moreover, to catch the
boundary layer around the bubble, the mesh is adapted using the method presented by
Hecht (2006). The remeshing criterion is based on the absolute value of C1. For every
set of data, five remeshings are achieved to obtain a steady-state solution.

For instance, Figure 2 depicts the mesh around the bubble on the left and C1 con-
centration on the right obtained after five remeshings for a particular case with Pe = 104

and Da = 102. The other parameters of the system of equations will be more detailed
in the next section. For this particular Péclet number, the boundary layer development
is well captured by the numerical method. As expected for this kind of problem with
mobile interface, high value of C1 concentration is created in the wake of the bubble
justifying the downward shift of the numerical domain at large Péclet number.

4. Results and discussion

In the following, the numerical computations solving the system of equations pre-
sented previously are applied to two kinds of glass-forming liquids.

8



Species A (m2/s) B (K)
O2 3 · 10−3 26580
Fe2+ 1.07 · 10−3 26100

Table 1: Coefficients A and B of the diffusion coefficient written as Ae−B/T for O2 and Fe2+ used for
the numerical computations.

4.1. Soda-lime-silica glass-forming liquid with iron

Numerical method is first applied to soda-lime-silica glass-forming liquid with iron
as multivalent species. The composition is a window glass with less than one percent of
iron content. The accurate glass composition is given by Pigeonneau et al. (2010). The
equilibrium constant of the iron reaction is written as follows

KFe3+/2+ = exp

(

−∆HFe3+/2+

RT
+

∆SFe3+/2+

R

)

, (23)

with ∆HFe3+/2+ =140.7kJmol−1 and ∆SFe3+/2+ =64.57Jmol−1K−1 according to Beerkens
(2004), T is the absolute temperature and R the universal gas constant.

The diffusion coefficients, written as Ae−B/T , is taken from the reference (Beerkens,
2004) for the oxygen and from the data of Rüssel (1989) for iron. Table 1 provides A
and B for these two species for window glass.

Numerical computations have been achieved for a particular temperature equal to
1400 ◦C which gives a diffusion ratio D = 0.47. This means that the diffusion coefficients
of oxygen and iron are the same order of magnitude. The numerical computations are
first performed with an iron content equal to 0.1 wt % and bulk redox ratio equal to
C2,∞ = 0.25. The range of Péclet number is [10−3; 105] while for Damköhler number the
range is set equal to [10−2; 106]. The other dimensionless parameters are β = 8.95 · 10−3

and Sa∞ = 2.52 · 10−2.
To see the effect of the chemical reaction at small Péclet number, the field of C1 is

depicted in Figure 3 for Pe = 10−2 and for Da = 10−2 on the left and for Da = 106 on the
right. At small Damköhler number, C1 behaves smoothly around the bubble. Close to
the bubble interface, the concentration gradient stays uniform meaning that the bubble
motion does not play a significant role. At large Damköhler number, shown in Figure 3b,
the spherical symmetry is noticed. A large gradient of C1 is clearly observed close to the
bubble interface leading to an increase of the mass flux.

The C2 field is also shown for Pe = 10−2 and for Da = 10−2 in Figure 4a. The scale
of variation of C2 is very small. The value of C2 is quasi-equal to the boundary condition
given in the exterior boundary, i.e. ≈ C2,∞. The solution of C2 for Pe = 10−2 and for
Da = 106 depicted in Figure 4b changes dramatically. The range of variation of C2 is
now larger than for the case obtained at Da = 10−2. The spherical symmetry around
the bubble is also verified.

In Figure 5, profiles of C1 and C2 are plotted as a function of r in the plane z = 0
for the same case when Pe = 10−2 and for Da = 10−2 and Da = 106. The numerical
solution of C1 when Da = 10−2 is compared to the pure diffusion solution given by

C1 = C1,∞ +
1− C1,∞

2r
, (24)
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(a) Da = 10−2 (b) Da = 106

Figure 3: C1 around the bubble at Pe = 10−2 and for (a) Da = 10−2 and (b) Da = 106 for a window
glass at 1400 ◦C with 0.1 wt % of iron and C2,∞ = 0.25.

(a) Da = 10−2 (b) Da = 106

Figure 4: C2 around the bubble at Pe = 10−2 and for (a) Da = 10−2 and (b) Da = 106 for a window
glass at 1400 ◦C with 0.1 wt % of iron and C2,∞ = 0.25.
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Figure 5: C1 and C2 as a function of r for Pe = 10−2 and for Da = 10−2 and Da = 106 for a window
glass at 1400 ◦C with 0.1 wt % of iron and C2,∞ = 0.25.

depicted in Figure 5a in blue dash-dot line. This solution is obtained for an infinite
domain. Close to bubble interface, the two solutions are very similar. Due to the finite
domain used in the numerical simulation, the disagreement between the two solutions
increases far away from the bubble interface. This drawback is less important since
the main goal of these computations is to determine the Sherwood number. Indeed,
this quantity depends mainly on the solution close to this interface which is very well
captured by the numerical solution.

In Figure 5b, for Da = 10−2, we could notice that C2 is constant in the investigated
r range. Once again, this constant solution is the result of pure diffusion equation
completed to the boundary conditions used to solve C2.

At large Damköhler number, the C1 profile is stiffer than in the case at small Damköhler
number as it is shown in Figure 5a. In this situation, the effect of the computation in a
finite domain is least due to the increase of the gradient around the bubble interface. For
Da = 106, the chemical reaction drives the solution of C2. To control this assertion, the
numerical solution of C2 is compared to the solution obtained by assuming the chemical
equilibrium given by

C2 =
C2,∞ Sak/4

∞

C2,∞ Sak/4
∞

+(1− C2,∞)C
k/4
1

. (25)

This equation is plotted in Figure 5b in blue dash-dot line using the numerical solution of
C1. The two solutions of C2 are totally superposed meaning that the chemical equilibrium
is established over all the domain.

To see the influence of chemical reaction when the bubble motion is also relevant,
i.e. Pe ≫ 1, the field of C1 around the bubble is represented by the two extreme values
of the Damköhler equal to Da = 10−2 in Figure 6a and Da = 106 in Figure 6b. The
Péclet number is equal to Pe = 104. The formation of the boundary layer is clearly seen
with an increase of the boundary layer along the bubble interface in agreement with the
Levich’s theory (Levich, 1962). When the Damköhler increases, the boundary layer is
thinner and thinner leading to a large mass transfer.

Due to the high importance of describing the overall mass transfer for bubbles dis-
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(a) Da = 10−2 (b) Da = 106

Figure 6: C1 around the bubble at Pe = 104 and for (a) Da = 10−2 and (b) Da = 106 for a window
glass at 1400 ◦C with 0.1 wt % of iron and C2,∞ = 0.25.

persed in a liquid, numerical computations are mainly used to determine the Sherwood
number. Recall that this dimensionless number is the ratio of the mass fluxes with and
without convection (Clift et al., 1978; Bird et al., 2002). The Sherwood number can be
seen as the dimensionless concentration gradient integrated over the bubble surface. In
agreement with the normalisation defined in § 2.1, the Sherwood number defined by

Sh =
1

(1 − C1,∞)2π

∫

∂Ωb

∂C1

∂n
dS (26)

is assessed after each numerical computation. In eq. (26), ∂Ωb is the boundary corre-
sponding to the bubble frontier represented in Figure 1.

The Sherwood number takes also into account the chemical reaction. To see more
clearly the effect of the reaction, the enhancement factor defined by (Juncu, 2002a)

Ea =
Sh(Pe,Da)

Sh(Pe,Da = 0)
(27)

is also computed.
As seen in eqs. (10) and (11), the importance of the chemical reaction is controlled

by the ratio of Da to Pe. This quantity defined by

α =
Da

Pe
, (28)

has been used in (Pigeonneau et al., 2014) to study the boundary layer solution around
a rising bubble. This dimensionless number corresponds to the ratio of the characteristic
time scale of the reaction to the characteristic time of advection.

Figure 7 represents Ea, defined by eq. (27), plotted as a function of α for various
Péclet numbers. For each Péclet number, the general behaviour of Ea is to grow from 1
to an asymptotic value depending on the Péclet number. The behaviour at large value
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Figure 7: Ea as a function of α for various Pe for a window glass at 1400 ◦C with 0.1 wt % of iron and
C2,∞ = 0.25.

of α is similar to the Burke-Schumann limit (Burke and Schumann, 1928) corresponding
to the case of infinitely fast chemistry. Conversely to the previous works provided in
(Pigeonneau et al., 2014) in which exact solutions are obtained, this task is more difficult
in the present case due to the non-linearity of the reversible chemical reaction investigated
herein. Nevertheless, the typical solutions found in (Pigeonneau et al., 2014) are guide
to establish simple approximations of the numerical solutions.

To estimate the enhancement factor for small Péclet number as a function of α, the
following correlation

Ea,0 =
1 + aEmax

a,0

√
α

1 + a
√
α

(29)

is proposed, with Emax
a,0 the maximum of the enhancement factor observed at large value of

α and a a numerical coefficient to describe the transition between slow and fast chemical
kinetics. This approximate solution is represented in Figure 7 in blue dash-dot line with
Emax

a,0 = 2.78 and a = 7.25 · 10−3.
When the Péclet number increases, the transition between the absence and the rele-

vance of the chemical reaction is sharper. Consequently, the enhancement factor at large
Péclet number can be approximated by the following relation

Ea,∞ =
1 + bEmax

a,∞α

1 + bα
, (30)

in which Emax
a,∞ is the maximum of the enhancement factor for large α and b a numerical

coefficient to proper describe the transition. Equation (30) with Emax
a,∞ = 3.67 and b = 0.1

has been used to plot the red dotted line in Figure 7.
Figure 8 depicts the Sherwood number as a function of Péclet number for various

Da for a window glass at 1400 ◦C with 0.1 wt % of iron and C2,∞ = 0.25. For small
13
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Figure 8: Sh as a function of Pe for various Da for a window glass at 1400 ◦C with 0.1 wt % of iron and
C2,∞ = 0.25.

Damköhler number, Sh obeys to the correlation

Sh(Pe) = 1 +
(

1 + 0.564Pe2/3
)3/4

, (31)

provided in Clift et al. (1978) obtained in the case of creeping flow with mobile interface
and without chemical reaction. For small Péclet number, the Sherwood number is equal
to 2 and when the Péclet number is much larger than 1 the Levich’s solution (Levich,
1962) is found. This correlation is represented in solid line in Figure 8.

When the Damköhler number increases meaning that the reaction is faster, the Sher-
wood number increases meaning that the mass transfer is enhanced by the chemical
reaction. For small Péclet number, the enhancement is practically insensitive to the
Péclet number for a given Damköhler number.

When the Péclet number becomes larger than the Damköhler number, the enhance-
ment due to the chemical reaction decreases strongly. This result can be easily explained
by noting that the source terms in equations (10) and (11) are less important when α
decreases. In the limit of a small α, the Sherwood number converges to the solution with-
out reaction. This fact, already underlined by Pigeonneau et al. (2014) in the simplest
case of linear reversible reaction, is a consequence of the interaction of the two boundary
layers. The former is due to the chemical reaction scaling as 1/

√
Da while the latter

comes from the advection characterised by a layer proportional to 1/
√
Pe.

In Figure 8, the solution obtained by Pigeonneau (2009) is plotted in dash-dot line.
This solution underestimates the mass transfer in a large proportion at small Péclet
number. Indeed, the solution provided in (Pigeonneau, 2009) has been achieved in a
particular case for which the diffusion of iron is assumed equal to zero and when the
redox reaction is considered instantaneous.
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D Emax
a,0 a Emax

a,∞ b

4.7 · 10−1 9.5 2.5 · 10−3 13.1 3 · 10−2

4.7 · 10−2 1.89 2.5 · 10−2 7.1 10−1

4.7 · 10−3 1.05 2.5 · 10−2 6.2 2 · 10−1

Table 2: Values of Emax
a,0 , a, Emax

a,∞ and b of equations (29) and (30) for a silico-sodo-lime glass-forming

liquid at 1400 ◦C with 0.2 wt % of iron and C2,∞ = 0.45 and D = 4.7 · 10−1, 4.7 · 10−2 and 4.7 · 10−3.

To have a correlation of the Sherwood number of a function of the Péclet and
Damköhler numbers, a correlation using the two previous relations of Ea can be used.
Indeed, when the Péclet number is small, the Sherwood number is expected to be equal
to 2Ea,0(α) while when the Péclet number is much larger than one, Sh must be approxi-

mately equal to 0.651Ea,∞(α)
√
Pe. According to the correlation provided by Clift et al.

(1978) and recalled above, eq. (31), a correlation of the Sherwood is proposed as follows

Sh(Pe, α) = Ea,0(α) +
[

Ea,0(α)
4/3 + 0.564Ea,∞(α)4/3 Pe2/3

]3/4

. (32)

This approximate solution has been used to plot the dotted line in Figure 8 in the
Burke-Schumann limit. The agreement with the numerical results is satisfying. This
kind of correlation is very useful for applications because it is easily programmed in any
CFD software to describe the overall bubble dynamics.

To see the effect of the diffusion coefficient of iron, numerical computations are per-
formed with an iron content equal to 0.2 wt % and a redox state C2,∞ = 0.45. Three
values of the diffusion ratio D are been used. The first one is obtained by taking pa-
rameters given in Table 1 corresponding to the nominal case. The two other cases are
computed by multiplying D by a factor 10−1 and 10−2. For this redox state and iron
content, β = 4.476 · 10−3 and Sa∞ = 6.943 · 10−4.

The enhancement factor as a function of the ratio α is plotted in Figure 9 for the three
values of the diffusion ratio D. The decrease of D leads to a decrease of the effect of the
chemical reaction. The approximate functions (29) and (30) are also used to fit the data
for small and high Péclet values respectively. Values to fit the numerical data with the
two equations are provided in Table 2. In diffusive regime (Pe ≪ 1), the enhancement
factor decreases strongly with the diffusion ratio in agreement with the previous work
reported in (Pigeonneau, 2009). At large Péclet number, the transport of the multivalent
species balances the chemical reaction leading to the chemical enhancement of the mass
transfer. The role playing by the diffusion coefficient has been already emphasised by
Pigeonneau et al. (2014) in a simpler case in which approximate solutions were provided.

Figure 10 presents the Sherwood number as a function of the Péclet number for the
three cases. In the nominal case depicted in Figure 10a, the mass transfer enhances
strongly due to the increase of iron content and a large value of redox state. The effect
of the chemical reaction reduces when the diffusion coefficient decreases, as it can be
seen in Figure 10b and Figure 10c. For a Péclet number equal to 10−3 and a Damhöhler
number equal to 106, the Sherwood number is equal to 18.7 when D = 4.7 · 10−1 while
Sh decreases to 3.9 when the diffusion ratio is divided by 10 and equal to 2.24 for D
divided by 100. It is noteworthy that for the smallest diffusion ratio, the numerical
solution obtained in the current work is very similar to the case obtained by assuming
the instantaneous reaction and the absence of the iron diffusion.
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(a) D = 4.7 · 10−1

10−6 10−4 10−2 100 102 104 106 108

α

2

4

6

8

10

12

Ea

Pe=10−3

Pe=10−2

Pe=10−1

Pe=1
Pe=10
Pe=102

Pe=103

Pe=3 ⋅ 103

Pe=104

Pe=3 ⋅ 104

Pe=105

Eq. (29)
Eq. (30)

(b) D = 4.7 · 10−2
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(c) D = 4.7 · 10−3
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Figure 9: Ea as a function of α for various Pe for a window glass at 1400 ◦C with 0.2 wt % of iron and
C2,∞ = 0.45. Three values of the diffusion ratio D are used: (a) D = 4.7 · 10−1 corresponding to the
nominal value, (b) D × 10−1 and (c) D × 10−2.
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(a) D = 4.7 · 10−1
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(b) D = 4.7 · 10−2
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(c) D = 4.7 · 10−3
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Figure 10: Sh as a function of Pe for various Da for a window glass at 1400 ◦C with 0.2 wt % of iron
and C2,∞ = 0.45. Three values of the diffusion ratio D are used: (a) D = 4.7 · 10−1 corresponding to
the nominal value, (b) D × 10−2 and (c) D × 10−3.
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Species A (m2/s) B (K)
O2 3.2 · 10−5 16140

Ce3+ 3.02 · 10−2 29226

Table 3: Coefficients A and B of the diffusion coefficient written as Ae−B/T for O2 (Doremus, 1960)
and Ce3+ (Claußen and Rüssel, 1997) used for numerical computations.

wt % of Ce 0.5 1 1.5
C2,∞ 0.693 0.677 0.705
Sa∞ 0.258 7.74 · 10−2 4.563 · 10−2

β 1.818 · 10−3 9.09 · 10−4 6.06 · 10−4

D 9.6 · 10−2

Table 4: Values of C2,∞, Sa∞, β and D for numerical computations in the case of the borosilicate with
three values of cerium content at T =1150 ◦C.

As for the previous iron content, equation (32) has been used to fit the Sherwood
number for a large value of α. The comparison shows that equation (32) predicts very
well the Sherwood number in a large range of Péclet number.

4.2. Borosilicate glass with cerium

The numerical computations are now applied to a borosilicate glass-forming liquid
with cerium oxide as multivalent element. In this case, the two states of oxidation
are Ce4+ and Ce3+ meaning that like for iron reaction only one electron is exchanged.
The enthalpy and entropy of the cerium reaction is taken from the data provided by
Pinet et al. (2006). Enthalpy and entropy of this reaction are ∆HCe4+/3+ =77.5kJmol−1

and ∆SCe4+/3+ =51.07Jmol−1K−1, respectively. The diffusion coefficient of oxygen
is taken from the data of Doremus (1960) while the diffusion coefficient of Ce3+ has
been determined using the data of Claußen and Rüssel (1997). Coefficients A and B to
determine the diffusion coefficients of O2 and Ce3+ are provided in Table 3.

Recently, Pereira et al. (2020) studied the resorption of O2 bubble in a borosilicate
molten glass with three cerium contents. Here, the same amounts of cerium are used
equal to 0.5, 1 and 1.5 wt %. The redox state has been determined and characterised
in (Pereira et al., 2020). From these data, all parameters required to perform numerical
simulations at T =1150 ◦C are given in Table 4. The redox state does not change sig-
nificantly for the compositions. The bulk oxygen saturation decreases with the amount
of cerium content. Note also that the diffusion ratio D is smaller than the value for the
soda-lime-silica glass-forming liquid.

In this subsection, only the enhancement factor and the Sherwood number are pre-
sented. Figure 11 presents Ea as a function of α for various Péclet number and for the
three amount of cerium. The overall behaviour of Ea is similar to the previous observed
in § 4.1. The transition from which the chemical reaction becomes predominant occurs
for both cerium contents for α in the range around [103; 108] when the Péclet number
is less than one. Conversely, when the Péclet number is larger than one, the transition
between slow chemical kinetics and the Burke-Schumann limit is in the range of α equal
to [1; 103]. As already pinpointed above, the transition is narrower at large Pe than
at small Pe. The maximum of the enhancement factor both for small and large Péclet
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Ce (wt %) Emax
a,0 a Emax

a,∞ b

0.5 3.32 3 · 10−3 8.1 10−2

1.0 5.3 1.25 · 10−3 12.7 3 · 10−3

1.5 8.3 2.25 · 10−3 19 2 · 10−3

Table 5: Values of Emax
a,0 , a, Emax

a,∞ and b of equations (29) and (30) for a borosilicate glass-forming liquid
at 1150 ◦C with three amounts of cerium.

numbers increases with the cerium amount. The dash-dot and dotted lines corresponds
to the approximate relations (29) and (30) respectively. Fitted parameters for the three
cerium amounts are given in Table 5.

Figure 12 provides Sh as a function of Pe for the three values of cerium contents.
The general behaviour of Sh is similar to the previous observed on the soda-lime-silica
glass-forming liquid. Numerical results are compared to the correlation provided in
(Pigeonneau, 2009). Due to the finite value of D, the correlation of Pigeonneau (2009)
underestimates the Sherwood number by half at large Péclet number. In the diffusion
regime, i.e. Pe ≪ 1, the effect of the chemical reaction disappears completely from the
correlation of Pigeonneau (2009). To determine the Sherwood number in the limit of
Burke-Schumann, the correlation given by (32) has been used. The Sherwood number
obtained by eq. (32) is in good agreement with the numerical solutions. This correlation
uses the data provided in Table 5.

In (Pereira et al., 2020), the O2 bubble resorption has been investigated using a high
temperature furnace observation. When the cerium content increases, the shrinkage rate
increases. Comparisons between experimental and numerical results are acceptable when
a mass transfer model takes the Sherwood number provided by Pigeonneau (2009). If
the Sherwood number found in the current work was used, the shrinkage rate should be
enhanced. This ambiguity has to be investigated in the near future.

5. Summary and conclusion

Mass transfer around a rising bubble in a glass-forming liquid is investigated when
the kinetics of an oxidation-reduction reaction is taken into account. The coupled of
two advection-diffusion-reaction equations are written in dimensionless form. The two
variables are the oxygen saturation and the redox state. Mainly, two dimensionless
numbers corresponding to the Péclet, Pe, and Damköhler, Da, numbers are used to
investigate the mass transfer. The other parameters are function of the glass-forming
liquid composition and the involved multivalent species. The two coupled equations are
numerically solved using a discontinuous Galerkin finite element method.

The numerical method is first applied to a soda-lime-silica glass-forming liquid. Iron
species is introduced as multivalent element with two degrees of oxidation, viz. Fe3+

in oxidation state and Fe2+ in reduction state. The mass transfer is mainly quantified
by the computation of the Sherwood number, Sh. The enhancement factor Ea, ratio
of the Sherwood number with the chemical reaction to the Sherwood number without
reaction is also investigated as a function of α = Da /Pe. At small α, the enhancement
factor is close to one meaning that the chemical reaction is not significant. At large
α corresponding to the fast chemistry, Ea reaches an asymptotic limit larger that one.
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(b) 1 wt% of Ce
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(c) 1.5 wt% of Ce
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Figure 11: Ea as a function of α for various Pe for a borosilicate glass at 1150 ◦C with (a) 0.5 wt% of
Ce, (b) 1 wt% of Ce and (c) 1.5 wt% of Ce.
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(a) 0.5 wt% of Ce
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(b) 1 wt% of Ce

10−3 10−2 10−1 100 101 102 103 104 105
Pe

101

102

103

Sh

Da=10−2
Da=10−1
Da=1
Da=10
Da=102
Da=103
Da=104
Da=105
Da=106
Clift et al. (1978)
Pigeonneau (2009)
Eq. (32)

(c) 1.5 wt% of Ce
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Figure 12: Sh as a function of Pe for various Da for a borosilicate glass at 1150 ◦C with (a) 0.5 wt% of
Ce, (b) 1 wt% of Ce and (c) 1.5 wt% of Ce.
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This bound depends on the redox state, the amount of the multivalent species and the
diffusion coefficient ratio of the multivalent species to oxygen. The transition between
slow and fast chemistry depends on the Péclet number. Two simple correlations at small
and large Péclet numbers are established. The Sherwood number is also compared to
a new correlation proposed in this work extending the correlation in the creeping flow
without reaction. This correlation can be very useful in any CFD software to describe
the overall bubble dynamics.

The numerical method is also applied to a borosilicate glass-forming liquid with
cerium oxide as multivalent element with Ce4+ and Ce3+ as oxidised and reduced states,
respectively. The general behaviour of the mass transfer does not change for this second
application. For both glass-forming liquids, the comparison with the Sherwood number
established with vanishing diffusion coefficient of the multivalent element and instanta-
neous reaction reveals a disagreement when the diffusion of the multivalent element is
not equal to zero. Moreover, the Sherwood number established in this work enhances at
small Péclet number while the theory established at vanishing diffusion coefficient of the
multivalent element predicts none enhancement.

These results lead to verify the relevance of the mobility of the multivalent element.
Indeed, previous verification done in (Pigeonneau et al., 2010; Pereira et al., 2020) show
that experiments are very well reproduced in the limit of vanishing diffusion coefficient
of the multivalent element. To establish the relevance of the diffusion of the multivalent
element, experiments in which advection is absent are required because, in this limit, the
influence of the diffusion coefficient of the multivalent element is particularly significant.
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