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Abstract: Understanding the behaviors and intentions of humans is still one of the main challenges
for vehicle autonomy. More specifically, inferring the intentions and actions of vulnerable actors,
namely pedestrians, in complex situations such as urban traffic scenes remains a difficult task and a
blocking point towards more automated vehicles. Answering the question “Is the pedestrian going
to cross?” is a good starting point in order to advance in the quest to the fifth level of autonomous
driving. In this paper, we address the problem of real-time discrete intention prediction of pedestrians
in urban traffic environments by linking the dynamics of a pedestrian’s skeleton to an intention.
Hence, we propose SPI-Net (Skeleton-based Pedestrian Intention network): a representation-focused
multi-branch network combining features from 2D pedestrian body poses for the prediction of
pedestrians’ discrete intentions. Experimental results show that SPI-Net achieved 94.4% accuracy
in pedestrian crossing prediction on the JAAD data set while being efficient for real-time scenarios
since SPI-Net can reach around one inference every 0.25 ms on one GPU (i.e., RTX 2080ti), or every
0.67 ms on one CPU (i.e., Intel Core i7 8700K).

Keywords: skeleton-based action prediction; pedestrian intention prediction; body action;
human activity; action and gesture recognition; mobility analysis

1. Introduction

Within the context of autonomous vehicle development and the field of Advanced Driver
Assistance Systems (ADAS), determining the pedestrians’ discrete intention is mandatory. From this
information, their trajectory can be further estimated to understand the pedestrians’ next actions
or positions, which can greatly reduce the risk of accidents. For instance, knowing the intention of
pedestrians to cross the road before they actually set foot on the road would allow the vehicle to warn
the driver or automatically perform maneuvers. Therefore, preserving the pedestrians’ integrity in a
more efficient way than when triggered by an emergency stop once the pedestrians have moved on to
the road and become a direct obstacle for the vehicle would be safer for all actors. In such decisive
applications, a desirable intention prediction model should run efficiently for real-time usage and
should also be robust to a multitude of complexities and conditions (e.g., weather, location).

Human action recognition applied to video is a difficult research topic due to the great variation
and complexity of the input data. Currently, the main modalities used for these tasks include RGB
videos in their entirety [1–4], optical flow [5–8] and skeleton form modeling [9–12]. The latter requires,
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prior to the action classification, an approach to estimate the human pose [13]. By focusing our work
on the pedestrian skeleton structure shown in Figure 1 and since no background context is included,
we are able to represent the invariant information of an action. Moreover, we are also reducing the size
of the input data, which makes our approach more efficient once the pedestrian body pose is inferred.

Figure 1. This figure is a non-weighted and undirected graph representation of the human skeleton,
with all the selected key-points used for our pedestrian crossing prediction approach. In the present
work, only 14 human key-points are chosen from the ones extracted with the Cascaded Pyramid
Network (CPN) [14].

In this paper, we propose a real-time and context-invariant approach based on 2D pedestrian
body poses to address the Crossing/Not Crossing (C/NC) prediction in realistic driving conditions.
We evaluate the proposed approach on the Joint Attention in Autonomous Driving (JAAD) [15,16]
public data set, a standard benchmark in the matter of pedestrian behaviors prediction. To proceed,
we collect human key-points for all video frames in the JAAD data set thanks to skeleton IDs
and associated spatial coordinates defined in JAAD annotations. Thereafter, we develop SPI-Net:
a representation-focused multi-branch network that combines Cartesian features and location-invariant
geometric skeleton features. Skeleton features are provided by the Cascaded Pyramid Network (CPN)
algorithm [14].

The network is divided into two branches: one focuses on the evolution of Euclidean distances
relative to certain identified key-points over time, the other focuses on the evolution of the spatial
representation of skeletal key-points as a function of time in the Cartesian coordinate system.

The first branch corresponds to the encoder part of an auto-encoder initially trained to reconstruct
an action according to the evolution over time of selected key-point distances. We add to the
auto-encoder cost function a statistical supervised separability constraint to perform better separation
between instances according to their class in the latent space. We obtain, in addition to a reduction of
the action representation size, a first draft of class separability in the latent space.

In the second branch, a 2D convolutional network, we represent a skeleton sequence as a
pseudo-image. This allows us to extract spatio-temporal features using standard computer vision
deep-learning methods.

We then perform a late fusion on those two branches and fine-tune the entire approach in order
to evaluate the model. According to experiments, SPI-Net achieved 94.4% accuracy in pedestrian
crossing prediction. To the best of our knowledge, SPI-Net is at the moment, the state-of-the-art for the
C/NC task on the JAAD data set.
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The paper is organized as follows: Section 2 outlines some existing approaches from the literature
for skeleton-based action recognition and pedestrians’ intentions prediction. Section 3 presents an
overview of SPI-Net. Section 4 describes the experiments setups and shows the results of SPI-Net on
the JAAD data set. In Section 5, we discuss the results and how they can be interpreted for future
works. Finally, Section 6 presents our conclusions.

2. Related Work

In this section, we first review the literature for skeleton-based human action recognition. We then
focus on the literature for the prediction of pedestrians’ intentions in the context of autonomous driving.

2.1. Skeleton-Based Human Action Recognition

We review here a list of approaches based on "in-depth" learning of action recognition on skeletal
data. Those approaches for skeleton-based action recognition can be split into four categories:

• The ones that make use of recurrent cells;
• The ones that make use of convolutional cells;
• The ones that make use of an attention mechanism;
• The ones that do not focus on Euclidean data structure but a graph data structure.

2.1.1. Recurrent Neural Networks (RNN)

In recent years, Recurrent Neural Networks have been the reference approaches for sequence
modeling in speech recognition, digital signal processing, video processing and natural language
processing. Similarly, most deep-learning approaches for gesture recognition also use recurrent
cells such as LSTMs [17] or GRUs [18]. In those approaches, the skeleton is represented in the form
of a sequence and state neural networks are applied to it. They allow the exhibition of temporal
dynamic behaviors. For instance, Baccouche et al. [19] propose an architecture using LSTMs for action
recognition. Avola et al. [20] exploit the geometric characteristics of the angles of the joints learned with
an LSTM architecture. From the articulations information, Zhang et al. [21] generate eight geometric
indicators and evaluate them with a three-layer LSTM network. Du et al. [10] divide the human
skeleton into five parts and then propose a sequential hierarchical approach. Shukla et al. [22] propose
a hierarchical recurrent architecture roughly equivalent to Du et al. [10] but reduce the number of joints
at the input of the model, some of them being considered superfluous and carrying little information.
This reduction in the number of input joints then leads to a reduced set of parameters and reduces
the model inference time without degrading the quality of the classifier. Shahroudy et al. [23] use an
LSTM approach based on long-term learning of the co-occurrences of joints intrinsically characterizing
human actions. Zhang et al. [24] propose an adaptive recurrent network with an LSTM architecture,
allowing the network to adapt to the most appropriate end-to-end observational viewpoints in order
to manage large variations in the orientation of actions.

2.1.2. Convolutional Neural Network (CNN)

Since recurrent cells are relatively slow and difficult to train and use in real-time compared to
convolutional approaches, the latter have become an interesting solution given their advantages in
terms of parallel computing, efficiency in learning characteristics and speed. Convolutional approaches
can be performed on skeletons represented as pseudo-images, as illustrated in Figure 2, so that
standard 2D convolutions can be applied, or any other spatio-temporal version of CNNs such as 3D
convolutions. Since skeletal data are small elements, it is possible to organize a sequence of skeletal
features chronologically in an image, which retains the original information of the skeletal dynamics.
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Figure 2. Organization of the 3D skeleton data structure into a three-channel image (RGB).

The general idea of this type of approach is to structure the data in order to give them the expected
form (a sequence of images) and thus classify these images using standard computer vision methods.
Such motion formalisms to represent skeletal sequences by compact image-like inputs were first
proposed by Elias et al. [25] and extended by Sedmidubsky et al. [26] where a special insistence has
been given to features representation and data normalization to improve instance indexing.

In the same regard, Ke et al. [27] propose to transform a skeleton sequence into three video
clips, the CNN characteristics of the three clips are then merged into a single characteristics vector,
which is finally sent to a softmax function for classification. Pham et al. [28] propose to use a residual
network [29] with the transformed normalized skeleton in the RGB space as the input. Cao et al. [30]
propose to classify the image obtained thanks to gated convolutions. Ludl et al. [31] propose a complete
pipeline capable in real-time to detect a human in an image, skeletonize it and determine the action
performed using the same encoding format as an RGB image.

By moving away from the image domain while keeping the notion of convolution, other
CNN-based approaches use them in 1D format to model sequences: Bai et al. [32] show that
convolution networks can match or even surpass the performance of recurrent networks for typical
sequential modeling tasks. Therefore, Devineau et al. [33] propose an architecture based on
parallel convolutions capable of capturing features at different temporal resolutions. This results
in a three-branch convolutional model that takes as input the positions of skeletal joints at
different speeds and the distances in pairs between joints. Weng et al. [34] propose a deformable
convolutional neural network with one-dimensional convolutions capable of discovering combinations
of information-carrying joints to avoid joints in which semantics contribute little to the model.

Recurrent networks and convolutional networks can also be combined. The approach consists
of extracting spatial information with convolutive layers, then modeling temporal dynamics with
recurrent layers. Thus, Donahue et al. [1] propose to extract visual information from images coming
from a video thanks to a 2D CNN then to send them to the input of an LSTM. Li et al. [35] propose
a late fusion approach where LSTM and CNN are merged. Ullah et al. [36] propose a bidirectional
approach where features obtained by CNN are sent in a bidirectional LSTM [37], connecting two
hidden layers from opposite directions to the same output. The output layer can then simultaneously
obtain information on past and future states.

2.1.3. Attention Mechanisms

Human perception focuses on the most relevant parts of an image in order to acquire information
to understand its semantics. For machine learning, this phenomenon is artificially recreated by a
mechanism of attention: conceptually, attention can be interpreted in a broad sense as a vector of
weights of importance. In the context of action recognition, attention can be used to weight the
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importance of certain moments of the action in order to classify it, or to weight the importance of
certain skeletal joints. Maghoumi et al. [38] propose to stack GRUs with a global attention mechanism
as well as two fully connected layers. Song et al. [39] propose a model based on LSTM and RNN and
combine spatial and temporal global attentions: a network focuses on the discriminating articulations
of each frame, the other network weights the attention levels of the results for each instant in order
to focus on the important frames. Fan et al. [40] use action information from multiple viewpoints
to improve recognition performance and provide an attention mechanism for multi-view fusion of
skeletons sent to LSTMs. It is also possible to use attention with convolutions. Thus, Hou et al. [41]
propose a convolutional network learning different levels of attention for each spatio-temporal feature
extracted by the convolution filters for each frame of the sequence.

2.1.4. Geometric Deep-Learning

The evolution over time of the skeleton of the human body can be considered in the form of a
dynamic graph. So far, research in deep-learning for action recognition on skeletal data has focused
mainly on Euclidean data. The non-Euclidean nature of data in graph format makes the use of basic
operations, such as convolution, difficult to perform. However, convolutions have by definition the
ability to extract local spatial features and could use the skeleton data structure in graph format for the
classification of human actions. Such ability fits perfectly to Graph-type data structures since they are,
by definition, locally connected structures: the set of neighbors of a node.

In this way, representing the skeleton in the form of a graph can have the advantage of
not exploiting non-existent neighborhood links between joints, but of preserving coherent spatial
semantics for the skeleton. Geometric Deep-Learning [42–44] refers to techniques attempting to
generalize deep structured neural networks to non-Euclidean domains such as graphs. Wu et al. [45]
provide a state-of-the-art on geometric deep-learning and propose a taxonomy to differentiate
geometric networks into four categories: recurrent, convolutional, auto-encoder and spatio-temporal.
Thus, Zhang et al. [46] propose to apply convolutions on the edges of a graph corresponding to skeletal
bones in order to preserve spatial semantics. Yan et al. [47] extend the spatial convolutions of graphs
into spatio-temporal convolutions. They propose a convolutional spatio-temporal approach including
time-bound joints in the convolutional block in addition to spatially bound joints. Li et al. [48] propose
to cumulate spatio-temporal convolutions with an autoregressive–moving-average model. Finally,
Si et al. [49] propose to cumulate attention to a CNN-LSTM geometric network, capitalizing all the
approaches presented previously in a single network.

2.2. Pedestrian Intention Prediction

The problem of intention prediction of pedestrians from image sequences has gained increasing
interest over the past few years. More specifically, in the context of autonomous cars in urban traffic
environments, this problem is still an active research area due to its complexity and importance:
while action recognition consists of using a complete sequence to label an action, intentions prediction
predicts from an incomplete sequence to label an intention (i.e., before the pedestrian crosses).

For intention prediction tasks, it is common to split the intention as a combination of high-level
discrete behaviors as well as continuous trajectories describing the expected future movement of the
pedestrian. In this paper, we address the Crossing/Not Crossing discrete intention task in realistic
conditions. We, therefore, review published state-of-the-art machine-learning approaches for the
prediction of pedestrian’s discrete intentions in the context of autonomous driving.

Rasouli et al. [15] and Varytimidis et al. [50] formulated the problem as an image classification
problem based on Alexnet [51]. Given a single position image of a pedestrian in a traffic scene,
they classify whether the pedestrian is crossing or not. Afterward, they extend their model in order to
take as input a sequence of consecutive cropped images of the pedestrians before they cross in order to
consider the temporal coherence in short-term motions (≈0.5 s). Similarly, Saleh et al. [52] propose to
predict the intended actions of pedestrians based on a spatio-temporal DenseNet model. Pop et al. [8]
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propose to extract spatial information with convolutive layers, then consider temporal dynamics with
recurrent layers and propose a new metric for pedestrians dynamics evaluation: the time to cross
(TTC) prediction.

Some works are based on state-of-the-art generative methods in deep-learning, focusing on
the future representation of the action, and then classify it in its globality: Gujjar et al. [53] and
Chaabane et al. [54] process the crossing actions classification by feeding the predicted frames of their
future frame prediction auto-encoder network into a classification network. However, those kinds of
approaches have a major drawback: since background context is included, they are noise sensitive.
Moreover, predicting future frames of a given scene can be time-consuming considering the type and
the structure of the approach proposed, which can be a bit delicate in a real-time scenario.

To overcome these issues, intention prediction based on 2D skeletal pose sequences has also
been explored. Most of those approaches are currently based on the assumption that one can link the
position of a pedestrian’s joints previous to his action to an intention. Consequently, the problem of
pedestrian discrete intention prediction is, therefore, dealt with as an action recognition task prior
to the action and the action label becomes the intention. Fang et al. [55] combined CNN-based
pedestrian detection, tracking and pose estimation to predict the crossing action from monocular
images. Marginean et al. [56] and Ghori et al. [57] explore the pedestrian intention prediction task
with pose estimation algorithms combined with recurrent networks. However, in [57], sequences
in the wild are used, which makes it difficult to evaluate their approach on the JAAD data set.
Cadena et al. [58] predict intentions of pedestrians crossing based on 2D skeletal pose estimation and
a Graph Convolutional Network that preserves coherent spatial semantics for the pedestrian skeleton.

As noted by Ridel et al. [59], a further step to improve the state-of-the-art of pedestrian intention
prediction would be the introduction of dynamics and contextual scene information, jointly with
pedestrian-specific characteristics. However, the generated context features are not always applicable
to current data sets and require different kinds of modalities or hardware constraints [60,61]. In that
regard, Liu et al. [62] propose a new data set for pedestrian intention prediction tailored to intent
prediction in dense driving scenes. It defines a model based on graph convolutions to represent
the spatiotemporal context of the scene where each identified object is presented as a node of a
spatiotemporal graph for two different perspectives: pedestrian-centric and location-centric settings
graphs. Range et al. [63] propose a multi-task learning model to predict pedestrian actions and crossing
intents. They forecast their future path from video sequences based on 2D skeletal pose sequences,
context and two geometric features based on head orientation and arms orientation. While we firmly
believe that for the task of pedestrian intention prediction, it is better to use pedestrian specific
dynamics information and contextual scenes conjointly, we propose in this paper a context-invariant
approach based on 2D pedestrian body pose only to address the C/NC task. In that regard, we aim at
dividing the task of intention prediction into different sub-tasks in order to optimize how each modality
and potential input should be used independently. Therefore, our proposed approach SPI-Net only
relies on 2D skeletal pose sequences.

3. Materials and Methods

3.1. Experimental Data Set

Predicting whether or not a pedestrian is going to cross is addressed by the JAAD data set [15,16],
which contains 346 videos. In each video, each pedestrian has its individual ID and its actions
performed over time, as Figure 3 shows.

To extract the human key-points, we apply the Cascaded Pyramid Network (CPN [14]) algorithm
to the ground truth spatial coordinates and individual IDs of each pedestrian provided by the data
set. All video frames are normalized to 1280x1024 frame size. We then normalize each key-point
(x, y) ∈ R2 individually, dividing each coordinate by 1280 and 1024, as shown in Equation (1):
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x′ =
x

xmax
; y′ =

y
ymax

(1)

Figure 3. Time line of a crossing pedestrian in the Joint Attention in Autonomous Driving (JAAD) data set.

Such normalization has two benefits: the first one is that data will be ready for neural networks in
which weights initialization [64] expects such normalized input (variance ≤ 1), while retaining the
spatial information of the pedestrian in the scene.

Subsequently, obtained pedestrian pose sequences are defined as: s = (s1, s2, . . . , sT) ∈ RT×K×d,
where T is the sequence duration, K is the count of key-points, and d is the dimension of each key-point.
All sequences of skeletons are then sampled by a sliding window to keep a fixed size in the form of a
3-dimensional (T, K, d)-shaped tensor where T = 300, K = 14, and d = 2. The majority of the extracted
sequences are smaller than the fixed T size of the sliding window, therefore sequences with less than T
frames are padded with zeros. Finally, all processed data are introduced as a complete sequence to the
SPI-network.

3.2. SPI-Net Architecture

The network architecture of SPI-Net is shown in Figure 4. In the following, we explain our
motivation for designing input features and network structures of SPI-Net.

A large majority of current research in skeleton-based action recognition and pedestrian intention
prediction focuses mainly on the sequential modeling part of the problem. Moreover, the architectures
of the approaches presented for action recognition and intentions prediction have become more and
more complex over the years. We think this is because those approaches rely heavily on deep-learning
networks to learn informative representations of data itself by adding hidden layers in the architectures.

In this work, we propose to go back to "It is all about embedding and standardization in
machine-learning" : once one finds a way to standardize and represent data in a more adequate
way, any classifier might be able to obtain good results as long as the input data is informative.
By normalizing the input data, creating global-motion features and location-viewpoint invariant
features or enforcing certain constraints towards the data representation of designated hidden layers,
we send informative-representation ready data to the classification network. It allows us to rely on
less hidden layers to learn informative representations of data and therefore reduce the complexity of
the network compared to other approaches. Since we choose to rely on a reduced number of hidden
layers, we can focus on the inference time of our model, which is mandatory since we take the model
speed as one of our priorities.

Finally, we show with SPI-Net’s architecture composed of Dense layers and 2D convolutions that
combining sequential modeling and taking into consideration the representation and the normalization
of an action can be quite effective for the overall accuracy of a network designed for the C/NC task for
the JAAD data set.
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Figure 4. The multi-branch architecture of SPI-Net: the left branch focuses on the evolution of Geometric
features relative to certain identified key-points over time. The second one focuses on the evolution
of the spatial representation of skeletal key-points as a function of time in the Cartesian coordinate
system. CNN 2D Blocks denote one 2D ConvNet layer (kernel size = 3), an AveragePooling layer and a
Batchnormalization layer. Other Dense blocks are defined in the same format with a Batchnormalization
layer following each Dense layer.

3.2.1. Geometric Features Branch

According to the universal approximation theorem [65], any bounded function can be
approximated as well as one wants with a shallow Neural Network containing only one hidden
layer. As such, one may even use a trivial feed-forward neural network such as a Multi-Layer
Perceptron (MLP) to model sequences, like any other type of data.

For the Geometric Features branch, we use the simplest form of an auto-encoder: a trivial
feed-forward non-recurrent neural network to reconstruct an action according to the evolution of the
Euclidean distances of five given key-points over time: Torso, Left and Right Shoulders, Left and Right
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Knees. The given key-points were selected in order to extract specific information for the model such
as pedestrian’s orientation or pedestrian’s dynamics over time.

A considerable amount of literature has been published on modeling pedestrian’s attention
towards the environment as an input to infer their crossing intention [66–72], mainly by focusing on
specific key-points such as the head and more specifically its orientation. Rasouli et al. [70] show that
across all the possible forms of attention and communication a pedestrian could use, the most notable
one is to look in the direction of the approaching vehicle: for a collision incoming within the next
few seconds, pedestrians always tend to look at the vehicle before crossing [16]. Therefore, such head
orientation input is not necessarily useful for the particular task of intention prediction since it is
almost always recurrent information. In that regard, Schulz et al. [69] report that head detection is not
particularly useful for the particular task of intention prediction. Similar results were reported in [15]:
specifically focusing on the head for modeling pedestrian’s attention does not seem to bring better
performance for the task of intention prediction.

Key-points such as elbows or wrists were considered as well in order to capture specific attention
behaviors of pedestrians relying on hand gestures to communicate their intention of crossing to the
driver. However, it has been shown that pedestrians mainly use explicit communication such as hand
gestures to signal gratitude or dissatisfaction following the driver’s action [71]. Such a specific gesture
happens too late for our current intention prediction task as the pedestrian would be already either
crossing or not at that time.

In fact, Schneemann et al. [72] discovered that evident attention indicators used by humans for
inferring crossing intentions such as the head orientation of pedestrians are not always sufficient.
Even more, they concluded that “a lack of information about the pedestrian’s posture and body movement
results in a delayed detection of the pedestrians changing their crossing intention”.

In conformity with this conclusion, we chose to capture different information for the Geometric
features branch. Instead of extracting pedestrian’s awareness features towards its environment, we try
to capture pedestrian’s orientation features and pedestrian’s dynamics features over time based on
relative distances of their key-points.

Therefore the torso and shoulders key-points are preferred over the head, elbows or wrists to
model the pedestrian orientation towards his environment. Furthermore, knee key-points are taken
into consideration in order to determine if the given pedestrian is walking or standing in the scene and
therefore capture the dynamics.

By selecting a lower amount of key-points than the ones available in the complete body
structure, we reduce the inference time of the Geometric features branch without degrading its quality
for classification.

To avoid redundancy in our distances matrix and to minimize the geometric branch input size,
we use the Joint Collection Distances (JCD) [35,73] feature to represent our vector of distances over
time. This gives us a one-dimensional distance vector as our branch input of size equal to 3000 for
each sequence: T ∗ (nbkeypoints

2 ) = 300 ∗ (5
2).

We add to the reconstruction cost function of the auto-encoder a statistical supervised constraint
specific to the separability of classes with a Linear Discriminant Analysis. This allows to condition the
projection of the instances in the latent space upon their class. We then obtain, in addition to a reduced
representation of the action, a first draft of the separability of the classes in the latent space. We extract
the encoder part of the trained auto-encoder and evaluate its classification ability, as shown in Figure 5.
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Figure 5. Pipeline of the approach for the Geometric branch: (1) we train an auto-encoder to reconstruct
a sequence representing an action according to the evolution over time of the distances (represented by
the red arrows) of selected keypoints (Torso, Left and Right Shoulders, Left and Right Knees). We also
add a constraint specific to the separability of classes in the latent space. (2) We then extract the weights
of the encoder part up to the bottleneck represented in red and add a classifier, which transforms the
encoder part into a pre-trained network on the data for action classification.

More specifically, we obtain an auto-encoder with a separability constraint term that focuses on
two completely different pieces of information in the data. One in an unsupervised manner, the other
in a supervised manner:

• The inherent structure of the data captured in an unsupervised manner thanks to the
reconstruction of the auto-encoder and its abstraction ability. Some of the important and
discriminating information in the data set would then be retained.

• The separability of classes thanks to Linear Discriminant Analysis projection of the instances in
the latent space.

Formally, we define the problem as follows:

min
θ1,θ2

,
∥∥X− gθ2 ( fθ1(X))

∥∥2 (2)

Equation (2) is the usual reconstruction function of an auto-encoder with X a data matrix, θ1, θ2 the
parameters of the encoder and decoder blocks and f (), g() are, respectively, the transition functions
such that:

fθ1 : X→ F
gθ2 : F → X

(3)

where F is the feature space, which can be regarded as a compressed representation of the input matrix
X. Throughout that study, we refer to F as the bottleneck or the latent space of the auto-encoder.

We then add a statistical supervised constraint specific to the separability of classes in the cost
function: with S being the projection matrix of the instances in the latent space obtained with a linear
discriminant analysis (LDA) and λ a weighting parameter as presented in Equation (4):

min
θ1,θ2,S

∥∥X− gθ2

(
fθ1(X)

)∥∥2
+ λ

∥∥∥ fθ1(X)− S fθ1
(X)

∥∥∥2
(4)
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The training method is a simple iterative algorithm, optimizing an appropriate objective function.
This algorithm is based on two updating steps according to the scheme written in Algorithm 1:

Algorithm 1: Auto-encoder with statistical separability constraint training algorithm
Input: data matrix X, ground truth labels y, weighting parameter λ, loss threshold ε

Initialization of the encoder and decoder parameters θ1 and θ2;

while
∥∥X− gθ2

(
fθ1(X)

)∥∥2
+ λ

∥∥∥ fθ1(X)− S fθ1
(X)

∥∥∥2
> ε do

Update θ1 and θ2 using the auto-encoder.;
Update S using Linear Discriminant Analysis on fθ1(X) data matrix and y.;

end
Result: θ1, parameters of the encoder block

We choose the value of λ for the supervised separability constraint part empirically, by modifying
its value for different trainings and evaluate its gain for later stages.

Once the training of the auto-encoder has been performed, we recover the weights of the encoder
part: θ1 and add perceptrons with a softmax activation function right after the bottleneck. In order to
use the encoder as a classifier, we train the given modified network with the Categorical Cross-Entropy
Loss Function:

Loss = −
output size

∑
i=1

yi · log ŷi (5)

We evaluate the capability of classification of that branch alone for the C/NC task and we then
concatenate the two branches to evaluate the approach as its whole.

3.2.2. Cartesian Coordinates Features Branch

As the Geometric branch only takes as input relative Euclidean distances between key-points,
the Geometric branch is location-viewpoint invariant. Hence, it does not contain any global spatial
motion information of the pedestrian. Solely using the Geometric feature branch is therefore
unsubstantial as it does not take any information about the spatial information of the pedestrian
in the scene. To overcome this issue, we develop a Cartesian Coordinates features branch that is
made to retain such spatial information. Moreover, the Geometric features branch treats no explicit
sequential modeling at all, but only treats the question of representation of an action in the embedding.
Our Cartesian Coordinates features branch is therefore designed to extract both spatial and temporal
features: features that are not explicitly learned in the Geometric branch.

Since we take the model speed as one of our priorities, we use a 2D-convolution-ready
representation format of the sequence to represent human pose sequences allowing us to extract
spatio-temporal features using standard computer-vision deep-learning methods. Human pose
sequences are converted to a 2D image-like spatio-temporal continuous representation based
on a spatial joint reordering trick [74,75] called Tree Structure Skeleton Image (TSSI) [76].
Such representation preserves both spatial and temporal relationships by repeating the joints and
re-indexing them. TSSI is described in more detail in Figure 6.

Since a sequence is represented with a 3-dimensional (300, 14, 2)-shaped tensor, we can easily
apply the TSSI normalization [76] on the input and transform the original sequences into a
multi-channel redundant image of shape (300, 25, 2). A few sequences of pedestrian actions in the
TSSI-format are plotted with their ground truth intentions in Figure 7 for illustration.

We then classify these images using standard computer vision deep-learning methods, such as
in [27–31], while preserving spatial and temporal relationships.

Therefore, after the normalization of its input, the second branch corresponds to any other image
classifier based on convolutions and pooling blocks for features extractions and fully-connected layers
at later stages of the network. Similarly to the Geometric features branch, we evaluate the capability of



Algorithms 2020, 13, 331 12 of 23

discrimination of that branch alone for the C/NC task and we then concatenate the two branches and
evaluate the approach as its whole.

Figure 6. (a) Joints of the skeleton of a human body with the initial data structure. The visiting order of
the nodes is incremental: 0-1-2-3-...-13. (b) The skeleton is transformed into a tree structure. (c) The tree
can be unfolded into a chain in which the order of visit of the nodes maintains the physical relationship
of the joints: 1-0-1-8-10-12-10-8-1-9-11-13-11-9-1-2-4-6-4-2-1-3-5-7-5-3.

Figure 7. Twenty-eight different ground-truth sequences represented in a 3-dimensional
(300,25,2)-shaped tensor after the TSSI normalization. The horizontal axis of each Tree Structure
Skeleton Image (TSSI) sequence is the keypoints axis. The vertical axis of each TSSI sequence is the time
axis. The x, y dimensions are mapped to RG(B) channels for visualization. The axes are kept fixed and
the aspect is adjusted so that the data fit in the axes. Ground truth labels C/NC represent the Crossing
or not Crossing future action of the pedestrian.

4. Results

4.1. Evaluation Setup

We use the same methodology, splits and evaluation protocol as Cadena et al. [58] for the C/NC
prediction task on the JAAD data set: to perform pedestrian crossing prediction, only crossing labels
are used, other labels such as drivers information or context are currently omitted and might be used
for future research.

Every pedestrian with a crossing marker along their timeline is taken as a positive sample, if not,
it is taken as a negative sample. Afterward, all positives samples are divided into two categories,
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the ones preceding the crossing stage and the ones taking action during the crossing stage. Only the
ones preceding the crossing stage are considered. All frames with annotation are then taken from
the starting time of the action to time n. They are then sampled with a sliding window of frame size
T = 300. This procedure results in 927 crossing samples, 1855 non-crossing samples and 697 preceding
the crossing samples. Only the remaining 697 prior to crossing positive samples and the 1855 negative
samples are used. To avoid redundancy and bias in the data, only the last three steps of a single
pedestrian sample are taken from the sliding window if the event is longer than the fixed T frames.
It results in 322 positive and 182 negative samples being retained. All samples are then divided into
training and test sets. According to Fang et al. [55] splits, we use the first 250 videos for training and
the last 96 videos for testing. Since the number of positive examples is greater than the number of
negative examples, some positive examples are discarded to maintain a balanced data set. The final
data set consists of 240 examples equally distributed between C/NC labels in the training data set and
124 examples equally distributed between C/NC labels in the test data set.

4.2. Implementation Details

As our SPI-Net implementation relies on multiple networks being trained independently and
then concatenated for fine-tuning, we firstly here present our entire training setup to obtain SPI-Net:

• Training the Geometric features branch:

– Training the auto-encoder with a separability constraint term: We use a standard feed-forward
non-recurrent MLP, the dimensions of which are (3000) → (128) → (64) → (32) →
(1) → (32) → (64) → (128) → (3000). We use a value of fixed λ = 5 for the LDA
constraint term ponderation in the modified reconstruction cost function. To address
the vanishing gradient problem, each perceptron in the given auto-encoder network uses
the LeakyRelu [77] activation function. For regularization purposes, we use Dropout [78]
(p = 0.5), L2 regularization with λ = 1−1 and batch normalization [79] after each layer.
We choose Adam (β1 = 0.9, β2 = 0.999) [80] as the optimizer, with an annealing learning rate
that drops from 1−3 to 1−8. In order to obtain a good separability in the latent space with
the LDA separability constraint, we choose to send all the training examples at once for the
auto-encoder training and select a batch size of 240.

– Training the Encoder part for classification: we recover the encoder part of the auto-encoder,
then train a classifier with weights initialized via the auto-encoder. We use the same values
of the Adam optimizer for training. We, however, divide the training set into 30 batches of
size 8. We use ReduceLROnPlateau with a factor of 0.2 and patience of 10.

• Training the Cartesian features branch: The Cartesian features branch is composed of four
2D-convolution blocks composed of 2D-convolution layers (kernel size = 3 × 3). Similarly to
the auto-encoder, we use the LeakyRelu activation function, L2 regularization with λ = 1−4

and a Dropout value of 0.5. Each convolution layer is then followed by a Batch Normalization
layer and an Average Pooling layer. The fully connected layers following the spatio-temporal
features extraction done by convolutions is then completely similar to any other Dense layer of the
Geometric feature branch for hyper-parameters tuning. We choose Adam (β1 = 0.9, β2 = 0.999)
with a learning rate that drops from 1−2 to 1−8 and ReduceLROnPlateau with a factor of 0.5,
patience of 5, cooldown of 5 and a batch size of 8.

• Concatenating the branches: We then remove the classification layer of each branch and
concatenate those two networks deprived of their last layer into a single one. It allows us to
keep the previously learned weights of each network independently. We then add a classification
layer in which the weights are initialized randomly after the concatenated layer of the obtained
network. Finally, we fine-tune the entire network, from pre-trained weights to the randomly
initialized classification layer. We get our presented SPI-Net: a late fusion and fine-tuned version
of the Geometric and Cartesian features branches. As proposed in [81], we increase the batch size
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over time during the training and therefore fine-tune the approach with two different trainings on
the same SPI-network with two different batch sizes. For the first training, we use Adam with a
learning rate that drops from 9−3 to 5−8, ReduceLROnPlateau with a factor of 0.5, patience of 25
and a batch size of 8. For the second one, we use Adam with a learning rate that drops from 9−8

to 5−18 and ReduceLROnPlateau with a factor of 0.5, patience of 25 and a batch size of 240.

4.3. Results on JAAD Data Set

In ablation studies, we first explore how each SPI-Net branch contributes to the intention
prediction performance. We, therefore, explore how the LDA constraint for the Geometric branch or
the spatial joint reordering trick impact the intention prediction performance on JAAD. Therefore,
both Geometric and Cartesian branches results are presented in Tables 1 and 2, Figure 8. The crossing
prediction results of the overall SPI-Net approach on the JAAD data set are then presented in Table 3.
Finally, more details about each branch and SPI-Net are listed in their respective confusion matrices
for the C/NC task in JAAD data set in Table 4.

Table 1. Intention prediction accuracies of the Geometric branch alone, for different encodings of the
sequences of inter-keypoints distances.

Method Accuracy

LDA on Geometric features branch input 51.6%
LDA on the classic Encoder (λ = 0) 53.2%

LDA on the regularized Encoder (λ = 5) 54.0%
Encoder (He initialization [64]) 66.9%

Encoder with a classic auto-encoder (λ = 0) 68.5%
Encoder with a regularized auto-encoder (λ = 5) 69.4%

Figure 8. Intention prediction accuracy of the Geometric branch alone, as a function of its λ parameter.

Table 2. Ablation studies: classification accuracy of the Cartesian branch for pedestrian intention
prediction for the C/NC task in JAAD.

Method Accuracy
Cartesian feature branch without spatial joint reordering trick 83.1%

Cartesian feature branch with spatial joint reordering trick 88.7%
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Table 3. Classification accuracies for pedestrian intention prediction for the C/NC task in JAAD.
CPN [14], Alphapose [82] and Openpose [83] stand for the use of human pose estimation algorithms
used by the skeleton-based features method. We have also included the results reported in [15,50],
where CNN features are based on a non-fine-tuned AlexNet [51] and Context refers to features of the
environment, not of the pedestrian itself.

Method Accuracy
Alexnet + Context [15] 63.0%

Alexnet + SVM [50] 74.4%
Alphapose + LSTM [56] 78.0%

Res-EnDec [53] 81.0%
ST-DenseNet [52] 84.76%

auto-encoder + Prediction[54] 86.7%
Openpose + Keypoints [55] 88.0%

Alexnet + SVM + Context [50] 89.4%
CPN + GCN [58] 91.9%

CPN + Geometric branch (λ = 5) 69.4%
CPN + Cartesian branch 88.7%
CPN + SPI-Net (λ = 5) 94.4%

Table 4. Confusion matrix of the JAAD data set obtained by each branch of SPI-Net and SPI-Net on
JAAD for the C/NC task.

Geometric Branch Cartesian Branch SPI-Net
Ground Truth Crossing Not Crossing Crossing Not Crossing Crossing Not Crossing

Crossing 37 25 57 5 60 2
Not Crossing 16 46 9 53 5 57

Overall, although SPI-Net is not that complex in its architecture, Table 3 shows that it outperforms
by more than 2.5% the current state-of-the-art approach [58] based on CPN [14] for pedestrian discrete
intention prediction task on the JAAD data. The confusion matrices in Table 4 also shows that
SPI-Net accuracy is similar on both action classes, which demonstrates its ability to adapt to intra-class
variation for skeleton-based dynamics.

5. Discussion and Future Works

• Ablation studies: From Table 1, we figure that solely using the Geometric features branch alone
cannot produce a satisfactory performance for the C/NC task: since most of the prior to crossing
actions are strongly correlated to global spatial motion of the pedestrian in the scene, the usage
of only relative Euclidean distances between key-points is missing necessary information such
as spatial dynamics or sequential modeling. However, the Geometric features branch still seems
to capture some information only relative to the orientation and dynamics of the skeleton in the
data without explicit temporal modeling or global spatial information. For this study, it was of
interest to investigate if using the data projected into the latent space provided more information
compared to the initial Geometric features input without fine-tuning the entire approach and
updating the weights of the network. Table 1 shows that, by using the same binary classifier on
the projected data in the bottleneck obtained from a classical auto-encoder, a simple LDA finds
slightly more meaning in the data than the initial Geometric features input. Moreover, the latent
space representation obtained by our regularized auto-encoder seems to be a little bit more
informative than a regular auto-encoder latent space representation. In Figure 8, we evaluate
the correspondence between the value of λ for the supervised separability constraint part and
prediction accuracy. Afterward, we evaluate the necessity of using a pre-trained encoder network
for classification initialized with an auto-encoder training. By comparing the results from the
same network with He’s weights initialization [64] prior to any auto-encoder training to the
entire geometric branch approach, we show that using an auto-encoder to initialize the network’s
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weights helps to a certain extent the network’s accuracy. From Table 2, we can deduce that
by taking into consideration both spatial and temporal features in the Cartesian coordinate
system, we obtain better results than by only considering relative distances of given key-points
of the pedestrian skeleton. We can also conclude that the usage of the Tree Structure Skeleton
Image (TSSI) [76] normalization improves the results of the Cartesian branch for the C/NC task
considerably. Such normalization is therefore relevant as it only changes the size of the image
input and therefore does not change the network’s architecture much while becoming better
for the task it was designed for. Finally, Table 3, shows that by merging and fine-tuning both
Geometric and Cartesian features branches into a single network, we can achieve better results for
the C/NC task than by considering each branch independently.

• Inference time: SPI-Net manages to preserve the information in a Euclidean grid space while
keeping a coherent skeleton spatial structure and only uses 2D-convolutions and Dense layers
in its architecture. It allows us to keep the advantages of convolutions in terms of parallel
computing while capturing spatial and temporal features. Moreover, since SPI-Net only uses
classic deep-learning operations, it could be easily implemented in any Deep Learning frameworks
and also in any neural hardware solution like Intel Movidius c©, or FPGA without redefining any
operations. For this study, we implement it by Keras [84] backend in Tensorflow [85]. Therefore,
the knowledge of the optimization of euclidean data structure networks proposed in both libraries
is conserved compared to approaches based on Graph Networks where basic operations need
to be redefined and one might lose speed efficiency in the process. Since our SPI-Net approach
has only ∼0.57 M parameters, its speed can reach around one inference every 0.25 ms on one
GPU (i.e., RTX 2080ti), or every 0.67 ms on one CPU (i.e., Intel Core i7 8700K), which is roughly
100 times faster than the current state-of-the-art Graph Convolutional Network [58] approach, the
average speed of which takes 23 ms on two GPUs (i.e., two GTX 1080).
Referring to human reaction times, visual skeletal representations are known to be sufficient
for humans to describe and understand biological motion, specifically in the case of human
motions [86] (i.e., walking, running). It comforts us in the idea of only working with skeleton-based
models rather than image-based models. Thompson et al. [87] documented that the average
reaction time to detect visual stimuli is approximately 180–200 ms: Kemp et al. [88] show that a
visual stimulus takes around 20–40 ms to reach the brain, which leads to an average of 140–180 ms
“inference time” for a human once the data reached the brain. SPI-Net relies on the Cascaded
Pyramid Network (CPN) algorithm [14] to extract pose sequences before determining pedestrians’
intentions. Therefore, one could argue that the pose extraction feature should be compared to the
time to reach the brain information and SPI-Net should be compared to the average “inference
time” for a human once the data reached the brain. Since the CPN took approximately 60 ms per
frame to extract pedestrian poses, the overall approach is roughly two to three times faster than
the average human reaction time to a stimulus.

• Image sampling and pose estimation method: Necessary step of an intention prediction model
of which the analysis of the posture is an essential component. One major drawback of our work
is to rely on pose estimation algorithms. However, similarly to the OSI model, our approach relies
on independent implementations of methods for specific tasks. It leads to a practical methodology:
interchanging the pose estimation algorithms does not compromise the SPI-Net approach.
Currently, one of the main limitations of a 2D pose estimation is the ability to deal with pedestrian
occlusions in a two-dimensional space. Therefore, in order to improve the pose detection,
the question of adding a third dimension may arise. Currently, the methods for estimating
3D poses are much less mature than those for 2D pose estimation. One of the main reasons, to this
day, has been the lack of reliable data sets available [89]. However, our pipeline makes it easy to
keep up with the state-of-the-art in this field without completely disrupting the SPI-Net approach
for intention prediction. Compared to image-based approaches, if major advances are made in the
computer vision field and more specifically for pose estimation, SPI-Net could still be relevant.
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• Temporal tracking of pedestrians: In the real world, there are usually more pedestrians on the
streets passing and occluding each other, which requires sophisticated mechanisms not only for
their detection but for their temporal tracking without mixing their identity over time. In order
to compare SPI-Net to the literature on JAAD, our current approach completely omits such
issue and relies on the ground truth spatial coordinates and individual IDs of each pedestrian
provided by the data set. To address a better follow-up of the protagonists in the scene and to
avoid mixing the dynamics of two protagonists due to a change of camera angle, future research
will focus on building an end-to-end framework based on unlabeled coordinates of pedestrians,
temporal tracking of pedestrians and SPI-Net for intention prediction. Current research direction
tends to evaluate the benefits of using a pose estimation model sequentially based on pose
matching for tracking [90–93] compared to a frame by frame pose estimation model [14,94–96]
combined with more naive identifications approaches [97,98] that are supposedly faster.

• Data set size: A recurrent barrier to using deep-learning is small data sets. Even though JAAD
is one of the most complete data sets for pedestrians intents, the number of instances present in
the data set is still undersized to use the generalization ability of neural networks to its finest.
In the present work, we had to focus a lot on regularization techniques present in the literature
to avoid over-fitting. It is, therefore, necessary to extend the total number of instances for such
task. Our model is directly extensible to other input formats with different 2D or 3D skeletal data
structures: the proposed approach can therefore be applied to a broader family of applications
that discover the intentions of moving subjects. However, to use the generalization ability of
neural networks to its finest on such small data sets, future research will focus on proposing a
tool to enrich the existing databases on human skeletal dynamics by combining both Geometric
features and Cartesian features in order to generate skeleton dynamics that are coherent both
spatially and sequentially.

• Continuous intention prediction of pedestrians: SPI-Net showed that one could link the
dynamics of a pedestrian to its discrete intention faster and better. Consequently, future research
will focus on using SPI-Net to build a multi-modal architecture taking as input information such
as skeleton, image semantic segmentation and qualitative information where discrete intention
prediction could be used to infer the continuous trajectories describing the future movement of
the pedestrian and therefore propose an intention prediction of pedestrians framework for both
discrete and continuous intention prediction.

6. Conclusions

In this work, we have introduced a new real-time representation-focused multi-branch
deep-learning skeleton-based approach for the task of discrete intention prediction of pedestrians in
urban traffic environments. We propose to go back to “It is all about embedding and standardization
in machine-learning” and put great emphasis on finding a way to standardize and represent data in a
more adequate way for 2D skeletal pose sequences based models.

By normalizing the input data based on physical world constraints of the body structure,
creating features in different coordinate systems allowing to capture different aspects of the data
or enforcing certain constraints towards the data representation of designated hidden layers, we send
informative-representation ready data to the classification network, which allows us to rely on fewer
hidden layers to learn informative representations of data. Our SPI-Net approach has achieved
remarkable results: 94.4% accuracy, i.e., 2.5% more than the current state-of-the-art for the Crossing or
Not Crossing prediction task on the JAAD data set.

Furthermore, since we choose to rely on a reduced number of hidden layers, we can focus on
the inference time of our model, which is mandatory since we take the model speed as one of our
priorities: SPI-Net speed can reach around one inference every 0.25 ms on one GPU (i.e., RTX 2080ti),
or every 0.67 ms on one CPU (i.e., Intel Core i7 8700K), which makes it highly effective for the task
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of predicting discrete intentions of pedestrians and directly applicable to embedded devices with
real-time constraints.
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