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Abstract: Generative models for images, audio, text, and other low-dimension data have achieved
great success in recent years. Generating artificial human movements can also be useful for many
applications, including improvement of data augmentation methods for human gesture recognition.
The objective of this research is to develop a generative model for skeletal human movement,
allowing to control the action type of generated motion while keeping the authenticity of the
result and the natural style variability of gesture execution. We propose to use a conditional Deep
Convolutional Generative Adversarial Network (DC-GAN) applied to pseudo-images representing
skeletal pose sequences using tree structure skeleton image format. We evaluate our approach on
the 3D skeletal data provided in the large NTU_RGB+D public dataset. Our generative model can
output qualitatively correct skeletal human movements for any of the 60 action classes. We also
quantitatively evaluate the performance of our model by computing Fréchet inception distances,
which shows strong correlation to human judgement. To the best of our knowledge, our work
is the first successful class-conditioned generative model for human skeletal motions based on
pseudo-image representation of skeletal pose sequences.

Keywords: generative model; human movement; conditional deep convolutional generative
adversarial network; GAN; spatiotemporal pseudo-image; TSSI

1. Introduction

Human movement generation, although less developed than for instance text generation, is an
important applicative field for sequential data generation. It is difficult to get enough effective
human movement dataset due to its complexity—human movement is the result of both physical
limitation (torque exerted by muscles, gravity, and moment preservation) and the intentions of subjects
(how to perform an intentional motion) [1]. Generating artificial human movement data enables data
augmentation, which should improve the performance of models in all fields of study on human
movement: classification, prediction, generation, etc. Also, it will have important applications in
related domains. Imagine, for example, in computer games, each character running and jumping in
exactly the same way but in their own style, making those actions in the game closer to reality.

The objective of this research is to develop a generative model for skeletal human movements,
allowing to control the action type of generated motion while keeping the authenticity of the result and
the natural style variability of gesture execution. Skeleton-based movement generation has recently
become an active topic in computer vision, owing to the potential advantages of skeletal representation
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and to recent algorithms for automatically extracting skeletal pose sequences from videos. Previously,
most of the methods and researches on human gestures, including human movement generation,
used RGB image sequences, depth image sequences, videos, or some fusion of these modalities as
input data. Nowadays, it is easy to get relatively accurate 2D or 3D human skeletal pose data thanks to
state-of-the-art human pose estimation algorithms and high-performance sensors. Compared to dense
image approaches, skeletal data has the following advantages: (a) lower computational requirement
and (b) robustness under situations such as complicated background and changing body scales,
viewpoints, motion speed, etc. Besides these advantages, skeletal data has the three following main
characteristics [2]:

• spatial information: strong correlations between adjacent joints, which makes it possible to learn
about body structural information within a single frame (intra-frame);

• temporal information: makes it possible to learn about temporal correlation between frames
(inter-frame); and

• cooccurrence relationship between spatial and temporal domains when taking joints and bones
into account.

Skeletal-based human movement generation can be formalized as a continuous multivariate
time-series problem and is therefore often tackled using Recurrent Neural Network (RNN). In our work,
we however decided to use representation of each skeletal pose sequence as a spatiotemporal
pseudo-image with space and time as two dimensions of the image instead. The advantage is that we
can directly apply state-of-the-art generative models for images, which are more mature and simpler
in terms of the network architecture than the ones tailored for continuous time-series generation.
Thus, it is important to find a good pseudo-image representation for 3D skeletal data. The related
works will be further developed in the next part. The key issues to be solved include how to generate
realistic human movements, how to control the output (action, style, etc.), and how to evaluate the
model effectively.

Our work proves that, as long as we apply a well-adapted pseudo-image representation for 3D
skeletal data, such as Tree Structure Skeleton Image (TSSI), we can generate human movement by a
simple standard image generative model such as Deep Convolutional Generative Adversarial Network
(DC-GAN [3]). Furthermore, by introducing a conditional label, we control the output action type.
We also evaluate our generative models by calculating Fréchet inception distance.

The paper is organized as follows: Section 2 presents published works related to human movement
generative models and to pseudo-image representations for skeletal pose sequences; Section 3 explains
the details of our approach; Section 4 analyzes the results we have obtained; and Section 5 presents our
conclusions and perspectives.

2. Related Works

In this section, we present some of the already published works most related to our work
concerning generative models for skeletal human movements and pseudo-image representation for
skeletal pose sequences.

2.1. Generative Models for Skeletal Human Movements

A family of methods based on deep Recurrent Neural Networks (RNNs) have shown good
performance on generative tasks for human skeletal movements. For example, Fragkiadaki et al. [4]
proposed in 2015 the Encoder-Recurrent-Decoder (ERD) model that uses curriculum learning and
incorporates representation learning in the architecture. In 2016, Jain et al. introduced the concept
of structural-RNN [5], which manually encodes the semantic similarity between different body parts
based on spatiotemporal graphs. The reason why RNN is a popular generative model for sequential
data is that RNNs typically possess both a richly distributed internal state representation and flexible
nonlinear transition functions. This expressive power and the ability to train via error back-propagation
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are the key reasons why RNNs have gained popularity as generative models for highly structured
sequential data. Inspired by previous works on RNN, Martinez et al. [1] proposed in 2017 a human
motion prediction model using sequence-to-sequence (seq2seq) architecture with residual connections,
which turned out to be a simple but state-of-the-art method on prediction of short-term dynamics of
human movement. Chung et al. [6] explored the inclusion of the latent random variables into the
hidden state of an RNN by combining the elements of the variational autoencoder. They argued that,
through the use of high-level latent random variables, their variational RNN (VRNN) can model the
kind of variability observed in highly structured sequential data such as natural speech.

Besides the models based on RNNs and Variational Auto-Encoders (VAEs), Generative Adversarial
Networks (GANs) [7], which achieve great success in generative problems, are recently one of the
most active machine-learning research topics. GANs have proved their strength in the generation of
images and some types of temporal sequences. For example, Deep Convolutional GAN (DC-GAN) [3]
proposed a strided conv-transpose layer and introduced a conditional label, which allows for the
generation of impressive images. WaveNet [8], applying dilated causal convolutions that effectively
operate on a coarser scale, can generate raw audio waveforms and can transform text to speech which
human listeners can hardly distinguish from the true voice. Recently, several researches on human
movement prediction and generation models are based on GAN. In 2018, the Human Prediction
GAN (HP-GAN) [9] of Barsoum et al. used also a sequence-to-sequence model as its generator and
additionally designed a critic network to calculate a custom loss function inspired by WGAN-GP [10].
Kiasari et al. [11] approached from another way the combination of an Auto-Encoder (AE) and a
conditional GAN to generate a sequence of human movements.

2.2. Pseudo-Image Representation for Skeletal Pose Sequences

In many skeleton-based human movement recognition studies, researchers use Convolutional
Neural Networks (CNN) because of their efficiency and excellent ability to extract high level information.
However, the most common and developed CNNs use 2D convolutions and therefore generally focus
on image-based tasks. Meanwhile, human movement problems, including recognition and, the main
task of this paper, generation, are definitely a heavily temporal problem. Thus, it is challenging to
balance and capture both spatial and temporal information in a CNN-based architecture [2].

In general, to meet the needs of the CNN input, a 3D skeletal sequence data should be transformed
into a pseudo-image. Nevertheless, a decent representation that contains both spatial and temporal
information is not simple. Many researchers encode the skeletal joints to multiple 2D pseudo-images and
then feed them into the model. Wang et al. [12] introduced Joint Trajectory Maps (JTM), which represent
spatial configuration and the dynamics of joint trajectories into three texture images through color
encoding. Li et al. [13] proposed a translation-scale invariant image mapping. They pointed out that
the JTM encoding method is dataset dependent and not robust to the translation and scale variation
of human activity. To tackle this problem, they divided all human skeletal joints into five main parts
according to human physical structure and then mapped them to images. However, they merely
focused on the coordinates of isolated joints and therefore ignored the spatial relationships between
joints and only implicitly learned the movement representations. Take the action “walking” for example,
not only the legs and feet but also the arms and other body parts should be considered. In a word,
the human body needs to be treated as a whole. To solve this problem, Li et al. [14] proposed in 2019 an
effective method to learn comprehensive representations from skeletal sequences by using geometric
algebra. Firstly, a frontal orientation-based spatiotemporal model was constructed to represent the
spatial configuration and temporal dynamics of skeletal sequences, which is robust against view
variations. Then, shape-motion representations which mutually compensate one another were learned
to describe the skeletal actions comprehensively. Liu et al. [15] used enhanced skeletal visualization to
represent the skeletal data. SkeleMotion [16] directly encodes data by using orientation and magnitude
to provide information regarding the velocity of the movement in different temporal scales. The Tree
Structure Reference Joint Image (TSRJI) of Caetano et al. [17] combines the use of reference joints and
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a tree structure skeleton: while the former incorporates different spatial relationships between the
joints, the latter preserves important spatial relations by traversing a skeletal tree with a depth-first
order algorithm.

Even if these skeletal sequence representations have made great efforts to encode as much
information as possible in one or a series of “images”, it is still hard to learn global cooccurrences.
When these pseudo-images are fed to CNN-based models, only the neighboring joints within the
convolutional kernel are considered with learning local cooccurrence features. Thus, in 2018, Li et al. [18]
proposed an end-to-end cooccurrence feature-learning framework, where features are aggregated
gradually from point-level features to global cooccurrence features.

3. Materials and Methods

To generate human skeletal motions, we used a conditional Deep Convolutional Generative
Adversarial Network (DC-GAN) applied to pseudo-images representing skeletal pose sequences using
Tree Structure Skeleton Image (TSSI) format. We evaluated our approach on the 3D skeletal sequence
data provided in the large NTU_RGB+D [19] public dataset, and use Fréchet inception distances as
quantitative evaluation. The details of the database, pseudo-image representation, data preparation,
our generative model, and the process of training and evaluation will be provided in this section.

3.1. NTU_RGB+D Dataset

NTU_RGB+D [19] is a large-scale public dataset for 3D human activity analysis. It contains
60 different action classes including daily, mutual, and health-related actions. With 56,880 samples,
40 human subjects, and 80 camera views, this dataset is much larger than other available datasets for
RGB+D (RGB videos and depth sequence) action analysis. In our research, we only use the skeletal
data (3D locations of 25 major body joints) provided in the dataset.

3.2. Tree Structure Skeleton Image (TSSI)

In our approach, we transform the skeletal pose sequences into Tree Structure Skeleton Image
(TSSI) pseudo-images [20]. The principle of TSSI is to create one image for each sequence of skeletons.
In these spatiotemporal pseudo-images, the horizontal axis corresponds to joint positions and the
vertical axis corresponds to time. The joint positions are encoded as one channel for x, one for y, and one
for z, therefore obtaining a color image with red corresponding to x, green corresponding to y, and blue
corresponding to z. One of the important particularities of TSSI is reordering the skeletons using
depth-first tree traversal order so that neighboring columns in spatiotemporal images are spatially
related in the original skeletal graph. The spatial relations between connected skeletal joints can thus be
well preserved. TSSI can be trained with semantical meaning in a normal generative model for images,
where the spatial and temporal features are meant to be learnt at the same time. Also, compared with
other pseudo-image methods, TSSI is relatively simple. Figure 1 illustrates the skeleton structure and
order in NTU_RGB+D with traversal order and joint arrangements of TSSI.
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in traversal order (J joint repeated for the TSSI), and d the dimension (d = 3 for (x, y, z) 3D positions). 
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The strided conv-transpose layers allowed the latent vector to be transformed into a volume with the 
same shape as an image. 

Figure 2 shows the architecture of our conditional DC-GAN. In the generator, we used an 
upsample layer and a convolutional layer instead of the original convolutional-transpose layer in 
order to avoid checkerboard artifacts [22]. If a standard deconvolution (based on convolutional-
transpose layer) is used to upscale from a lower resolution image to a higher one, it uses every point 
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uneven overlap when the kernel size is not divisible by the stride. These overlapped pixels create an 
unwanted checkerboard pattern on generated images.  

Figure 1. Illustration (adapted from [20]) of Tree Structure Skeleton Image (TSSI): (a) skeleton structure
and order in NTU_RGB+D, with traversal order that respects spatial relations, and (b) joint arrangements
of TSSI. The shape is (T, J, d) where T is the sequence duration, J’ the number of joints in traversal order
(J joint repeated for the TSSI), and d the dimension (d = 3 for (x, y, z) 3D positions).

3.3. Data Preparation

First, we cleaned up the samples with missing data. Next, since the time length of sequences
in NTU_RGB+D varies around 100 frames, we linearly resampled all examples to the length of
100 time-steps. They were then transformed into TSSI pseudo-images of size 100 × 49 × 3 (time,
joints in TSSI order, 3), where 3 stands for the three-dimensional coordinates of each joint. The input
size of DC-GAN was 64 × 64 × 3. Thus, the spatiotemporal images were further resized to 64 × 64 × 3
using bilinear interpolation. Finally, these images were saved by class. The entire dataset was used
for training.

3.4. Conditional Deep Convolution Generative Adversarial Network (Conditional DC-GAN)

In this paper, we used a conditional Deep Convolution Generative Adversarial Network
(conditional DC-GAN) based on DC-GAN [3] and cGAN [21]. In the original DC-GAN architecture,
the discriminator was made up of strided convolution layers, batch norm layers, and LeakyReLU
activations. Its input was a 64 × 64 × 3 (Height × Width × Channel) image, and the output was
a scalar probability that the input is from real-data distribution. The generator was comprised of
convolutional-transpose layers, batch norm layers, and ReLU activations. Its input was a latent vector
z, that was drawn from a standard normal distribution, and the output was a 64 × 64 × 3 RGB image.
The strided conv-transpose layers allowed the latent vector to be transformed into a volume with the
same shape as an image.

Figure 2 shows the architecture of our conditional DC-GAN. In the generator, we used an upsample
layer and a convolutional layer instead of the original convolutional-transpose layer in order to avoid
checkerboard artifacts [22]. If a standard deconvolution (based on convolutional-transpose layer)
is used to upscale from a lower resolution image to a higher one, it uses every point in the small
image to “paint” a square in the larger one. Here comes the problem of “uneven overlap”, that is
to say, when these “squares” in the larger image overlaps. In particular, deconvolution has uneven
overlap when the kernel size is not divisible by the stride. These overlapped pixels create an unwanted
checkerboard pattern on generated images.
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Figure 2. Architecture of our conditional Deep Convolutional Generative Adversarial
Network (DC-GAN).

Thus, we instead used an upsample layer followed by convolutional layers to achieve the
“deconvolution” operation. We resized the image, using the upsample layer with bilinear interpolation
(or nearest-neighbor interpolation) and then using a convolutional layer. For the best result, before the
convolutional layer, we added a RelectionPad2d layer of size 1 to avoid boundary artifacts. Details are
provided in Appendix A.

In order to control the output action, the model receives the class label at input for both the
generator and discriminator. The generator receives as input a random noise (1 × 1 × Z) and a one-hot
conditional label (1 × 1 × C), where Z is the dimension of z and C is the number of classes. By default,
we chose Z = 100 and C = 60. They were concatenated and passed to a convolutional layer, with a 1 × 1
kernel. The output channel was 8192 (=4 × 4 × 512). Then, the output data were resized to the shape of
4 × 4 × 512. Finally, we passed the data to several upscaling blocks (Upsample + Conv2D + BatchNorm,
except for the output layer), which is exactly the same as the ones in the original DC-GAN. The reason
for not directly resizing the input data (the concatenation of random noise and one-hot label) was that,
when the data size is 1 × 1, it can only be upsampled to an equal-valued data. Also, we wished to keep
the input noise size at 1 × 1 × Z. Therefore, we decided to add an extra convolutional layer and the
resizing step to make it work. In the discriminator, the label was encoded as an image with C channels
(C for class number). The label was one-hot encoded along the dimension of channel. To be more
specific, the label of the nth action was an H ×W × C sized data, with all 1s on the nth channel and 0
for the rest. At the input layer, the image and the label were concatenated: every pixel of the image was
concatenated with a one-hot label in the direction of channel. Thus, the input channel size was 3 + C.
The architecture of the discriminator consisted in several convolutional layers and batch normalization
layers (except for the output layer) as in the the original architecture of DC-GAN.

3.5. Loss Function and Training Process

We used the standard loss function for GANs, which is defined in [7] as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ex∼pz(z)[log(1−D(G(x)))] (1)

Since a GAN has a generator and a discriminator, we had two losses: Loss_D and Loss_G.
We used the Binary Cross Entropy (BCE) as loss functions. Loss_D was calculated as the sum of
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errD_real = − log(D(x)) and errD_fake = − log(1−D(G(z))), representing the BCE of the prediction to
the reality when D receives real inputs and fake inputs. Loss_G = − log(D(G(z))) calculates the BCE of
the “false positive” prediction when D receives fake inputs.

The discriminator and the generator were trained and updated one after another, with the adam
optimizer at learning rate = 0.0002 by default.

3.6. Transformation of Generated Pseudo-Images into Skeletal Sequences

The input and output data of our model were both pseudo-images. In Section 3.3, we explain
how we transform the original skeletal variable-length sequences into TSSI pseudo-images with all the
same size, which are fed into the discriminator. The generator produces fake pseudo-images with the
same size. Therefore, in order to obtain a sequence of skeletons from the generated pseudo-image,
we need to perform a symmetric operation of that described in Section 3.3. First, the generated
64 × 64 × 3 pseudo-image was resized into 100 × 49 × 3 (time-step, joints in TSSI order, xyz) using
bilinear interpolation (we chose 100 time-steps as the unique length for generated sequences). Then,
for the joints which were repeated in TSSI order, we took the average value. For example, the third
joint (neck) was repeated twice in TSSI order (the third and the fourth). We calculated the average of
these two values and took it as the value of the third joint of skeleton. In this way, for each generated
pseudo-image, we obtained a corresponding generated skeletal sequence with a shape of 100 × 25 × 3
(time-steps, joints, xyz), which can be visualized as a sequence of skeletal poses.

3.7. Model Evaluation—Fréchet Inception Distance (FID)

To evaluate the model, we used Fréchet Inception Distance (FID) [23]. FID is a measure of
similarity between two datasets of images. It was shown to correlate well with human judgement of
visual quality and is most often used to evaluate the quality of samples of GAN. FID was first proposed
and used in [24] to improve the evaluation, being more consistent than the inception score [25]. The FID
metric calculates the distance between two distributions of images on the level of features. As in [25],
we computed FID measures using the features extracted from a pretrained inception V3 model [26].
FID is calculated by the following function [23]:

FID = ‖µr − µg‖
2 + Tr

(
Σr + Σg − 2

(
ΣrΣg

)1/2
)

(2)

µr, µg are the mean values of features of real and fake images
Σr, Σg are the covariance matrix of features of real and fake images
The smaller the FID, the greater the similarity between the two distributions. In our study, the real

images were the TSSI pseudo-images obtained (as described in Section 3.3) from skeletal sequences of
the NTU_RGB+D dataset and the fake images were the pseudo-images generated by our generative
model. We calculated FID between these two distributions of data as a metric. The aim was to
minimize FID.

Since we would like to evaluate the performance both by class of action and by all actions in the
future, we prepared the statistics for each class of action and the whole dataset. When calculating FID,
we only need to generate a certain number of fake samples to get its statistics µg and Σg. Notice that
there is a tradeoff between the fake sample numbers and computational cost of evaluation. The more
generated samples, the better the distribution of fake samples are presented. Meanwhile, it spends
more time and calculation power. Thus, it is crucial to decide the number of samples. We chose to
generate 250 samples for each class of action.
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4. Results

4.1. Qualitative Result for Generated Skeletal Actions

We first analyze qualitatively the results of our generative model. Figure 3 shows four examples
of actions generated by our model (with default hyperparameter setting) trained after 200 epochs:
(a) sitting down; (b) standing up; (c) hand waving; and (d) kicking something. For each action class,
the figure also shows for comparison a typical real pose sequence from the training set. As can be seen,
the generated skeletal sequences match qualitatively and visually with the typical training example of
a real pose sequence for the action class corresponding to the value of the class-condition input fed into
our generator. The respective characteristics of each action class, such as the movement of body parts,
are correctly learnt by the model, and the generated movements are continuous and smooth.
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Figure 3. Examples of generated actions compared with a typical real training sequence for 4 action
classes: (a) sitting down, (b) standing up, (c) hand waving, and (d) kicking something.
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4.2. Quantitative Model Evaluation Using Fréchet Inception Distance (FID)

At each evaluation, we record the FID score for each class of action, their average value, and the
FID score of the total dataset. Figure 4 shows the action “standing up” generated by our model at
the 150th epoch and the 200th epoch. The FID score is much smaller at the 200th epoch, and the
corresponding generated sequence is obviously qualitatively (i.e., visually) better. This confirms that
the FID on pseudo-images is clearly a good measure of the quality of the corresponding generated
pose sequences.
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Figure 4. Checking the consistency of the Fréchet Inception Distance (FID) score with the qualitative
appearance of generated action: the action “standing up” generated by the model after (a) 150 epoch
training and (b) 200 epoch training, and (c) the corresponding curve of FID as a function of
training epochs.

We now show in Figure 5 some FID scores during the training of our model, evaluating every
50 epochs. The first two rows of curves stand for 8 different actions and the last two curves are the
class average FID and the FID for the entire dataset. For most actions, the FID score globally decreases
as training goes on. It theoretically means that, as training goes on, the generated pseudo-images get
closer to the real TSSI training pseudo-images in terms of realness and diversity. We however note
that, for some action classes, the FID increases again after the 150th epoch. The same trend is visible on
the average FID score. This means that, in general, for one class of action, the results are better for the
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model trained after 150 epochs than after 200 epochs. When regarding all actions as a whole, we can
derive the same conclusion with the total FID score.
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Figure 5. FID curves evaluated on (0–7) 8 different actions, (avg) their average score, and (total) the
entire dataset.

4.3. Importance of the Modification of Generator Using Upsample + Convolutional Layers

As explained in Section 3.4, we modified the deconvolution operation from the original DC-GAN
in order to avoid checkerboard artifacts that arise when using simply convolutional-transpose
layers. To tackle this problem, we applied the upsample + convolutional layer method to realize the
deconvolution operation. In Figure 6, we compare the learning curves (Loss_D and Loss_G) of our
model (orange) with the original conditional DC-GAN model (blue) trained with the same input.
Our model converges much faster than the original one, meaning that the new model is much easier
to train.
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Figure 6. Learning curves of our model (using upsample and convolutional layers) (orange) and the
original method (using convolutional-transpose layers) (blue): Loss_D is discriminator loss calculated
as the average of losses for the all real and all fake samples, and Loss_G is the average generator loss.

Furthermore, we visually inspect some generated pseudo-images in order to check the
improvement. On Figure 7, we compare a real TSSI input pseudo-image on Figure 7a; a fake
pseudo-image generated by the original conditional DC-GAN model with convolutional-transpose
layers, having checkerboard patterns on the entire image on Figure 7b; and a fake pseudo-image without
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checkerboard artifacts generated with our modified DC-GAN on Figure 7c. This confirms that, thanks to
our modification of upsampling in the generator, the checkerboard pattern artifact no longer appears.
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generated sequences of skeletons. 

4.4. Importance of Reordering Joints in TSSI Spatiotemporal Images 

In order to assess the importance of joint reordering in TSSI skeletal representation, we also train 
our generative model using pseudo-images without tree traversal order representation. The spatial 
dimension is then simply the joint order from 1 to 25. Figure 9 compares the actions generated by the 
two trained models, without or with TSSI representation. Figure 9a is the training result by non-TSSI 
images, and Figure 9b is the result trained by TSSI. It is obvious that, after the same training epochs, 
the model obtained using non-TSSI pseudo-images cannot output a realistic human skeleton. 
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Figure 7. Example of spatiotemporal images: (a) TSSI of a real sequence; (b) an image generated by the
original conditional DC-GAN model with convolutional-transpose layers, with checkerboard artifacts;
and (c) an image generated by our model, without checkerboard artifacts.

In order to check how essential it is for our approach to avoid checkerboard artifacts, we finally
compare the corresponding generated actions. Figure 8 shows the action “drinking” generated by
(a) new model-trained 69 epochs and (b) original models after 349 epochs when the learning curves of
two models reach the same values. Comparing those two generated sequences of the action “drinking”,
the former is obviously more continuous and realistic. The human skeleton is closer to reality as well.
The body shape deformations and action unsmoothness visible in Figure 8b are the consequences of the
checkerboard artifacts in the generated pseudo-image, which translate into very bad pose sequences
after reconverting from TSSI pseudo-image.
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Figure 8. Sequence of action “drinking” generated by (a) our model (using upsample + convolutional
layers) trained after 69 epochs and (b) the original model (using convolutional-transpose layer) trained
after 349 epochs.

In conclusion, our analysis confirms that, for our work, using the upsample + convolutional
layer structure to realize deconvolution in the generator is efficient and essential for obtaining realistic
generated sequences of skeletons.

4.4. Importance of Reordering Joints in TSSI Spatiotemporal Images

In order to assess the importance of joint reordering in TSSI skeletal representation, we also train
our generative model using pseudo-images without tree traversal order representation. The spatial
dimension is then simply the joint order from 1 to 25. Figure 9 compares the actions generated by the
two trained models, without or with TSSI representation. Figure 9a is the training result by non-TSSI
images, and Figure 9b is the result trained by TSSI. It is obvious that, after the same training epochs,
the model obtained using non-TSSI pseudo-images cannot output a realistic human skeleton.
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Figure 9. Sequences of action “standing” generated by the models trained (a) with non-TSSI
pseudo-images (no reordering of joints) and (b) with TSSI-reordered pseudo-images.

4.5. Hyperparameter Tuning

After justifying the choice of our model architecture and data format, we explore the effect
of hyperparameter values: learning rate, batch size, and number of dimensions of latent space z.
By default, we set learning rate at 0.0002, batch size at 64, and dimension of z at 100. Figure 10 shows
the learning curves for the model trained with different learning rates: 0.001, 0.0005, 0.0002, and 0.0001.
Opposite to common sense, when the learning rate is smaller, Loss_D and Loss_G converge faster.
For models lr = 0.001 and lr = 0.0005, the average FID for a single class reaches the minimum at the
150th epoch and then goes up at the 200th epoch. For model lr = 0.0002, FID scores increase slightly
at the 200th epoch. For model lr = 0.0001, FID scores keep decreasing but converge slowly. For all
four models, FID scores are close to each other at the 200th epoch.
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Figure 10. Learning curves for our model trained with different learning rates: 0.001, 0.0005, 0.0002,
and 0.0001.

We also train the model with different batch sizes (of training data): 16, 32, 64, and 128 (see Figure 11).
When the batch size is small, the learning curves Loss_D and Loss_G are smoother and the discriminator
learns more easily However, FID score converges clearly best with batch size = 64.
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Finally, we investigate the influence of the dimension dim_z of the latent space z. In Figure 12,
Loss_D and Loss_G are not affected by the choice of dim_z while FID scores vary significantly. With the
increase of dim_z, FID scores tend to converge faster. For the model with dim_z = 5, the FID score
shows the decreasing trend along 200 epochs. For the model with dim_z = 10 and 30, the FID scores
both reach the minimal value near the 150th epoch and then go up. The model with dim_z = 100 gets
the lowest point of FID at the 130th and 180th epochs, much smaller than the results of the others.
However, further training epochs are needed to figure out whether FID for dim_z = 5 and 100 would
continue decreasing.
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To sum up, when training the model at 200 epochs, the original choice of the learning rate
and batch size is already a relatively good setup. Regarding the optimal dimension of latent space,
further study is needed to determine it robustly.

4.6. Analysis of Latent Space

We now analyze the influence of the latent variable z on the style of generated pose sequences.
To this end, we move separately along each dimension of the latent space and try to understand
the specific influence of each z coordinate on the appearance of generated sequences. In Figure 13,
we visualize the variation with z of the generated action “standing up”. The model is trained after
200 epochs with dim_z = 5. For each figure, we adopt linear interpolation on one dimension of z,
with 5 points in the range of [−1, 1]. Each row is the sequence generated by an interpolation “point”
of latent space z. By comparing the first frame of each sequence (the first column), it seems that
latent space z influences in particular the initial orientation of the skeleton. For instance, in Figure 13,
the body rotates from the front to its right side (or the left side from the reader’s point of view).
The evolution from top to bottom is continuous and smooth. At the same time, for each row of the
sequence, the action “standing up” is performed well. This example shows that, by tuning on latent
space z, our generative model is able to continuously control properties, such as the orientation, of the
action and eventually to define the style of action while generating the correct class of action indicated
by the conditional label.
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Figure 13. Variation of the generated action “standing up” with varying values of latent vector z.

5. Conclusions

In this work, we propose a new class-conditioned generative model for human skeletal motions.
Our generative model is based on TSSI (Tree Structure Skeleton Image) spatiotemporal pseudo-image
representation of skeletal pose sequences, on which is applied a conditional DC-GAN to generate
artificial pseudo-images that can be decoded into realistic artificial human skeletal movements. In our
setup, each column of a pseudo-image corresponds to approximately one single skeletal joint, so it is
quite essential to avoid artifacts in the generated pseudo-image; therefore, we modified the original
deconvolution operation in standard DC-GAN in order to efficiently eliminate checkerboard artifacts.

We evaluated our approach on the large NTU_RGB+D human actions public dataset, comprising
60 classes of actions. We showed that our generative model is able to generate artificial human
movements qualitatively and visually corresponding to the correct action class used as the condition
for the DC-GAN. We also used Fréchet inception distance as an evaluating metric, which quantitatively
confirms the qualitative results.

The code of our work will soon be made available on Github. As further works, we will continue
to improve the quality of generated human movements, for instance, adding a conditional label in
every hidden layer in the network [27] and evaluating the performances, and trying or developing
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other representations of skeletal pose sequences. Moreover, evaluation of the model on other human
skeletal datasets is important to verify the universality of the model.
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Appendix A

Implementation details of our conditional Deep Convolutional Generative Adversarial Networks
(c_DCGAN) (with hyperparameters in default setting: dim_z = 100)

Generator (
(input_layer): Conv2d (160, 8192, kernel_size = (1, 1), stride = (1, 1), bias = False)
(fc_main): Sequential (
(0): UpscalingTwo (
(upscaler): Sequential (
(0): Upsample (scale_factor = 2.0, mode = bilinear)
(1): ReflectionPad2d ((1, 1, 1, 1))
(2): Conv2d (512, 256, kernel_size = (3, 3), stride = (1, 1), bias = False)
(3): BatchNorm2d (256, eps = 1 × 10−5, momentum = 0.1, affine = True, track_running_stats = True)
(4): ReLU (inplace = True)
)
)
(1): UpscalingTwo (
(upscaler): Sequential (
(0): Upsample (scale_factor = 2.0, mode = bilinear)
(1): ReflectionPad2d ((1, 1, 1, 1))
(2): Conv2d (256, 128, kernel_size = (3, 3), stride = (1, 1), bias = False)
(3): BatchNorm2d (128, eps = 1 × 10−5, momentum = 0.1, affine = True, track_running_stats = True)
(4): ReLU (inplace = True)
)
)
(2): UpscalingTwo (
(upscaler): Sequential (
(0): Upsample (scale_factor = 2.0, mode = bilinear)
(1): ReflectionPad2d ((1, 1, 1, 1))
(2): Conv2d (128, 64, kernel_size = (3, 3), stride = (1, 1), bias = False)
(3): BatchNorm2d (64, eps = 1 × 10−5, momentum = 0.1, affine = True, track_running_stats = True)
(4): ReLU (inplace = True)
)
)
(3): UpscalingTwo (
(upscaler): Sequential (
(0): Upsample (scale_factor = 2.0, mode = bilinear)
(1): ReflectionPad2d ((1, 1, 1, 1))
(2): Conv2d (64, 3, kernel_size = (3, 3), stride = (1, 1), bias = False)
(3): Tanh ()
)
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)
)
)
Discriminator (
(hidden_layer1): Sequential (
(0): Conv2d (63, 64, kernel_size = (4, 4), stride = (2, 2), padding = (1, 1), bias = False)
(1): LeakyReLU (negative_slope = 0.2, inplace = True)
(2): Conv2d (64, 128, kernel_size = (4, 4), stride = (2, 2), padding = (1, 1), bias = False)
(3): BatchNorm2d (128, eps = 1 × 10−5, momentum = 0.1, affine = True, track_running_stats = True)
(4): LeakyReLU (negative_slope = 0.2, inplace = True)
(5): Conv2d (128, 256, kernel_size = (4, 4), stride = (2, 2), padding = (1, 1), bias = False)
(6): BatchNorm2d (256, eps = 1 × 10−5, momentum = 0.1, affine = True, track_running_stats = True)
(7): LeakyReLU (negative_slope = 0.2, inplace = True)
(8): Conv2d (256, 512, kernel_size = (4, 4), stride = (2, 2), padding = (1, 1), bias = False)
(9): BatchNorm2d (512, eps = 1 × 10−5, momentum = 0.1, affine = True, track_running_stats = True)
(10): LeakyReLU (negative_slope = 0.2, inplace = True)
(11): Conv2d (512, 1, kernel_size = (4, 4), stride = (1, 1), bias = False)
(12): Sigmoid ()
)
)
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