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This paper presents a control design for the one-phase Stefan problem under actuator delay via a backstepping method. The Stefan problem represents a liquid-solid phase change phenomenon which describes the time evolution of a material's temperature profile and the interface position. The actuator delay is modeled by a first-order hyperbolic partial differential equation (PDE), resulting in a cascaded transportdiffusion PDE system defined on a time-varying spatial domain described by an ordinary differential equation (ODE). Two nonlinear backstepping transformations are utilized for the control design. The setpoint restriction is given to guarantee a physical constraint on the proposed controller for the melting process. This constraint ensures the exponential convergence of the moving interface to a setpoint and the exponential stability of the temperature equilibrium profile and the delayed controller in the  1 norm. Furthermore, robustness analysis with respect to the delay mismatch between the plant and the controller is studied, which provides analogous results to the exact compensation by restricting the control gain.

INTRODUCTION

Background

Liquid-solid phase transitions are physical phenomena which appear in various kinds of science and engineering processes. Representative applications include sea-ice melting and freezing 15 , continuous casting of steel [START_REF] Petrus | Enthalpy-based feedback control algorithms for the Stefan problem[END_REF] , cancer treatment by cryosurgeries [START_REF] Rabin | Numerical solution of the multidimensional freezing problem during cryosurgery[END_REF] , additive manufacturing for materials of both polymer 18 and metal 6 , crystal growth 7 , lithium-ion batteries 16 , and thermal energy storage systems [START_REF] Zalba | Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[END_REF] . Physically, these processes are described by a temperature profile along a liquid-solid material, where the dynamics of the liquid-solid interface is influenced by the heat flux induced by melting or solidification. A mathematical model of such a physical process is called the Stefan problem 11 , which is formulated by a diffusion PDE defined on a timevarying spatial domain. The domain's length dynamics is described by an ODE dependent on the Neumann boundary value of the PDE state. Apart from the thermodynamical model, the Stefan problem has been employed to model several chemical, electrical, and social dynamics such as tumor growth process 10 , domain walls in ferroelectric thin films [START_REF] Mcgilly | Controlling domain wall motion in ferroelectric thin films[END_REF] , spreading of invasive species in ecology [START_REF] Du | Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[END_REF] , and information diffusion on social networks [START_REF] Lei | The free boundary problem describing information diffusion in online social networks[END_REF] .

While the numerical analysis of the one-phase Stefan problem is broadly covered in the literature, their control related problems have been addressed relatively fewer. In addition to it, most of the proposed control approaches are based on finitedimensional approximations with the assumption of an explicitly given moving boundary dynamics 8 , 1 , [START_REF] Petit | Control problems for one-dimensional fluids and reactive fluids with moving interfaces[END_REF] . Diffusion-reaction processes with an explicitly known moving boundary dynamics are investigated in 1 based on the concept of inertial manifold 5 and the partitioning of the infinite dimensional dynamics into slow and fast finite dimensional modes. Motion planning boundary control has been adopted in [START_REF] Petit | Control problems for one-dimensional fluids and reactive fluids with moving interfaces[END_REF] to ensure asymptotic stability of a one-dimensional one-phase nonlinear Stefan problem assuming a prior known moving boundary and deriving the manipulated input from the solutions of the inverse problem. However, the series representation introduced in [START_REF] Petit | Control problems for one-dimensional fluids and reactive fluids with moving interfaces[END_REF] leads to highly complex solutions that reduce controller design possibilities.

For control objectives, infinite-dimensional approaches have been used for stabilization of the temperature profile and the moving interface of a 1D Stefan problem, such as enthalpy-based feedback [START_REF] Petrus | Enthalpy-based feedback control algorithms for the Stefan problem[END_REF] and geometric control [START_REF] Maidi | Boundary geometric control of a linear stefan problem[END_REF] . These works designed control laws ensuring the asymptotical stability of the closed-loop system in the 2 norm. However, the result in [START_REF] Maidi | Boundary geometric control of a linear stefan problem[END_REF] is stated based on physical assumptions on the liquid temperature being greater than the melting point, which needs to be guaranteed by showing strictly positive boundary input.

Recently, boundary feedback controllers for the Stefan problem have been designed via a "backstepping transformation" [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF][START_REF] Smyshlyaev | Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations[END_REF] which has been used for many other classes of infinite-dimensional systems. For instance, 13 designed a state feedback control law and a state observer for the one-phase Stefan problem by introducing a nonlinear backstepping transformation for moving boundary PDE, which achieved the exponentially stabilization of the closed-loop system in the  1 norm without imposing any a priori assumption, with ensuring the robustness with respect to the uncertainty in physical parameters. As further extensions, 17 investigated an input-to-state stability of the control of Stefan problem developed in 13 with respect to an unknown heat loss at the interface, and 19 developed a boundary control design for the two-phase Stefan problem which models the temperature dynamics in both the liquid and solid phases.

In the presence of actuator delay, a delay compensation technique has been developed intensively for many classes of systems using a backstepping transformation [START_REF] Krstic | Delay compensation for nonlinear, adaptive, and PDE systems[END_REF] : see [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF] for linear ODE systems and [START_REF] Krstic | Input delay compensation for forward complete and strict-feedforward nonlinear systems[END_REF] for nonlinear ODE systems. Using the Lyapunov method, [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF] presented the several analysis of the predictor-based feedback control for ODEs such as robustness with respect to the delay mismatch and disturbance attenuation. To deal with systems under unknown and arbitrary large actuator delay, a Lyapunov-based delay-adaptive control design was developed in 3,4 for both linear and nonlinear ODEs with certain systems, and 2 extended the design for trajectory tracking of uncertain linear ODEs. For control of unstable parabolic PDE under a long input delay, [START_REF] Krstic | Control of an unstable reaction diffusion PDE with long input delay[END_REF] designed the stabilizing controller by introducing two backstepping transformations for the stabilization of the unstable PDE and the compensation of the delay. By the similar technique, in [START_REF] Tang | Stabilization for a class of delayed coupled PDE-ODE systems with boundary control[END_REF] the coupled diffusion PDE-ODE system in the presence of the actuator delay is stabilized. Implementation issues on the predictor-bsaed feedback are covered in 12 by studying the closed-loop analysis under the sampled-data control.

Results and contributions

Our conference paper 14 presented the delay compensated control for the one-phase Stefan problem under actuator delay for the stabilization of the interface position and the temperature profile at a desired setpoint and the equillibrium temperature. This paper extends the results in 14 by: First, combining our previous result in 13 with the result in [START_REF] Krstic | Control of an unstable reaction diffusion PDE with long input delay[END_REF] , two nonlinear backstepping transformations for moving boundary PDE are employed. One is for the delay-free control design of Stefan problem based on 13 , and the other is for the compensation of actuator delay formulated with Volterra and Fredholm type transformations based on [START_REF] Krstic | Control of an unstable reaction diffusion PDE with long input delay[END_REF] . The associated boundary feedback controller remains positive under a setpoint restriction due to the energy conservation, which guarantees a condition of the model to be valid. The closed-loop system with the proposed delay compensated controller achieves the exponential stabilization of the moving interface to the desired setpoint while ensuring the exponential stability of the temperature profile and the controller to the equillibrium set in the  1 -norm sense. Furthermore, the robustness analysis is investigated by proving that the positivity of the controller and the exponential stability of the closed-loop systems hold for a given delay mismatch under sufficiently small control gain. 
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Organization

This paper is organized as follows. The Stefan problem with actuator delay is presented in Section 2, and the control objective and our main result are stated in Section 3. Section 4 introduces a backstepping transformation for moving boundary problems which enables us to design the state feedback control law. The physical constraints of this problem are stated in Section 5. The stability analysis of the closed-loop system is established in Section 6. The equivalence of the designed control with a prediction of the nominal control law is shown in Section 7. Robustness analysis with respect to the delay mismatch is studied in Section 8. Supportive numerical simulations are provided in Section 9. The paper ends with the conclusion in Section 10.

Notations

Throughout this paper, partial derivatives and several norms of spatially and temporally varying variables are denoted as

( , ) = ( , ), ( , ) = ( , ), || (⋅, )|| 2 ( , ) = √ √ √ √ √ √ ∫ ( , ) 2 , || (⋅, )||  1 ( , ) = √ || (⋅, )|| 2 2 ( , ) + || (⋅, )|| 2 2 ( , ) ,
and analogously, the derivatives and norms of temporally varying variables are denoted as

̇ ( ) = ( ), || (⋅)|| 2 ( , ) = √ √ √ √ √ √ ∫ ( ) 2 , || (⋅)||  1 ( , ) = √ || (⋅)|| 2 2 ( , ) + || ̇ (⋅)|| 2 2 ( , ) .

DESCRIPTION OF THE PHYSICAL PROCESS

Consider a physical model which describes the melting or solidification mechanism in a pure one-component material of length in one dimension. In order to mathematically describe the position at which phase transition from liquid to solid occurs, we divide the domain [0, ] into two time-varying sub-domains, namely, the interval [0, ( )] which contains the liquid phase, and the interval [ ( ), ] that contains the solid phase. A heat flux enters the material through the boundary at = 0 (the external boundary of the liquid phase) which affects the dynamics of the liquid-solid interface. The boundary heat flux is manipulated as a controller, and here we impose an actuator delay which is caused by several reasons such as computational time or communication delay. Specifically, the communication delay takes place during the time in which the signals are transmitted from sensors to the controller and from the controller to the actuator, and the computational delay is caused during the time when the controller completes the computation after receiving the signals from the sensors. As a consequence, the heat equation alone does not provide a complete description of the phase transition and must be coupled with the dynamics that describes the moving boundary. This configuration is shown in Fig. 1 .

Assuming that the temperature in the liquid phase is not lower than the melting temperature m of the material, the following coupled system can be derived.

• The diffusion equation of the temperature in the liquid-phase is described by

( , ) = ( , ), 0 ≤ ≤ ( ), ∶= , (1) 
with the boundary conditions

- (0, ) = c ( -), (2) 
( ( ), ) = m , (3) 
and the initial values

(0) = 0 , ( , 0) = 0 ( ), ∀ ∈ [0, 0 ], c ( ) = c,0 ( ), ∀ ∈ [-, 0), (4) 
where ( , ), c ( ), , , , and are the distributed temperature of the liquid phase, manipulated heat flux, liquid density, the liquid heat capacity, the liquid heat conductivity, and the input time delay respectively.

• The local energy balance at the position of the liquid-solid interface = ( ) leads to the Stefan condition defined as the following ODE

̇ ( ) = - ( ( ), ), ∶= Δ * , ( 5 
)
where Δ * denotes the latent heat of fusion. Equation ( 5) expresses the velocity of the liquid-solid moving interface.

For the sake of brevity, we refer the readers to 11 , where the Stefan condition of a solidification process is derived.

Remark 1. As the moving interface ( ) depends on the temperature, the problem defined in ( 1)-( 5) is nonlinear.

Remark 2. Due to the so-called isothermal interface condition that prescribes the melting temperature m at the interface through (3), this form of the Stefan problem is a reasonable model only if the following condition holds:

( , ) ≥ m for ∀ ∈ [0, ( )], ∀ > 0. (6) 
The model validity requires the liquid temperature to be greater than the melting temperature and such a condition yields the following property on moving interface.

Lemma 1.

If the model validity condition (6) holds, then the moving interface is always increasing, i.e. ̇ ( ) ≥0, for ∀ ≥ 0.

(

) 7 
Applying Hopf's Lemma to the boundary condition (3) and the condition (6), the dynamics (5) yields Lemma 1 as shown in 11 . By Remark 2, it is justified to impose the following assumption on the initial values. Assumption 1. 0 > 0 and there exists Lipschitz constant > 0 such that

m ≤ 0 ( ) ≤ m + ( 0 -), ∀ ∈ (0, 0 ). (8) 
Then, the condition ( 6) is guaranteed by the following lemma.

Lemma 2.

With Assumption 1, if c ( ) is a bounded piecewise continuous function with generating nonnegative heat, i.e.,

c ( -) ≥ 0, ∀ ≥ 0, (9) 
then there exists a unique classical solution for the Stefan problem ( 1)-( 5) with satisfying the validity condition ( 6) for all ≥ 0.

The definition of the classical solution of the Stefan problem can be seen in literature, for instance see Appendix A in 13 . The proof of Lemma 2 is provided by maximum principle as shown in 11 . Due to the requirement on the heat input stated in Lemma 2, we impose the following assumption. Assumption 2. The past input c,0 ( ) for ∈ [-, 0) is a bounded piecewise continuous function and maintains nonnegative, i.e.

c,0 ( ) ≥ 0, ∀ ∈ [-, 0). ( 10 
)
With Assumption 1 and 2, the model validity condition (6) remains if c ( ) ≥ 0 for ∀ ≥ 0 by Lemma 2.

CONTROL PROBLEM STATEMENT

The control objective is to drive the moving interface ( ) to a desired setpoint r by manipulating the heat flux c ( ). As derived in 13 , the steady-state solution of the temperature profile eq ( ) governed by the Stefan problem (1)-( 5) with setting the equillibrium interface position as the setpoint r is uniquely given by the uniform melting temperature, namely, eq ( ) = m for all ∈ [0, r ]. Hence, the primary objective is driving ( ) to r , and consequently the convergence of ( , ) to m for all ∈ [0, ( )] is required: we aim to achieve

( ) → r , ( , ) → m for all ∈ [0, ( )], as → ∞ (11) 
for given ( 0 ( ), 0 ) which satisfies Assumption 1. Note that while we aim ( , ) → m the liquid phase is not solidified as long as the condition ( 6) is satisfied. The condition c ( ) ≥ 0 for ≥ 0 imposes the choice of the setpoint as described below. The plant (1)-( 5) obeys the following energy conservation law:

⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( ( , ) -m ) + ( ) + ∫ - c ( ) ⎞ ⎟ ⎟ ⎠ = c ( ), ∀ ≥ 0. ( 12 
)
The left hand side of ( 12) denotes the growth of internal energy of the plant and the stored energy by the delayed heat controller, and its right hand side denotes the external work provided by the injected heat flux. The control objective is achieved if and only if the following limit on the total energy is satisfied:

lim →∞ ⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( ( , ) -m ) + ( ) + ∫ - c ( ) ⎞ ⎟ ⎟ ⎠ = r , ( 13 
)
which can be derived by substituting (11) and ( ) → 0 into the left hand side of (13). Taking integration of ( 12) from = 0 to = ∞ with the help of c ( ) > 0 for > 0 and ( 13), the following assumption on the setpoint is provided as a necessary condition.

Assumption 3. The setpoint is chosen to satisfy

r > 0 + ⎛ ⎜ ⎜ ⎝ 0 ∫ - c,0 ( ) + 1 0 ∫ 0 ( 0 ( ) -m ) ⎞ ⎟ ⎟ ⎠ . ( 14 
)
Next, we state our main result.

Theorem 1. Under Assumptions 1-3 and if the initial data are such that ( 0 (⋅)m , 0r , c,0 (⋅)) ∈  1 (0, 0 ) × ℝ ×  1 (-, 0), the closed-loop system consisting of the plant (1)-( 5) and the control law

c ( ) = - ⎛ ⎜ ⎜ ⎝ ∫ - c ( ) + ( ) ∫ 0 ( ( , ) -m ) + ( ( ) -r ) ⎞ ⎟ ⎟ ⎠ , ( 15 
)
where > 0 is an arbitral control gain, maintains the model validity (6) and is exponentially stable in the sense of the norm

|| (⋅, ) -m || 2  1 (0, ( )) + ( ( ) -r ) 2 + || c (⋅)|| 2  1 ( -, ) (16) 
The proof of Theorem 1 is established through Sections 4-6.

BACKSTEPPING TRANSFORMATION

Change of variables

Introduce reference error variables defined by

( , ) ∶= ( , ) -m , ( ) ∶= ( ) -r . ( 17 
)
Next, we introduce a variable

( , ) = c ( --) , ∀ ∈ [-, 0]. (18) 
Here, the variable ∈ [-, 0] in (18) is not the spatial coordinate ∈ (0, ( )) of the system (1)-( 5), but a newly introduced variable for an alternative representation of the delayed input, as introduced in [START_REF] Krstic | Control of an unstable reaction diffusion PDE with long input delay[END_REF] . Hence, the variable c ( --) in ( 18) still represents the boundary heat input (not an input acting on the space ∈ (0, ( ))), during the time period fromto . Then, (18) gives the boundary values of current input (-, ) = c ( )∕ and delayed input (0, ) = c ( -)∕ , and ( , ) satisfies a transport PDE. Hence, the coupled ( , , )-system is described as

( , ) = -( , ), -< < 0 (19) (-, ) = c ( )∕ , ( 20 
)
(0, ) = -(0, ), (21) 
( , ) = ( , ), 0 < < ( ) (22) 
( ( ), ) =0, ( 23 
) ̇ ( ) = - ( ( ), ). (24) 
Now, the control objective is to design c ( ) to stabilize the coupled ( , , )-system at the origin.

Direct transformation

We consider backstepping transformations for the coupled PDEs-ODE system as

( , ) = ( , ) - ( ) ∫ ( -) ( , ) -( -( )) ( ), (25) 
( , ) = ( , ) + 0 ∫ ( , ) + ( ) ∫ 0 ( , ) + ( ). (26) 
The transformation (25) is the same transformation as the one proposed in 13 for delay-free Stefan problem. The formulation of ( 26) is motivated by a design in fixed domain introduced in [START_REF] Krstic | Control of an unstable reaction diffusion PDE with long input delay[END_REF] . Noting that ( ) appearing in ( 25) and ( 26) can be rewritten by ( ) = ( ) + , both are nonlinear transformations. Taking derivatives of ( 25) and ( 26) in and along with the solution of the system ( 19)-( 24), we have

( , ) = ( , ) - ( ) ∫ ( , ) - ( ), (27) 
( , ) = ( , ) -( , ), (28) 
( , ) = -( , ) - 0 ∫ ( , ) + ( ) ∫ 0 ( , ) - ( ( ), ), = -( , ) + ( , ). (29) 
By ( 28) and ( 29), we get ( , ) = -( , ). In addition, by substituting = 0 in ( 26) and ( 27), (0, ) = -(0, ) holds. On the other hand, because transformation does not depend on , system is not changed from the delay-free target system given in 13 . Thus, the target ( , , )-system is obtained by

( , ) = -( , ), -< < 0 (30) (-, ) =0, (31) 
(0, ) = -(0, ), (32) 
( , ) = ( , ) + ̇ ( ) ( ), 0 < < ( ) (33) 
( ( ), ) =0, ( 34 
) ̇ ( ) = - ( ) - ( ( ), ). (35) 
The control design is achieved through evaluating ( 26) at = -together with the boundary conditions ( 20) and (31), which yields

( ) = - ⎛ ⎜ ⎜ ⎝ 0 ∫ - ( , ) + 1 ( ) ∫ 0 ( , ) + 1 ( ) ⎞ ⎟ ⎟ ⎠ . ( 36 
)
Finally, substituting the definitions ( 17) and ( 18) in (36), the control law ( 15) is obtained. In a similar manner, the inverse transformations are obtained by

( , ) = ( , ) + ( ) ∫ ( -) ( , ) + ( -( )) ( ), (37) 
( , ) = ( , ) - 0 ∫ ( -) ( , ) - ( ) ( ) ∫ 0 ( ) ( , ) -( ( )) ( ) ( ), (38) 
where

( ) = √ sin √ , ( 39 
) ( ) = , ( ) = 1 cos √ . ( 40 
)

PHYSICAL CONSTRAINTS

Noting that (7) should hold since c ( ) > 0 is required by Remark 2 and Lemma 2 to satisfy (6), the overshoot beyond the setpoint r is prohibited to achieve the control objective ( ) → r , i.e. ( ) < r is required to be satisfied for ∀ > 0. In this section, we prove that the closed-loop system with the proposed control law (15) guarantees c ( ) > 0 and ( ) < r for ∀ > 0, namely "physical constraints".

Lemma 3. With Assumption 2 and 3, the control law (14) for the system (1)-( 5) generates a positive input signal, i.e., c ( ) >0, ∀ > 0.

(41)

Proof. Taking the time derivative of (15) together with the solution of (1)-( 5), we obtain

̇ c ( ) = - ⎛ ⎜ ⎜ ⎝ c ( ) -c ( -) + ( ) ∫ 0 ( , ) - ( ( ), ) ⎞ ⎟ ⎟ ⎠ , = - c ( ) -c ( -) - (0, ) , = -c ( ). (42) 
The differential equation (42) yields

c ( ) = c (0) -. ( 43 
)
Additionally, substituting = 0 into the control law (15) leads to

c (0) = - ⎛ ⎜ ⎜ ⎝ 0 ∫ - c ( ) + 0 ∫ 0 ( 0 ( ) -m ) + ( 0 -r ) ⎞ ⎟ ⎟ ⎠ , ( 44 
)
Hence, Assumption 3 leads to

c (0) > 0. (45) 
Applying (45) to (43), the positivity of the controller (41) is satisfied.

Note that (51) yields (-, ) = 0 through taking the time derivative and applying PDE (52). With the help of it, taking the time derivative of (57) together with (51)-(52) leads to

̇ 1 = -2 0 ∫ - - ( , ) ( , ) = - 0 ∫ - - ( , ) 2 = -- ( , ) 2 | =0 =-+ 0 ∫ - - ( , ) 2 = -(0, ) 2 - 0 ∫ - - ( , ) 2 . ( 59 
)
Let 2 be the functional defined by

2 = 1 2 1 2 r || (⋅, )|| 2 2 (0, ( )) + || (⋅, )|| 2 2 (0, ( )) = 1 2 ( ) ∫ 0 1 2 r ( , ) 2 + ( , ) 2 . ( 60 
) (60) satisfies max{ 2 r , 1}|| (⋅, )|| 2  1 (0, ( )) ≤ 2 2 ≤ max{1∕ 2 r , 1}|| (⋅, )|| 2  1 (0, ( ))
Note that taking the total time derivative of (55) yields ( ( ), ) = -̇ ( ) ( ( ), ). Taking the time derivative of (60) together with (53)-(55), we obtain

̇ 2 = ̇ ( ) 2 1 2 r ( ( ), ) 2 + ( ( ), ) 2 + ( ) ∫ 0 1 2 r ( , ) ( , ) + ( , ) ( , ) = ̇ ( ) 2 ( ( ), ) 2 + 1 2 r ( ) ∫ 0 ( , ) ( , ) -( -( )) (0, ) + ̇ ( ) ( ) -(0, ) + ( ( ), ) ( ( ), ) -(0, ) (0, ) - ( ) ∫ 0 ( , ) ( , ) = - 2 r || (⋅, )|| 2 2 (0, ( )) - 1 2 r (0, ) ( ) ∫ 0 ( -( )) ( , ) + ̇ ( ) 2 r ( ) -(0, ) ( ) ∫ 0 ( , ) -|| (⋅, )|| 2 2 (0, ( )) + (0, ) (0, ) - ̇ ( ) 2 ( ( ), ) 2 -̇ ( ) ( ) -(0, ) ( ( ), ). (61) 
Applying Young's and Cauchy Schwarz inequalities to the second terms on the first and second line of the (61) with the help of (48) yields

| | | | (0, ) ( ) ∫ 0 ( -( )) ( , ) | | | | ≤ 1 2 (0, ) 2 + 1 2 1 ⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( -( )) ( , ) ⎞ ⎟ ⎟ ⎠ 2 , ≤ 1 2 (0, ) 2 + 1 2 1 ⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( -( )) 2 ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( , ) 2 ⎞ ⎟ ⎟ ⎠ , ≤ 1 2 (0, ) 2 + 3 r 6 1 || (⋅, )|| 2 2 (0, ( )) , ≤ 1 2 (0, ) 2 + 2 5 r 3 1 || (⋅, )|| 2 2 (0, ( )) , (62) 
| (0, ) (0, )| ≤ 2 2 (0, ) 2 + 1 2 2 (0, ) 2 , ≤ 2 2 (0, ) 2 + 2 r 2 || (⋅, )|| 2 2 (0, ( )) , ( 63 
)
where we utilized Poincare's inequality || (⋅, )|| 2 2 (0, ( )) ≤ 4 2 r || (⋅, )|| 2 2 (0, ( )) and Agmon's inequality (0, ) 2 ≤ 4 r || (⋅, )|| 2 2 (0, ( )) , and 1 > 0 and 2 > 0 are positive parameters to be determined. Hence, applying (62) and ( 63) to (61) with the choice of 1 = 8 5 r 3 and 2 = 8 3 r , the following differential inequality is deduced

̇ 2 ≤ - 2 || (⋅, )|| 2 2 (0, ( )) - 2 2 r || (⋅, )|| 2 2 (0, ( )) + 16 3 r 3 (0, ) 2 + ̇ ( ) 2 2 2 ( ) 2 + 2 (0, ) 2 + 1 2 3 r || (⋅, )|| 2 2 (0, ( )) . ( 64 
)
Let 3 be the functional defined by

3 = 1 2 ( ) 2 . ( 65 
)
Taking the time derivative of (65) and applying Young's and Agmon's inequalities, we obtain

̇ 3 = - ( ) 2 - ( )( ( ( ), ) -(0, )) ≤ - 2 ( ) 2 + 4 2 r || (⋅, )|| 2 2 (0, ( )) + 4 2 || (⋅, )|| 2 2 (-,0) . ( 66 
)
Let be the functional defined by

= 1 + 2 + 3 , (67) 
where > 0 and > 0 are positive parameters to be determined. Combining (59), (64), and (66), we get

̇ ≤ - 2 1 - 8 2 r || (⋅, )|| 2 2 (0, ( )) - 2 2 r || (⋅, )|| 2 2 (0, ( )) - - 16 3 r 3 (0, ) 2 - - 4 2 || (⋅, )|| 2 2 (-,0) - 2 ( ) 2 + ̇ ( ) 2 2 2 ( ) 2 + 2 (0, ) 2 + 1 2 3 r || (⋅, )|| 2 2 (0, ( )) . ( 68 
)
Hence, by choosing the parameters as

= 16 2 r , = max 16 3 r 3 , 2 r , ( 69 
)
the inequality (68) leads to

̇ ≤ - 4 || (⋅, )|| 2 2 (0, ( )) - 2 2 r || (⋅, )|| 2 2 (0, ( )) - - 4 || (⋅, )|| 2 2 (-,0) - 2 ( ) 2 + ̇ ( ) 2 2 2 ( ) 2 + 2 (0, ) 2 + 1 2 3 r || (⋅, )|| 2 2 (0, ( )) , ≤ - 8 2 r 2 - 2 - 1 - 2 ( ) 2 + ̇ ( ) 4 2 3 + 8 1 + 1 r 2 , ( 70 
)
from which we obtain the form of

̇ ≤ - + ̇ ( ) , (71) 
where

= min 2 - , 8 2 r , , = max 8 , 1 r , 4 2 2 . ( 72 
)
The differential inequality (71) does not directly lead to the exponential decay of the norm. To deal with it, we consider the following norm (of which the equivalence with follows from Lemma 5)

= -( ) . (73)

Taking the time derivative of (73) with the help of (71), we have

̇ = ̇ -̇ ( ) -( ) ≤ - . ( 74 
)
Hence, it leads to ( ) ≤ (0) -. Substituting (73) and applying ( ( )-0 ) ≤ ( r -0 ) ≤ r derived from (48), the exponential stability of ( , , )-system is shown as

( ) ≤ (0) r -.
(75)

Stability analysis of ( , , )-system

Taking the square of (50) and applying Young's and Cauchy Schwarz inequality, we obtain

|| (⋅, )|| 2  1 (0, ( )) ≤2|| (⋅, )|| 2  1 (0, ( )) + 1 || (⋅, )|| 2 2 (-,0) , ( 76 
)
|| (⋅, )|| 2  1 (0, ( )) ≤2|| (⋅, )|| 2  1 (0, ( )) + 1 || (⋅, )|| 2 2 (-,0) , ( 77 
)
where 1 =

8 3 r 3 + 8 r . Consider the following norm Π( ) = || (⋅, )|| 2 2 (-,0) + || (⋅, )|| 2  1 (0, ( )) + ( ) 2 . ( 78 
) Then, recalling || (⋅, )|| 2 2 (-,0) ≤ 1 ≤ || (⋅, )|| 2 2 (-,0) and 2 || (⋅, )|| 2  1 (0, ( )) ≤ 2 2 ≤ 3 || (⋅, )|| 2  1 (0, ( ))
where 2 = max{ 2 r , 1} and 3 = max{1∕ 2 r , 1}, applying (77) to (78) yields the following bound:

Π ≤(1 + 1 )|| (⋅, )|| 2 2 (-,0) + 2|| (⋅, )|| 2  1 (0, ( )) + ( ) 2 , ≤(1 + 1 ) 1 + 4 2 2 + 2 3 . ( 79 
)
Moreover, recalling = 1 + 2 + 3 and applying the above inequalities, the following bound on is derived:

≤ || (⋅, )|| 2 2 (-,0) + 3 2 || (⋅, )|| 2  1 (0, ( )) + 2 ( ) 2 , ≤ + 1 3 2 || (⋅, )|| 2 2 (-,0) + 3 2 || (⋅, )|| 2  1 (0, ( )) + 2 ( ) 2 . ( 80 
)
Therefore, (79) and (80) leads to the following equivalence of the norm and Π:

( ) ≤ Π( ) ≤ ̄ ( ), (81) 
where 2 . By (75) and (81), we have

= 1 max + 1 3 2 , 3 , 2 and ̄ = max 1 1 + 1 , 4 2 ,
Π( ) ≤ ̄ Π(0) r -, (82) 
which yields the exponential stability of ( , , )-system.

Stability analysis of ( , , )-system

Taking the spatial derivative of the transformation (26) in leads to

( , ) = ( , ) -( , ). (83) 
Taking the square on both sides of (83) and applying Young's inrquality, the following bound is obtained:

|| (⋅, )|| 2 2 (-,0) ≤ 2|| (⋅, )|| 2 2 (-,0) + 2 2 || (⋅, )|| 2 2 (-,0) . ( 84 
)
By the inverse transformation (38) and Poincare's inequality, we have

|| (⋅, )|| 2 2 (-,0) ≤ 1 || (⋅, )|| 2 2 (-,0) + 2 || (⋅, )|| 2 2 (0, ( )) + 3 ( ) 2 , ( 85 
)
where 1 = 16 2 1 + 2 (1 --2 ) , 2 = 2 r
2 (1 --2 ), and 3 = 2 2 (1 --2 ). Also, by rewriting (83) as ( , ) = ( , ) + ( , ), the following inequality is derived:

|| (⋅, )|| 2  1 (-,0) ≤ 2|| (⋅, )|| 2 2 (-,0) + (2 2 + 1)|| (⋅, )|| 2 2 (-,0) . ( 86 
)
Combining ( 85) with (86), the following inequality holds

|| (⋅, )|| 2  1 (-,0) ≤(2 + (2 2 + 1) 1 )|| (⋅, )|| 2 2 (-,0) + (2 2 + 1)( 2 || (⋅, )|| 2 2 (0, ( )) + 3 ( ) 2 ). (87) 
Moreover, as shown in 13 , there exist positive constants > 0 for = 1, 2, 3, 4 such that

|| (⋅, )|| 2  1 (0, ( )) ≤ 1 || (⋅, )|| 2  1 (0, ( )) + 2 ( ) 2 , ( 88 
) || (⋅, )|| 2  1 (0, ( )) ≤ 3 || (⋅, )|| 2  1 (0, ( )) + 4 ( ) 2 . ( 89 
)
Then, adding (84) to ( 88) and ( 87) to (89), we have

|| (⋅, )|| 2 2 (-,0) + || (⋅, )|| 2  1 (0, ( )) + ( ) 2 ≤2|| (⋅, )|| 2 2 (-,0) + 2 2 || (⋅, )|| 2 2 (-,0) + 1 || (⋅, )|| 2  1 (0, ( )) + ( 2 + 1) ( ) 2 , ( 90 
)
|| (⋅, )|| 2  1 (-,0) + || (⋅, )|| 2  1 (0, ( )) + ( ) 2 ≤ 1 || (⋅, )|| 2 2 (-,0) + 2 || (⋅, )|| 2  1 (0, ( )) + 3 ( ) 2 , ( 91 
)
where 1 = 2 + (2 2 + 1) 1 , 2 = (2 2 + 1) 2 + 3 , and 3 = (2 2 + 1) 3 + 4 + 1. Define the following norm

Ξ( ) =|| (⋅, )|| 2  1 (-,0) + || (⋅, )|| 2  1 (0, ( )) + ( ) 2 . ( 92 
)
Then, (90) and (91) leads to

Ξ( ) ≤ Π( ) ≤ ̄ Ξ( ), (93) 
where

̄ = max 2, 2 2 , 1 , 2 + 1 , = 1 max{ 1 , 2 , 3}
. Finally, applying (93) to (82) we arrive at

Ξ( ) ≤ ̄ ̄ Ξ(0) r -. ( 94 
)
Noting the definition (18) ( ( , ) = c ( --)∕ ) and using integration by substitution, we get || (⋅, )|| 2  1 (-,0) = || c (⋅)||  1 ( -, ) . Applying this relation to (94) completes the proof of Theorem 1.

RELATION BETWEEN THE DESIGNED CONTROL LAW AND A STATE PREDICTION

As developed in some literature for ODE systems, the delay compensated control via the method of backstepping is known to be equivalent to the predictor-based feedback where the control law is derived to stabilize the future state called "predictor state", see Section 2 in 21 for instance. Hence, one might have a question whether our delay compensated control is also equivalent to the predictor-based feedback. This is not a trivial question in the case of Stefan problem due to the complicated structure of ODE dynamics whose state is the domain of the PDE.

The nominal control design for delay-free Stefan problem developed in 13 is given by

̄ c ( ) = - ⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( ( , ) -m ) + ( ( ) -r ) ⎞ ⎟ ⎟ ⎠ , ( 95 
)
where we defined the notation ̄ c ( ) to distinguish with the delay compensated control law (15). Thus, our interest lies in proving c ( ) ≡ ̄ c ( + ) because ̄ c ( + ) is the prediction of the nominal control. We start from the expression of ̄ c ( + ) which can be described as

̄ c ( + ) = - ⎛ ⎜ ⎜ ⎝ ( + ) ∫ 0 ( ( , + ) -m ) + ( ( + ) -r ) ⎞ ⎟ ⎟ ⎠ . ( 96 
)
performance of the controller under the small delay mismatch is important. In this section, > 0 is denoted as the identified time delay and Δ is denoted as the delay mismatch (can be either positive or negative), which yields + Δ as the exact time delay from the controller to the plant. Thus, the system we focus on is described by

( , ) = ( , ), ∈ (0, ( )), (103) 
- (0, ) = ( -( + Δ )), (104) 
( ( ), ) = , ( 105 
) ̇ ( ) = - ( ( ), ), (106) 
with the control law given in (15) which utilizes the identified delay . Since the control law is not changed, the same backstepping transformation in ( 25) and ( 26) can be applied, but the target ( , , )-system needs to be redescribed due to the modification of (104). The theorem for the robustness to delay mismatch is provided under the restriction on the control gain, as stated in the following.

Theorem 2. Under Assumptions 1-3, there exists a positive constant ̄ > 0 such that ∀ ∈ (0, ̄ ) the closed-loop system consisting of the plant ( 103)-( 106) and the control law ( 15) maintains the model validity ( 6) and is exponentially stable in the sense of the norm ( 16).

An important characteristic to note in Theorem 2 is that the existence of ̄ is ensured for any given Δ as long as +Δ > 0. An analogous description with respect to the small delay mismatch is given in the following corollary.

Corollary 1. Under Assumptions 1-3, for any given > 0 there exists a positive constant ̄ > 0 such that for all Δ ∈ ℝ satisfying |Δ | < ̄ the closed-loop system (103)-( 106), ( 15) satisfies the same model validity and stability property as Theorem 2.

Remark 3. An explicit estimate of ̄ can be represented by a monotonically decreasing function ̄ ( ) which satisfies lim →+0 ̄ ( ) = +∞ and lim →+∞ ̄ ( ) = +0, at least, according to the Lyapunov proof in the sequel. Moreover, such properties of the monotonic functions yield the equivalence of the inequalities 0 

< |Δ | < ̄ ( ) and 0 < < ̄ (|Δ |) ∶= ̄ -1 (|Δ |) where ̄ -1 (|Δ |) is the inverse function of ̄ ( ) such that ̄ -1 ( ̄ ( )) = ,

Reference error system

Introduce the same definition of the reference errors as in ( 17) and ( 18), namely, ( , ) = ( , ) -, ( ) = ( )r . For the delayed input state, we modify to the following definition

( , ) = ( --( + Δ ))∕ . ( 107 
)
Then, the system (103)-( 106) is rewritten as a reference error ( , , )-system as

( , ) = -( , ), -( + Δ ) < < max{0, -Δ } (108) (-( + Δ ), ) = c ( )∕ , ( 109 
) (0, ) = -(0, ), (110) 
( , ) = ( , ), 0 < < ( ) (111) ( ( ), ) =0, (112) ̇ ( ) = - ( ( ), ). (113) 

Target system

We apply the same transformations as in ( 25)- (26). Since the boundary condition at the controller's position is replaced by (109), evaluating (26) at = -( + Δ ) yields

(-( + Δ ), ) = c ( ) + 0 ∫ -( +Δ ) ( , ) + ( ) ∫ 0 ( , ) + ( ). (114) 
Rewriting the control law (15) using the delayed input state (107), we obtain

( ) = - ⎛ ⎜ ⎜ ⎝ -Δ ∫ -( +Δ ) ( , ) + 1 ( ) ∫ 0 ( , ) + 1 ( ) ⎞ ⎟ ⎟ ⎠ . ( 115 
)
By ( 114) and ( 115), it holds

(-( + Δ ), ) = 0 ∫ -Δ ( , ) . ( 116 
)
Let ( ) be defined by

( ) ∶= 0 ∫ -Δ ( , ) . ( 117 
)
To describe the closed-form of the target system, the formulation of (117) needs to be rewritten with respect to the variables ( , , ). Applying the inverse transformation (38) to (117) and calculating the integrations, we deduce (see Appendix A for the derivation)

( ) = - 0 ∫ -Δ -( +Δ ) ( , ) -(1 --Δ ) ⎛ ⎜ ⎜ ⎝ ( ) ∫ 0 ( ) ( , ) + ( ( )) ( ) ⎞ ⎟ ⎟ ⎠ . ( 118 
)
Then, we obtain the target ( , , )-system as

( , ) = -( , ), -( + Δ ) < < max{0, -Δ } (119) 
(-( + Δ ), ) = ( ), (120) 
(0, ) = -(0, ), (121) 
( , ) = ( , ) + ̇ ( ) ( ), 0 < < ( ) (122) 
( ( ), ) =0, (123) 
̇ ( ) = - ( ) - ( ( ), ). (124) 

Physical constraints

The conditions for the model validity (6) need to be satisfied by proving the positivity of the control law as explained in Section 5. Taking the time derivative of the controller (15) along the solution of ( 103)-( 106), we obtain

̇ ( ) = -( ) + ( -) -( -( + Δ )) . ( 125 
)
The solution to (125) is hard to solve explicitly, however, it is possible to investigate the positivity of ( ) a priori since the differential equation (125) has the closed form in . To ensure it, the following lemma is deuced.

Lemma 6. For a given Δ ∈ , there exists * > 0 such that ∀ ∈ (0, * ) the solution to the delay differential equation (125) satisfies the positivity, i.e., ( ) > 0 for all ≥ 0.

Owing to Lemma 6, with sufficiently small control gain > 0, the properties ̇ ( ) > 0 and 0 < ( ) < r are satisfied ∀ > 0 as explained in Lemma 5, which are utilized for the stability analysis. The proof of Lemma 6 is given in Appendix B.

Since ( , )-subsystem (128)-( 131) is the same formulation as in the exact prediction case, using the same

norm 3 = 1 2 || (⋅, )|| 2  1 (0, ( )) = 1 2 ∫ ( ) 0 ( ( , ) 2 2 r
+ ( , ) 2 ) and 4 = 1 2 ( ) 2 , the time derivative of them yields the same norm estimate as in the exact prediction case, which are

̇ 3 ≤ - 2 || (⋅, )|| 2 2 (0, ( )) - 2 2 r || (⋅, )|| 2 2 (0, ( )) + 16 3 r 3 (0, ) 2 + ̇ ( ) 2 2 2 ( ) 2 + 2 (0, ) 2 + 1 2 3 r || (⋅, )|| 2 2 (0, ( )) , (140) 
̇ 4 ≤ - 2 ( ) 2 + 4 2 r || (⋅, )|| 2 2 (0, ( )) + 2 (0, ) 2 . ( 141 
)
Let be the Lyapunov function defined by

= 1 + 2 + 3 + 4 , (142) 
where > 0, > 0, > 0 are positive parameters to be determined. Applying ( 139)-( 141) to the time derivative of (142) with choosing

= 8 r , = 2 2 , = 2 8 4 r 3 2 , ( 143 
)
we get

̇ ≤ - 1 2 -8 ( +Δ ) (1 --Δ ) 2 (1 + 2 ) (0, ) 2 - 2 (0, ) 2 -( -( +Δ ) 1 --2 Δ (1 + 2 )) 1 - -4 ( +Δ ) 2 |Δ | 2 - 2 4 2 1 -16 ( +Δ ) (1 --Δ ) 2 (1 + 2 ) ( ) 2 -2 r || (⋅, )|| 2 2 (0, ( )) - 2 r || (⋅, )|| 2 2 (0, ( )) - 1 2 3 r - 8 r 2 ( +Δ ) 2 (1 - 
-Δ ) 2 (1 + 2 ) || (⋅, )|| 2 2 (0, ( )) + ̇ ( ) 2 2 2 ( ) 2 + 8 || (⋅, )|| 2 2 (-,0) + r 2 || (⋅, )|| 2 2 (0, ( )) , ( 144 
)
where we substitute the definition of ̄ for = 1, 2, 3, 4 given in (135). Applying inequalities ≥ 1 --for all ≥ 0 to (144) with setting = ( + Δ ) -1 , one can derive that for all Δ ∈ (0, ̄ ( )) where

̄ ( ) = min ⎧ ⎪ ⎨ ⎪ ⎩ min 1, 2 r √ 32 (1 + 2 ) , 1 2 
⎛ ⎜ ⎜ ⎜ ⎝ √ √ √ √ 2 + min 1, 4 1+ 2 2 2 - ⎞ ⎟ ⎟ ⎟ ⎠ ⎫ ⎪ ⎬ ⎪ ⎭ , ( 145 
)
there exist positive constants > 0 and > 0 such that ̇ ≤ -+ ̇ ( ) holds. Since ̄ ( ) defined by ( 145) is a monotonically decreasing function in satisfying lim →+0 ̄ ( ) = +∞ and lim →+∞ ̄ ( ) = +0, as addressed in Remark 3, the inequality

0 < Δ < ̄ ( ) is equivalent to 0 < < ̄ (Δ ) ∶= ̄ -1 (Δ ).
Using the same technique as deriving from (71) to (94) in exact compensation case, we conclude Theorem 2 for underestimated delay mismatch.

We additionally consider

5 = -Δ ∫ 0 - ( , ) 2 , ( 148 
) 6 = -Δ ∫ 0 - ( , ) 2 . (149) Then, we have Δ || (⋅, )|| 2 2 (0,-Δ ) ≤ 5 ≤ || (⋅, )|| 2 2 (0,-Δ ) and Δ || (⋅, )|| 2 2 (0,-Δ ) ≤ 6 ≤ || (⋅, )|| 2 2 (0,-Δ )
. The time derivatives of (148) and (149) are given by

̇ 5 = -Δ (-Δ , ) 2 + (0, ) 2 - 5 , ( 150 
) ̇ 6 = -Δ (-Δ , ) 2 + (0, ) 2 - 6 . (151) 
Then, by redefining the Lyapunov function as

= 1 + 2 + 3 + 4 + 1 4 5 + 4 6 , ( 152 
)
with the same choices of the parameters as (143), the time derivative of (152) satisfies the following inequality

̇ ≤ - 1 4 -8 ( +Δ ) (1 --Δ ) 2 (1 + 2 ) (0, ) 2 - 4 (0, ) 2 - 1 - 2 - 2 4 2 1 -16 ( +Δ ) (1 --Δ ) 2 (1 + 2 ) ( ) 2 - 4 - -2 Δ -1 (1 + 2 ) 5 - 4 -4 2 |Δ | 6 -2 r || (⋅, )|| 2 2 (0, ( )) - 2 r || (⋅, )|| 2 2 (0, ( )) - 1 2 3 r - 8 r 2 ( +Δ ) 2 (1 - 
-Δ ) 2 (1 + 2 ) || (⋅, )|| 2 2 (0, ( )) + ̇ ( ) 2 2 2 ( ) 2 + 8 || || 2 2 (-,0) + r 2 || || 2 2 (0, ( ))
.

(

Setting = -1 and noting Δ < 0, one can derive that for all Δ ∈ (-( ), 0) where

( ) = min ⎧ ⎪ ⎨ ⎪ ⎩ 1 ln ⎛ ⎜ ⎜ ⎜ ⎝ min 1, 2 r 8 √ (1 + 2 ) + 1 ⎞ ⎟ ⎟ ⎟ ⎠ , 1 2 ln 1 8 (1 + 2 ) + 1 , 1 32 2 ⎫ ⎪ ⎬ ⎪ ⎭ (154)
there exist positive constants > 0 and > 0 such that ̇ ≤ -+ ̇ ( ) holds. Applying the same technique with the derivation for underestimated delay mismatch below (145), we conclude Theorem 2 for over-estimated delay mismatch.

Robustness to model mismatch from uncertain advection and reaction

Our main focus in Section 8 is on the delay-robustness, however, one might wonder the robustness to model's mismatch caused by uncertain advection and reaction. Such a model is developed in 18 for thermodynamic model of screw extrusion-based polymer 3D-printing, where the advection is caused by the rotating screw and the reaction is given by Newton's law of the convective heat flux, and the delay-free control is designed through backstepping method with a more complex gain kernel. Motivated by this physical process, we consider

( , ) = ( , ) + Δ ( , ) -Δ ( ( , ) -m ), ∈ (0, ( )), (155) 
- (0, ) = ( -), (156) 
( ( ), ) = , (157)

̇ ( ) = - ( ( ), ), (158) 
where Δ and Δ are uncertain advection speed and the reaction coefficient, respectively. We study the robustness of the proposed control (15) with respect to the uncertain parameters (Δ , Δ ).

Theorem 3. Under Assumptions 1-3, and assuming that Δ ≥ 0 and Δ ≥ 0, there exists a positive constant > 0 such that if Δ 2 + Δ 2 < then the closed-loop system consisting of the plant (155)-( 158) and the control law (15) maintains the model validity (6) and is exponentially stable in the sense of the norm (16).

Proof. We provide the proof succinctly by showing (i) positivity of the control, (ii) perturbed target system, (iii) and stability analysis. Note that both Lemmas 1 and 2 are still valid owing to the maximum principle, referring to Section 7.2 in 9 . The time derivative of the control law yields

̇ c ( ) = -c ( ) + Δ ( (0, ) -m ) + Δ ( ) ∫ 0 ( ( , ) -m ) , ∀ ≥ 0. (159) 
We prove c ( ) > 0 for all ≥ 0 by contradiction approach similarly to 18 . By Assumption 3, c (0) > 0 is ensured. Assume that there exists a finite time ̄ > 0 such that c ( ) > 0 for all ∈ [0, ̄ ) and c ( ̄ ) = 0. Then, applying Lemma 2, it holds ( , ) ≥ 0 for all ∈ [0, ( )] and for all ∈ [0, ̄ ). Applying this to (159) leads to

̇ c ( ) > -c ( ), ∀ ∈ [0, ̄ ). (160) 
Thus, applying comparison principle to the differential inequality (160) yields c ( ̄ ) ≥ c (0) -̄ > 0, which contradicts with the assumption c ( ̄ ) = 0. Therefore, by contradiction, we can ensure that c ( ) > 0 for all ≥ 0. Next, we apply the same transformations ( 25)-( 26) to the system (103)-( 106) with uncertain advection and reaction, and also apply the change of variable (50), which yields the following target system: 

(-, ) =0, (161) 
( , ) = -( , ) + , -< < 0 (162) (0, ) =0, (163) 
( , ) = ( , ) + Δ ( , ) -Δ ( , ) -( -( )) (0, ) + ̇ ( ) ( ) -(0, ) + ( ), 0 < < ( ) (164) ( ( ), ) =0, (165) 
where and are additional terms caused by the uncertain parameters (Δ , Δ ). Finally we consider the Lyapunov function defined by (67). Applying the same procedure from (57) to (68), and taking the bound of || ||, one can obtain the following inequality:

̇ ≤ - 2 1 -(Δ 2 + Δ 2 )∕ + ̇ ( ) , ( 167 
)
where > 0 is a positive constant that is not dependent on the parameters (Δ , Δ ), which completes the proof of Theorem 3.

Under known parameters of the advection and reaction, the delay-compensated control is an interesting design problem. This is possibly achievable by combining the proposed procedure in this paper with the design procedure in 18 which is involved with a more complex gain kernel in the backstepping transformation. We have not derived it in this paper, and will consider in a future work.

NUMERICAL SIMULATION

In this section, we provide the simulation results of the proposed delay compensated controller under the accurate value on the delay and the delay mismatch.

Exact Compensation

The performance of the proposed delay compensated controller is investigated by comparing to the performance of the nominal controller (95). As in [START_REF] Maidi | Boundary geometric control of a linear stefan problem[END_REF] and 13 , the simulation is performed considering a strip of zinc whose physical properties are given in Table 1 using the boundary immobilization method with a finite difference discretization studied in [START_REF] Kutluay | The numerical solution of one-phase classical Stefan problem[END_REF] . The time delay, the past heat (14). This setup renders a challenging problem due to a small initial reference error r -0 > 0, a large time delay > 0, and a large past heat input c ( ) ≥ 0 for ∈ [-, 0], since the model is an irreversible process in which an overshoot beyond the setpoint is prohibited to achieve the control objective.

Fig. 2 shows the simulation results of the closed-loop system of the plant (1)-( 5) with the proposed delay compensated control (15) (red) and the uncompensated control law (95) (blue). The closed-loop responses of the moving interface ( ), the boundary heat control c ( ), and the boundary temperature (0, ) are depicted in Fig. 2 (a)-(c), respectively. As stated in their the proposed delay compensated controller ensures all the conditions proved in Lemma 3-5 with the convergence of the interface position to the setpoint, while the uncompensated control does not provide such a behavior. Hence, the numerical result is consistent with the theoretical result, and the proposed controller achieves better performances than the uncompensated controller under the actuator delay.

Robustness to Delay Mismatch

To evaluate the delay robustness, the performance of the proposed controller is investigated under the delay mismatch. First, the simulation is conducted with the underestimated delay mismatch where the time delay from the actuator to the plant is 60 [sec] while the compensating time delay in the controller is = 30 [sec], i.e., the delay mismatch is Δ = 30 [sec]. The closed-loop responses are depicted in Fig. 3 with the choices of the control gain = 0.01 [1/sec] (red) and = 0.1 [1/sec] (blue). Fig. 3 (a) illustrates the convergence of the interface position to the setpoint, however, the monotonicity of the interface dynamics is violated with larger gain (red). From Fig. 3 (b) and (c) we can observe that the positivity of the control input and the temperature condition for the liquid phase are satisfied only with the lower gain (blue) for all time, while the simulation with the larger gain (red) violates these conditions too. Hence, with the underestimated delay mismatch, the robustness is well illustrated for sufficiently small gain > 0, which is consistent with Theorem 2.

Next, we have studied the simulation with the over-estimated delay mismatch with the same value of the time delay from the actuator to the plant 60 [sec] but the compensating time delay in the controller is = 90 [sec], i.e., the delay mismatch is 4 with the same choices of the control gain as in simulation of underestimated delay mismatch. While the magnitude of the delay mismatch is same as the one conducted in the underestimated delay mismatch, we can observe from Fig. 4 (b) and (c) that the positivity of the control input and the temperature condition for the model validity are satisfied for all time with both smaller control gain (red) and larger control gain (blue). Although Theorem 2 guarantees these properties only for sufficiently small control gain > 0, the numerical results illustrate that the restriction on the control gain to satisfy these properties is not equivalent between the underestimated and over-estimated delay mismatch. Indeed, as far as we have investigated the numerical results with the over-estimated delay mismatch using other values of the control gain and the delay perturbation Δ , the positivity of the control input is satisfied for every cases and the convergence of the interface position to the setpoint is depicted without overshooting. These observations from the numerical simulation leads us to conjecture that the delay-compensated controller might exhibit greater sensitivity to delay mismatch when it is underestimated rather than over-estimated in terms of the model validation. Hence, once the user is faced with some range of the uncertainty in the actuator delay, it is better to choose small control gain > 0, and additionally, it might be better to choose larger value of the compensating delay in the controller to be conservative.

CONCLUSIONS

This paper presented a boundary control design for the one-phase Stefan problem under an actuator delay to achieve exponential stability in the  1 -norm using full state measurements. Combining our previous contribution 13 with the contribution in [START_REF] Krstic | Control of an unstable reaction diffusion PDE with long input delay[END_REF] , two nonlinear backstepping transformations for moving boundary problems are utilized and the associated backstepping controller is proved to remain positive with a proper choice of the setpoint due to energy conservation. Then, some physical constraints This sequence is increasing as (B25) leads to +1 ≥ 1 1-ln (1-) = . If it were bounded, then the sequence would converge to a point ⋆ such that ⋆ = 1 1 -ln 1 + (1-) ⋆ ⇔ (1-) ⋆ = 1 + (1-) ⋆ , (B26) from which we see that such ⋆ does not exist. Therefore, the sequence ( ) is unbounded. Consequently, there exists ∈ ℕ such that ≤ < +1 . Moreover, we define the sequence ̃ 0 = 1 + 0 , (B27)

̃ +1 = 1 - 1 ln (1-̃ ) -0 , ( B28 
)
where 0 ∈ (0, 1). By definition, one has ̃ +1 > ̃ > 1 and the following relation

(1-̃ ) = (1-̃ +1 ) + 0 . ( B29 
)
Using these sequences, we prove the following statement. (#) ∀ ∈ ℕ it holds ( ) ≥ -̃ for ∈ [0, ]. The statement (#) is shown for = 0 through (i) and (ii). We use induction approach, namely, assume the statement (#) is true for , and we prove the statement for + 1. It is clear that the statement holds for ∈ [0, ] by the assumption, and therefore, we consider ∈ [ , +1 ]. Then, using the variation of constant formula to (B10) and Lemma 7, it holds

( ) = -( -) ( ) + ∫ -( -) Δ ̇ ( ( )) , ≥ -(1-̃ ) -3|Δ| ∫ -( -) -( -2 )
, ≥ -(1-̃ ) -3|Δ| 2 1 -( ---+(1-) ).

(B30)

Then, by the use of (B30), a condition for ( ) ≥ -+1 , ∈ [0, +1 ] is 
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FIGURE 1

 1 FIGURE 1 Schematic of 1D Stefan problem with actuator delay.

  and thus the estimate of ̄ is also a monotonically decreasing function in |Δ | which satisfies lim |Δ |→+0 ̄ (|Δ |) = +∞ and lim |Δ |→+∞ ̄ (|Δ |) = +0. The proof of Theorem 2 is established through the remaining of this section.

( a )FIGURE 2

 a2 FIGURE 2The closed-loop response of (1)-(5) with the delay compensated control law (15) (red) and the uncompensated control law (95) (blue). The proposed delay compensated control is success with satisfying the required conditions (41), (46)-(48). The uncompensated control fails through the violation of the required conditions: the heat input becomes negative after = 4[min], and then the boundary temperature gets below the melting temperature after = 7[min], which physically causes the solidification from = 0 to = ( ) and hence violates the condition for the model maintaining the phase of "liquid-solid", and finally the monotonicity of the interface is violated around = 8[min].

  Monotonicity of the interface dynamics is satisfied with smaller gain, but is violated with larger gain. Positivity of the heat input is satisfied with smaller gain, but is violated with larger gain. The boundary temperature keeps above the melting temperature with smaller gain, while it reaches below the melting temperature with larger gain, which violates the temperature condition for the liquid phase.

FIGURE 3

 3 FIGURE 3 The closed-loop response under the "underestimated" delay mismatch with = 30 [sec] and Δ = 30 [sec]. The simulations are conducted with the control gain = 0.01 [/sec] (red) and = 0.1 [/sec] (blue). The delay-robustness is observed with smaller gain in terms of the model validity, namely, under the large gain (blue), the required conditions (41), (46)-(48) are violated as observed in the uncompensated control in Fig. 2 .

  The interface position converges to the setpoint without overshooting. The heat input maintains positive.

  The boundary temperature is greater than melting temperature, which satisfies the temperature condition for the liquid phase.

FIGURE 4

 4 FIGURE 4 The closed-loop response under the "overestimated" delay mismatch with = 90 [sec] and Δ = -30 [sec]. The simulations are conducted with the control gain = 0.01 [/sec] (red) and = 0.1 [/sec] (blue). In this case, all the constraints for the model validity are satisfied with both smaller gain and larger
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TABLE 1

 1 Physical properties of zinc

				Description	Symbol Value
				Density	6570 kg ⋅ m -3
				Latent heat of fusion	Δ *	111,961 J ⋅ kg -1
				Heat Capacity	389.5687 J ⋅ kg -1 ⋅ K -1
				Thermal conductivity	116 w ⋅ m -1
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Proof. Applying Lemma 3 with Assumption 2 to Lemma 2, (46) is shown directly.

Lemma 5. The following properties of the moving interface hold:

Proof. Applying Lemma 4 to Lemma 1, (47) is derived. Then, the condition (47) leads to 0 < ( ). By the control law (15), the following relation holds under the closed-loop system:

Finally, applying (41) and (46) to the equation above, the inequality ( ) < r is derived, which leads to (48).

STABILITY ANALYSIS

In this section, we derive the conclusion of Theorem 1 by applying Lyapunov analysis and showing the norm equivalence with the help of ( 47) and (48).

Change of variable

Introduce a change of variable ( , ) = ( , ) + ( -( )) (0, ).

Using (50), the target ( , , )-system (30)-( 35) is described by ( , , )-system as

( , ) = -( , ), -< < 0 (52)

( , ) = ( , ) -( -( )) (0, ) + ̇ ( ) ( ) -(0, ) , 0 < < ( )

( ( ), ) =0, (55) ̇ ( ) = -( ) -( ( ( ), ) -(0, )).

(56)

Stability analysis of ( , , )-system

Firstly, we prove the exponential stability of the ( , , )-system. Let 1 be the functional defined by

where > 0 is a positive parameter. (57) satisfies

Integrating ODE dynamics ̇ ( ) = -( ( ), ) given in (5) from to + yields

Next, integrating PDE dynamics = given in (1) in time from to + leads to ( , + ) = ( , )+ ∫ + ( , ) . Furthermore, integrating the both sides in space from 0 to ( + ), we obtain

Therefore, substituting (97) and ( 98) into (96), we get

Consequently, it remains to consider the following term

where we switched the order of the integrations in time and space from the first line to the second line with defining the inverse function -1 ( ). The existence and uniqueness of -1 ( ) is guaranteed due to the continuous and monotonically increasing property of ( ) provided ( ) > 0. Thus, boundary condition ( ( ), ) = , ∀ ≥ 0 given in (3) implies ( , -1 ( )) = from which (100) is given by

Substituting (101) into (99), we arrive at

Therefore, we conclude that the delay compensated control (15) is indeed the prediction of the nominal control law (95).

ROBUSTNESS TO DELAY MISMATCH

The results established up to the last section are based on the control design with utilizing the exact value of the actuator delay. However, in practice, there is an error between the exact time delays and the identified delays. Hence, guaranteeing the SHUMON KOGA ET AL

Stability analysis

Introduce the same change of variable as (50), i.e., ( , ) = ( , )+( -( )) (0, ). Then, the resulting target system becomes

Inequalities of ( ) 2 and ′ ( ) 2 are derived in Appendix C, and they are utilized in stability analysis. The form of the inequalities are slightly changed depending on Δ > 0 or Δ < 0, due to the domain -( + Δ ) < < max{0, -Δ } for -subsystem. Thus, the ( , , )-system's stability needs to be analyzed by separating the cases of Δ > 0 (underestimated delay mismatch) and Δ < 0 (over-estimated delay mismatch), as presented in [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF] to prove delay-robustness for linear ODE systems.

Underestimated delay mismatch:

Taking the time derivative of (132), we have

Applying the bound given in Appendix C.1 with the help of Δ > 0 and

where

Next, we consider

. Taking the time derivative of (136) together with (126)-(127), we have

Applying the bound given in Appendix C.2 to (133) yields

Hence, we have

Over-estimated delay mismatch: Δ < 0

We consider the same definitions of 1 , 2 , 3 , 4 as those in the case Δ > 0. However, in the case of Δ < 0, the bounds given in Appendix C yields

Hence, the bounds of (134) and (138) are replaced by

required for the validity of the model are verified and the proof of stability. The equivalence to the exact prediction of the nominal control law is shown, and the robustness to delay mismatch is analyzed. An analogous state estimation problem is not a trivial extension, especially when the sensor delay appears in the measurement of the interface position. This problem is motivated by the estimation of sea ice melting 15 , where the thickness of the sea ice can be measured by satellites which causes a time delay to acquire the data through some communication. In such a case, the interface position at current time needs to be estimated, and the estimated interface position should be incorporated in the domain of the estimated temperature profile, which leads to a completely different structure of the system from the plant for control problem we have studied. This extension is considered as a future work.
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APPENDIX A CALCULATION OF DOUBLE INTEGRALS

We show (118) from (117). Substituting the inverse transformation (38), ( ( ,

Since ( ) = (see (40)), the followings are obtained:

Substituting (A2) and (A3) into (A1), we arrive at

which is same as (118). The time derivative of (A4) is given with the help of the target system, as

Since ( ) = 1 cos √ (see ( 40)), we have

B PROOF OF LEMMA 6

By rescaling the time by defining ̄ = , ( ̄ ) = ( ), ̄ = , Δ = Δ , and by dropping the bar on the variables to reduce the notational burdens, the delay differential equation ( 125) is rewritten as

Hence, to derive Lemma 6, it suffices to show that there exists Δ * * > 0 such that the solution to (B7) with a positive initial condition is positive. We deduce it by proving the following two lemmas. Let us define

for some ∈ (0, 1).

Proof. The proof of this lemma follows from Halanay inequality. By Mean-Value theorem, there exists ( ) ∈ [ -2 , -1 ] such that Δ ̇ ( ( )) = ( -) -( --Δ) holds, ∀ ≥ 0. Hence, by the use of such ( ), (B7) is given by

Moreover, applying triangle inequality to (B7), we get

Applying (B11) to (B10) yields

Applying Halanay inequality to (B12) leads to (B9) with Δ * = 1 3 , where is a solution to

Since the left hand side of (B13) is a monotonically increasing function in with having negative value at = 0 and positive value at = 1, the solution to (B13) satisfies ∈ (0, 1), which completes the proof of Lemma 7.

Hereafter we assume |Δ| ≤ Δ * = 1 3 . Lemma 8. There exists Δ ⋆⋆ > 0 such that, if |Δ| < Δ ⋆⋆ and if 0 is positive-valued, the solution of (B7) satisfies

Proof. Assume that the positive lower and upper bounds of 1 and 2 such that ≤ 1 ≤ 2 ≤ ̄ are known. This is verified supposing that Δ is small enough.

(i) Prove (B14) for ∈ [0, 1 ]: Applying the variation of constant formula to (B10), it holds

, 0] for ∈ [0, ] and ∈ [0, 1 ], (B15) leads to

Therefore, choosing = -> 0 in which > 0 is small enough, and provided that

(ii) Prove (B14) for ∈ [ 1 , 2 ]: We evaluate Δ ̇ ( ( )) in (B10) by separating the cases ( ) ≤ 0 and ( ) > 0 as follows 

in which we used ( 1 ) ≥ -1 by (B18). Consequently, defining ̃ 0 = 1 + 0 for some 0 > 0, and provided that

one concludes from (B21) that

(iii) Prove (B14) for ≥ 2 : Finally, we consider ≥ 2 . We define the sequence

For both cases of Δ > 0 and Δ < 0, by applying Cauchy-Schwarz inequality, we deduce

where ̄ 1 = sign(Δ ) 2

1 --2 Δ . Also, applying Young's, Cauchy-Schwarz inequality,