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An efficient parallel global optimization strategy
based on Kriging properties suitable for material

parameters identification

Material parameters identification by inverse analysis using finite element compu-
tations leads to the resolution of complex and time-consuming optimization problems.
One way to deal with these complex problems is to use meta-models to limit the num-
ber of objective function computations. In this paper, the Efficient Global Optimization
(EGO) algorithm is used. The EGO algorithm is applied to specific objective func-
tions, which are representative of material parameters identification issues. Isotropic
and anisotropic correlation functions are tested. For anisotropic correlation functions,
it leads to a significant reduction of the computation time. Besides, they appear to be
a good way to deal with the weak sensitivity of the parameters. In order to decrease
the computation time, a parallel strategy is defined. It relies on a virtual enrichment
of the meta-model, in order to compute q new objective functions in a parallel envi-
ronment. Different methods of choosing the qnew objective functions are presented
and compared. Speed-up tests show that Kriging Believer (KB) and minimum Con-
stant Liar (CLmin) enrichments are suitable methods for this parallel EGO (EGO-p)
algorithm. However, it must be noted that the most interesting speed-ups are observed
for a small number of objective functions computed in parallel. Finally, the algorithm
is successfully tested on a real parameters identification problem.

1. Introduction

Numerical modeling is now well established in the material forming industry
to obtain fast and accurate solutions for different kinds of manufacturing pro-
cesses. However, the accuracy of numerical simulations strongly depends on
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the accuracy of the material behavior law and its parameters. Due to the com-
plexity of stress states encountered in materials forming, the use of normalized
tensile or torsion tests must often be completed by more complex tests exhibit-
ing non-homogeneous stress/strain states. The use of inverse analysis is therefore
mandatory for the parameters identification stage both for material behavior and
damage models.

The identification of non-linear material behavior parameters using inverse
analysis leads to complex optimization problems [1–3]. One of the most common
techniques for this kind of identification is the minimization of the error between
observables coming from experimental tests and numerical simulations. In addi-
tion, the mix of global (load-stroke curves) and local (digital image correlation
measurements) data is often recommended to improve the accuracy of the iden-
tification methodology. This approach therefore leads to high computation costs
since the identification of material parameters requires a large number of objective
function evaluations. Each evaluation often requires a non-linear finite element
computation. This is particularly true, when dealing with large plastic strains, duc-
tile damage and fracture. It is thus necessary to work with efficient algorithms,
adapted to these kinds of costly problems.

Many approaches have already been presented to deal with parameters iden-
tification based on finite element computation. One way of classifying these ap-
proaches is to distinguish 2 groups: local optimization methods and global opti-
mization ones.

Local optimization methods do not guarantee that the global optimum is
found. Therefore, the optimum obtained with these methods strongly depends
on the initialization step of the algorithm. The most common local methods are
Newton-based methods like Broyden–Fletcher–Goldfarb–Shanno [4] (BFGS) or
quasi-Newton methods [4]. These methods require the computation of the gradient
of the cost function. Usually, in the case of parameters identification using finite
element computations, this gradient is numerically computed using the perturba-
tion method. The computation of the gradient in this framework has two main
drawbacks: the high computation time (computing the gradient in d dimensions
requires d+1 finite element computations), and the need for a continuous cost func-
tion, which is sometimes not the case for non-linear finite element computations.
Good alternatives to gradient based methods are simplex-based methods such as
the Nelder-Mead algorithm [5] that do not require any gradient computation. These
algorithms still suffer, though, from their dependence to initialization data (local
optimization methods).

The other group of algorithms, the global optimization methods, are able to
explore multiple optima. Therefore, they do not suffer from being stuck in local
optima like the previous methods. Multiple algorithms are available, among which
one can note genetic algorithms, evolutionary strategies [6]. These methods are
well established, but their main drawback regarding the addressed problem is the
large number of cost function evaluations to obtain the final optimum.
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To overcome these issues (computation time and global optimum research),
numerous hybrid methods are reported in the literature. These methods are called
hybrid because of the combined use of response surface methods and optimiza-
tion algorithms. Standers et al. [7] used the Successive Response Surface Method
(SRSM) coupled with an explicit finite element solver to identify non-linear mate-
rial parameters while Ageno et al. [8] used a gradient method based on Sequential
Quadratic Programming (SQP) and Trust Region algorithm (TR) to identify elastic-
plastic parameters using free-standing foils test. Abendroth et al. [9] proposed to
build a neural network on the basis of several finite element computations of a
small punching test and then used this neural network as an approximation of the
objective function that is to be minimized by the SQP method. Abendroth’s work
has identified ductile damage parameters with a limited number of finite element
computations. The work of Franchi et al. [10] used a multi Island genetic opti-
mization algorithm coupled to a Radial Basis Functions (RBF) neural network to
determine constitutive parameter values of a machining process. Souto et al. [11]
used a Nelder-Mead direct search algorithm to propose innovative approaches to
optimize the shape of a sample to make constitutive parameters identification eas-
ier. To address parameter identification of discrete element method model, Rackl et
al. [12] used a Kriging meta-model coupled to the Levenberg-Marquardt algorithm
[13], and Richter et al. [14] proposed a modular procedure named “generalized
surrogate modeling-based calibration”. All these works are dealing with expensive
objective functions, i.e., each evaluation of the objective function refers to a finite
element computation.

In this paper, an efficient identification strategy to find the global minimum
of finite element based cost functions is studied. The technique used here can be
classified in the “expensive black box function optimization” field, as defined by
Jones [15]. The finite element computation and objective function calculation are
encapsulated in an independent “black box”. This “black box” is solely defined
by its input (optimization parameters) and its output (the objective function). The
Efficient Global Optimization (EGO) algorithm defined by Jones [15] or meta-
model Assisted Evolutionary Algorithms (MAEA) presented by Emmerich [16]
are suitable for solving such expensive optimization problems. Meta-models, such
as Kriging, Radial basis function, or other, are used to reduce the number of “black
box” function calls. The main purpose on a meta-model is to give an approximation
of the objective function values over unknown areas. The main steps to work with
a meta-model are to (i) build the meta-model on an initial database of “black box”
computations; (ii) use this meta-model to select an interesting area of investigation;
and (iii) run a “black box” call in this interesting area. These three steps lead to the
enrichment of the database. After several iterations of these three steps, a solution of
the global optimization problem is obtained. This methodology can be classified in
the field of analysis of computer experiments as defined by Santner et al. [17], or in
more recent work, such as [18]. With nowadays computation environment, it seems
appropriate to extend this kind of algorithms to parallel environments. The work of
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Ginsbourger et al. [19] is a very interesting way to introduce parallel consideration
in Kriging-based optimization algorithms. They proposed a formulation called
multipoint expected improvement criterion (q-EI), which is able to select q new
design points simultaneously, based on a known Kriging predictor. Ginsbourger
et al. concluded that this q-EI criterion and its different approximations provide
new satisfactory set of points to improve the solution of the optimization problem.
Their experimental set-up is based on a known Kriging predictor. Then, the new
set of design points is evaluated thanks to the q-EI criterion, but without updating
the Kriging predictor.

The aim of this paper is to focus on the specific case of material parameters
identification problems commonly encountered in the modeling of forming pro-
cesses [20]. Unlike the cases described above, the general shape of the objective
function is known. In the first part, the use of an ordinary Kriging methodology is
defined within an optimization strategy approach. Next, the extension to parallel
optimization proposed by Ginsbourger et al. [19] is described and included in the
optimization strategy. The aim of this part is to test the efficiency of these different
parallel strategies. To evaluate the efficiency of the algorithm, a speed-up criterion
is evaluated and discussed. In the second part, this algorithm is tested on various
analytical functions representative of material parameters identification problems.
An analysis of the efficiency of this parallel algorithm is conducted and the results
are discussed. Finally, the last section illustrates the methodology through the iden-
tification of the parameters of an elastic-plastic material behavior law coupled to a
ductile damage model.

The algorithm presented herewas integrated in theMOOPI (MOdular software
for Optimization and Parameters Identification) software developed at Cemef-
Mines ParisTech. It has shown its efficiency in forming applications [20] and model
calibration using digital image correlation data [21]. The software is developed in
an oriented object framework (C++), which makes it easy to add extra optimization
algorithms, without working on the management of the finite element computation.
Moreover, all the functionalities are accessible through a dedicated user interface.

2. Optimization assisted by Kriging meta-model

2.1. The optimization problem

The goal of the method is to find the global minimum of a function f in a
defined region X .

xmin = min
x∈X

f (x). (1)

This function f is named the objective function.We assume that f is a function
from<d to<, and that X is included in<d. d is the dimension of the optimization
problem, i.e., the number of parameters to be identified.



An efficient parallel global optimization strategy based on Kriging properties suitable . . . 5

The value of f for a given x can be obtained from the “black box” solver.
In our case, this function is computed by a finite element software coupled to a
post-processing subroutine. For these mechanical finite element calculations, the
computation of f is considered to be expensive in terms of CPU time. It is thus
important to reduce the number of evaluations of the objective function.

2.2. Outline of the method

The outline of the method can be summed up by the following algorithm
(Algorithm 1):

Algorithm 1: Global optimization method

1: i = 1

2: DBp = init( ) //DBp is the database of parameter set, DBp ∈ X

3: DBy = f (DBp) // “black box” function call. DBy is the database
objective function value associated to parameter set

4: While (i < i max) do

5: Meta =MetaModeling(DBp,DBy) // meta-model generation and calibration

6: newDBp =argmin(Meta) // exploration and exploitation

7: DBp =
[
DBp ∪ newDBp

]
// data enrichment

8: DBy =
[
DBy ∪ f (newDBp)

]
// “black box” function call

9: i = i + 1

10: end

This global optimization method (Algorithm 1) is a general description of an
optimization procedure that is assisted by a meta-model. This procedure is built
based on [16, 22]. This procedure leads to finding a globalminimumof the objective
function f . The choice is made to map the objective function in the design space
by a meta-model. This map is then used to explore the minimum area.

Other authors, Emmerich et al. [16], have included meta-modeling directly in
an evolutionary strategy algorithm: the selection step is thus assisted by a meta-
model. The approach of including the meta-model is suitable enough for being
used in conjunction with advanced genetic algorithms like NSGA-II [23, 24].
A major difficulty in using genetic algorithms is the settings of the parameters of
the algorithm. In our approach, wewant to reduce this number of setting parameters
and therefore to make the optimization easier to set.

2.3. Ordinary Kriging

To obtain an efficient mapping of the objective function in the design space,
an ordinary Kriging technique is used. Two steps are necessary: the construction
of the Kriging predictor and a calibration of the Kriging predictor parameters.
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2.3.1. Kriging predictor construction

Ordinary Kriging comes from Gaussian fields process theory, and was initially
used in geostatistics [25]. Ordinary Kriging assumes that the process is a sum of a
constant trend m and a local deviation Rx . We assume that the Rx process results
from a Gaussian random field process with a mean value equal to 0 and a variance
ofσ2. Therefore, the “black box” function Fx can be written as a stochastic process:

Fx = m + Rx . (2)

The estimator needs a master point database DBp, and some associated values
of the objective function DBy in order to be computed.

DBp : p =
[
p1, . . . , pn

]
∈ <d×n. (3)

The database DBp is a list of n sets of parameters. Each set of parameters is
specified as a vector of d values. DBy is a vector obtained by the n evaluations of
the objective function.

DBy : y =
[
y1, . . . , yn

]
=

[
f (p1), . . . , f (pn)

]
∈ <n. (4)

The database DBp is initialized by a Latin hyper cube sampling method [24].
To build the estimator ŷ of the Gaussian process Fx , m and σ2 are estimated

by a mean least square computation using the following equations:

m =
1̄tC−1y

1
t
C−11̄

, (5)

σ =

(
y − 1̄m

) t
C−1

(
y − 1̄m

)
n

. (6)

1̄ is the unit vector of size n, 1̄t the transpose unit vector, and C the covariance
matrix defined in Eq. (7).

C =
[
corr

(
pi, pj

)]
i, j∈[1,n]

. (7)

The covariance matrix is built using the correlation function:

corr
(
x, x ′, θ, τ

)
= exp

*..
,
−

√√√
d∑
i=1

(
x ′i − xi
θi

)2
τ

+//
-
. (8)

The function given in Eq. (8) evaluates the correlation between 2 points x
and x ′, which are 2 points of the space X . Gaussian functions are often used in
the analysis of computer design experiments as correlation functions. The function
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given in Eq. (8) introduces two calibration parameters θ and τ. If θ is a scalar,
the Kriging meta-model is isotropic, whereas if θ is a vector the meta-model is
anisotropic. The parameter τ defines the smoothness of the predictor: τ = 2 for
a smooth predictor and 1 6 τ < 2 for non-smooth predictors. The values of the
parameters θ and τ are set during the calibration phase.

Equation (8) introduces the Gaussian correlation function. This kind of cor-
relation function is well adapted to the analysis of computer experiments. But
the Gaussian functions have a non-finite derivative order, which can lead to non-
invertible covariance matrix C. Other correlation functions can be found in the
literature. The Matérn functions [26] are a good alternative to the Gaussian func-
tion.

The evaluation of m and C leads to the computation of the Kriging predictor
ŷ(x) [17]:

ŷ(x) = m +
(
y − 1̄m

) t
C−1cv(x), (9)

where x ∈ <d, and cv(x) =
[
corr (x, pi)

]
i∈[1,n].

The variance σ̂2(x) of the estimate ŷ(x) is given by the following equation:

σ̂2(x) = σ2

1 − cv(x)tC−1cv(x) +

(
1 − 1̄tC−1cv(x)

)2

1̄tC−11̄


. (10)

The predictor ŷ(x) has some interesting properties. ŷ(x) is an interpolation
function, i.e., ŷ (pi) = f (pi), i ∈ [1, n], and the variance σ̂2 is equal to 0 at each
master points. This is useful for deterministic computer design experiments. The
predictor gives an approximation (Eq. (9)) and an estimation of the error related to
the approximation (Eq. (10)) for all points belonging to the research space X .

2.3.2. Calibration

The goal of the calibration is to set the values of θ and τ in the correlation
function (Eq. (8)). For material parameters identification, a smooth predictor is
more appropriate (derivable objective function), which is why τ is chosen to be
equal to 2, therefore only the θ parameter needs to be calibrated.

Two main methods are presented in the literature for calibrating Kriging meta-
models: Cross Validation (CV) and Maximum Likelihood Estimation (MLE). Ac-
cording to Martin et al. [27], CV gives better results than MLE. However, CV
requires more computation time. MLE is chosen in this paper because the cali-
bration of the meta-model requires only the determinant of the correlation matrix.
The inverse computation of the correlation matrix is unnecessary. The function to
maximize for the MLE calibration is:

MLE = max
θ

(ln(L)) ,

ln (L(θ, τ)) = −
1
2

[
n
(
ln

(
σ2

)
+ ln(2π) + 1

)
+ ln (|C|)

]
.

(11)
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TheMLE is not a trivial optimization problem. As suggested by Laurenceau et
al. [28], the problem is solved thanks to a gradient method with a specific starting
point given by:

θk =
lmax
√
− ln(c)

, k ∈ [1, d], (12)

where lmax is the maximal distance between master points.

2.4. Sequential optimization strategies

To describe the optimization procedure, we assume that a master points
database and the associated objective function values are given. The goal of the
meta-model is to define new points that need to be computed in order to enrich
the meta-model and, in the end, to find the global minimum of the optimization
problem.

Using a Kriging meta-model gives two intermediary results: a mean prediction
ŷ(x) of the Gaussian process Fx (Eq. (9)) and a variance prediction σ̂2 (Eq. (10)).
These two results can be used to solve the global optimization problem. The mean
and variance predictors are used for exploitation and exploration stages:

• Exploitation is the improvement of a local minimum that has already been
detected. The new master point to be computed is obtained by minimizing
the mean predictor function:

pn+1 = min
x∈X

ŷ(x). (13)

• Exploration is the improvement of the prediction accuracy. A new mas-
ter point is preferably defined in a research area with poor sampling. The
predictor variance is minimized during the exploration:

pn+1 = min
x∈X

σ̂(x). (14)

Global optimization needs these two stages to find a global optimum. The
exploration stage guarantees the global aspect of the search and the exploitation
stage conducts to the improvement of the solution.

In order to reach the two goals (exploration and exploitation), functions (13)
and (14) have to be minimized. Therefore, a multi objective approach is needed.

Many multi-objective formulations are proposed in the literature. In this paper,
the Expected Improvement [15] (EI) approach is used. Other criteria can also be
used to minimize the lower confidence bound [16] or to maximize the probability
of the improvement [29].

EI was initially presented by Jones in the EGO algorithm. EI takes care of
Kriging properties, and is defined by using a Gaussian distribution function:

EI(x) = (ymin − ŷ(x))Φ
(
ymin − ŷ(x)

σ̂(x)

)
+ σ̂(x)ϕ

(
ymin − ŷ(x)

σ̂(x)

)
, (15)
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where ymin = min
i∈[1,n]

(yi), Φ is the cumulative density function of the standard
normal law with mean 0 and variance 1, and ϕ is the probability density function
of the same normal law.

This EI function is a multimodal function whose maximization requires a
global optimization procedure. However, this maximization does not take much
time compared to the time required to compute the “black box” function. The
maximization of the EI function is achieved using an evolution strategy algorithm.
More details about this algorithm can be found in Dirk et al. [30]. A (λ+ µ) strategy
is used (Algorithm 2).

Algorithm 2: (λ + µ) Evolution strategy

1: i = 1

2: P1 = population initialization // P1 ∈ X

3: Evaluate(P1)

4: While (i < i max) do

5: Ci = generate(Pi ) // generation of λ children Ci from the parents
population Pi

6: Evaluate(Ci ) // evaluation of each child

7: Pi+1 = selection in (Ci ∪ Pi ) // µ best individuals are selected

8: i = i + 1

9: end

The Global optimization method (Algorithm 1) is a sequential algorithm. The
initialization step is the only parallel step, because the initial values of the master
points can be computed simultaneously. Each value refers to an independent call of
the “black box”. The iterative stage of Algorithm 1 is sequential: the exploration and
exploitation stages of the meta-model consist in maximizing an auxiliary function
(EI function). This optimization (Algorithm 2) gives one optimum. Therefore, only
one new point of interest is extracted from the meta-model at each iteration.

2.5. Extension to parallel strategy

The procedure presented above gives a global solution of the minimization
problem (1). However, this algorithm is sequential, which can lead to high compu-
tation time. Parallelization of the algorithm could lead to a reduction of CPU time.
It would indeed be interesting to extract q points of interest at each iteration of the
procedure. These q new points of interest are independent and refer to q calls of
the “black box” function. These q “black box” function calls can thus be computed
simultaneously and efficiently in a parallel environment.

The parallel strategy presented here is built thanks to the meta-model proper-
ties. In the work of Ginsbourger et al. [19] direct evaluation methods of the q-EI
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criterion can be found. In this work we chose to work with the simplest method.
The q-EI criterion is approximate thanks to an iterative method. The main idea
of the iterative q-EI approximation is to set the value of the interesting extracted
points to a virtual value. Then, a new meta-model is built using the master point
database enriched by the virtual point, which is considered as known. Finally, a
new point of interest is extracted according to the virtually enriched master point
database. This procedure is performed iteratively while the maximum number imax
of “black box” function calls is not reached. This procedure is described in Al-
gorithm 3 and in Fig. 1. Moreover, the method is applied on a simple example in
Fig. 1.

Fig. 1. Flow chart of the parallel procedure

In Algorithm 3, the q points of interest are extracted and a virtual enrichment is
used. However, if one of these virtual enrichments is wrong, the following extracted
point can be inaccurate. In Algorithm 3, two iterative processes are slotted together.
The first one is the global optimization process (line 4 to line 17 in Algorithm 3),
and the second one is the selection of the new q points of interest (line 7 to line 13
in Algorithm 3) that allows us to approach the q-EI criterion.

The most important step of this procedure is the virtual setting of the objective
function (Algorithm 3, line 11). Different functions f ∗ have been presented in the
literature. In this paper, two approaches are tested and compared: Kriging Believer
(KB) and Constant Liar (CL).
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Algorithm 3: Global optimization method – parallel extension

1: i = 1

2: DBp = init( ) // DBp ∈ X

3: DBy = f (DBp) // “black box” function call

4: While (i < i max) do

5: DBy∗ = 0

6: DBp∗ = 0

7: For j = 1 to j = q

8: Meta∗ =MetaModeling(DBp ∪ DBp∗, DBy ∪ DBy∗) // meta-model generation
and calibration

9: newDBp = min(Meta∗) // exploration and exploitation

10: DBp∗ =
[
DBy∗ ∪ newDBp

]
// data enrichment

11: y∗ = f ∗
(
newDBp

)
// virtual setting of master point
objective function

12: DBy∗ =
[
DBy∗ ∪ y∗

]
// virtual data enrichment

13: End

14: DBy =
[
DBy ∪ f

(
DBp∗

)]
// “black box” function call

15: DBp =
[
DBp ∪ DBp∗

]
16: i = i + q

17: End

2.5.1. Kriging Believer

The Kriging Believer (KB) approach uses the Kriging predictor (Eq. (9)).
Kriging Believer sets the virtual value to the most probable value of the objective
function according to the Kriging meta-model.

f ∗(x) = ŷ(x). (16)

This formulation seems to be the most appropriate, but it may be inaccurate
if the meta-model predicts an objective function value that is smaller than all the
objective function values that have already been computed.

2.5.2. Constant Liar

Another way to define the virtual objective function is to assign it a constant
value yL . This method is called the Constant Liar (CL).

f ∗(x) = yL . (17)
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Different choices can be made but the user has to define the value of the
constant yL:

yL = min
i∈[1,n]

(yi) , yL = max
i∈[1,n]

(yi) , yL = mean
i∈[1,n]

(yi) .

These different values are denoted as CLmin, CLmax, and CLmean, respec-
tively, in the next part of the paper. Large values of yL lead to a more global search,
whereas smaller values lead to a more local search.

In Fig. 2, the three steps of the parallel procedure are depicted:
• Init. Step (initialization step): 4 master points are known, the Kriging meta-
model has been built and calibrated (Fig. 2a) and the Expected Improvement
(EI) has been computed (Fig. 2b). The maximum of the EI is identified at
x = 0.4 (green point).

• Virtual enrichment step: a new master point is defined at x = 0.4 (where
EI is found to be maximum at the previous step), and the value of the new
master point is set to a virtual value according to the meta-model prediction
(the KB approach is used here). With this new database of master points
(which includes real master points and one virtual point, in green on the
graph Fig. 2c), the Kriging meta-model is updated and a new maximum of
the EI is found at x = −0.75 (green point in Fig. 2d). This point becomes a
new master point.

• Final step: at this stage, two new master points have been proposed by the
method, two calls of the black-box function can run in parallel to evaluate
the cost function exactly for these two new points (green squares in Fig. 2e).
The database of master points is now made of 6 points (Fig. 2e).

Fig. 2. Illustration of the parallel procedure on a simple one-dimensional case
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Note that the virtual enrichment step can be repeated q times to propose q new
points of interest to be computed in parallel, instead of two in this example.

2.6. Stopping criteria

Parameter identification problems lead to finding a minimum value of the
objective function, which tends towards zero. A natural stopping criterion is to
reach a minimum value set by the user. However, in some cases, when the mapping
of the objective function is accurate, the use of sampling criteria (EI) leads to
additional master points that are very close. Indeed, the correlation factor that is
associated with two points too close to each other is 1 (Eq. (8)). This correlation
factor has a dramatic impact on the Kriging strategy, since the correlation matrix
C becomes singular.

In order to build a more robust methodology, other stopping criteria must be
used. Jones et al. [15] suggested stopping the EGO algorithm when EI is lower
than 0.01. These stopping criteria do not account for the objective function value. It
follows that, in order to address parameter identification issues, a local improvement
may be necessary to achieve a satisfactory objective function value and to get an
accurate value of the identified parameters. Such an improvement could be obtained
by chaining the EGO algorithm with a secondary optimization algorithm using a
classical local method such as the Nelder-Mead or BFGS algorithm [4, 31]. The
starting point for this secondary optimization would be set to the EGO optimal
solution. This strategy would ensure both a global and local search and thus a
better accuracy of the final optimal solution.

3. Assessment of the methodology on analytical function

3.1. Definition of representative analytical functions

In order to check the efficiency of the optimization procedure, some analytical
test functions are used. These test functions are chosen to be representative of
parameters identification problems. In order to make this choice, two landscapes
of objective functions resulting from material parameters identification are pre-
sented in Fig. 3. The first landscape is an objective function corresponding to the
identification of ductile damage parameters and the second landscape is an ob-
jective function relating to the identification of hardening law parameters. These
two landscapes present pathological issues commonly observed when identifying
material parameters for material forming applications. The first case (Fig. 3a) is
representative of a multi minima problem. Multi extrema may occur due to the
softening mechanical behavior, which is a consequence of the coupling between
damage growth and the mechanical material behavior. In this case, the use of a
single global observable (load-displacement curve) is not sufficient to ensure the
uniqueness of the minimization problem. The second case (Fig. 3b) is a typical
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ill-conditioned problem. This is either due to a low sensitivity of one parameter on
the observable, or to a strong correlation between the two parameters. This kind
of correlation issue can typically occur between the hardening exponent and the
material’s consistency [32].

(a) (b)

Fig. 3. (a) Objective function 1 from damage parameters identification problems; (b) Objective
function 2 from hardening parameters identification problems

In order to assess the efficiency of the procedure, instead of using finite element
models that are time consuming, we have decided to use analytical function that
are representative of such pathological issues. These functions will be used as the
“black box” in the optimization procedure.

3.1.1. Modified Branin-Hoo function:

f (x, y) =
(
y −

5.1
4π2 x2 +

5
π

x − 6
)2
+ 10

(
1 −

1
8π

)
cos(x)

+ 10 + 0.5x + 1.17, (x, y) ∈ [−5, 10] × [0, 15] .

(18)

This Modified Branin-Hoo function comes from Huang’s work [33]. It has 2
local minima at (3.14, 2.27) and (9.42, 2.47). The global minimum is located at
(−3.14, 12.27) and is equal to 0. The landscape of the function is presented in
Fig. 4a. It is close to the one presented in Fig. 3a.

3.1.2. Adapted Rosenbrock function:

f (x) = α
d/2∑
i=1

[
(1 − x2i)2 +

(
x2i+1 − x2

2i

)2]
, x ∈ [−0.2, 2]d . (19)

The Rosenbrock function [34] is a d dimensional function that has one mini-
mum at xi∈[1,d] = 1, equal to 0. This is a typical ill-conditioned problem. In order
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(a) (b)

Fig. 4. (a) Modified Branin-Hoo function (Eq. (19)); (b) 2D adapted Rosenbrock function (Eq. (20))

to be close to the landscape presented in Fig. 3b, which corresponds to hardening
parameters identification, the value of α, a parameter that can be uses to tune the
Rosenbrock function, was set to 0.1 (Fig. 4b).

3.1.3. Hartmann 6D function

H6,4 = −

4∑
i=1

αi exp

−

6∑
j=1

Ai j

(
x j − Pi j

)2

+ 3.32237, x j ∈ [0, 1],

α =



1
1.2
3

3.2



, A =



10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.5 10 0.1 14



,

P = 10−4



1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381



.

(20)

The Hartmann 6D function has 6 local minima and one global minimum at
x = (0.20, 0.15, 0.47, 0.27, 0.31, 0.65), which is equal to 0. The Hartmann 6D
function is an eight dimensional problem, which is ill-conditioned. Because of its
multiple minima, it is therefore an interesting function to test the efficacy of the
proposed parallel EGO algorithm.

These functions will be used as “black box” functions to evaluate and discuss
the robustness and efficiency of the procedure that is presented in this work.
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3.2. Isotropic or anisotropic ordinary Kriging

Kriging meta-model building can be done using either isotropic or anisotropic
correlation functions (8). Anisotropic correlation leads to a more complex calibra-
tion phase: an auxiliary function of dimension d needs to be minimized (Eq. (11)),
instead of a 2D auxiliary function with isotropic Kriging. A test is performed to
check the efficiency of anisotropic Kriging for parameters identification. Table 1
shows the results of this comparison in terms of the number of iterations for each
of analytical functions presented above. The algorithm is stopped when the target
value specific to each function is reached (Table 1). It can be seen that anisotropic
Kriging finds the minimum with a lower number of iterations than isotropic Krig-
ing. The benefit in terms of reduction of the number of iterations is between 14%
and 26%.

Table 1.
Isotropic and anisotropic correlation – number of “black box” function calls for a fixed

convergence goal
Stopping
criteria
value

Number of iterations Anisotropic
benefitIsotropic Anisotropic

Branin-Hoo 10e-4 27 23 14%

Rosenbrock – 2D 10e-4 18 14 22%

Rosenbrock – 4D 10e-3 71 54 24%

Hartmann – 6D 5e-3 54 40 26%

However, the cost dedicated to calibration is slightly higher for anisotropic
Kriging. This additional cost was evaluated by measuring the CPU time for the
Hartman 6D function. For a database of 50 points, isotropic Kriging takes 0.031 s,
while anisotropic Kriging takes 0.37 s. Therefore, there is a factor of 10 in terms
of additional costs. However, the absolute duration of anisotropic Kriging remains
very low compared to the time spent for the “black box” function calculation. This
is particularly true when using finite element computations.

The use of an anisotropic correlation for Kriging thus induces a significant
reduction of the CPU time for a given optimization problem.

3.3. Improvement of the parallel strategy

3.3.1. Speed-up test

To evaluate the improvement of the parallel strategy, a similar approach to the
one used for the improvement of parallel computing is followed. The reference
unit is not the computation time, as for conventional parallel computation, but the
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number of “black box” function calls. The speed-up Sp is defined in Eq. (21)

Sp =
Ts

Tp
. (21)

p is the number of parallel tasks. In our case, p is the number of “black box”
functions evaluated simultaneously. Ts is the number of sequential iterations, i.e.,
the number of “black box” function calls during a sequential procedure. Finally, Tp

is the total number of parallel iterations for p processors. Thus, the total number
of “black box” function calls is equal to Tpp. The speed-up is calculated without
taking into account the initialization stage (which is negligible with respect to the
total duration of the optimization).

As an example, if a given problem is solved with the sequential version of
the algorithm in 30 iterations (Ts = 30), the same problem is solved with parallel
version in 15 iterations (Tp = 15). Therefore, the obtained speed-up is Sp = 2.

The number of parallel tasks p is set to 6 values p ∈ [1, 2, 3, 4, 8, 16]. Two
different types of virtual enrichments are tested: KB Eq. (16), and CLmin Eq. (17).
An anisotropic correlation is used because of the results of the previous section.

The results obtained with the CLmax criterion are not presented. This criterion
leads to bad speed-ups at best, or at worst no results are obtained. This can be
explained by the introduction of a pessimistic point in the master points database
during the virtual enrichment phase. Two close points can have very different values
(minimum and maximum of the database in the case of the CLmax criterion). This
large difference leads to the use of small calibration parameters in the correlation
function (8) and to the construction of a meta-model, which looks like a peak
function around master points.

The results of theKB andCLmin criteria are presented in Fig. 5. The theoretical
“goal”-speed-up, which corresponds to Sp = p, is represented by the large red dash
line in all graphs.

Several remarks can be made regarding the speed-up results:
• For both criteria, the speed-up is always greater than one. This means that
the time required to reach the optimal solution using the parallel strategy is
always shorter than that of the sequential strategy.

• The analysis of the speed-up results on the different functions does not allow
one to conclude that one enrichment method (KB or CLmin) is better than
the other. In fact, no clear trend can be observed. Both criteria lead to results
that are very close to each other.

• The CLmin criterion shows a decreasing speed-up on the Hartmann 3D
function (Fig. 5d, p = 8). This decreasing speed-up is problematic for the
overall efficiency of the method: the increase in the number of parallel tasks
does not always lead to a reduction in the duration of resolutionminimization.
But this trend is never observed on other functions.

• In some cases, a speed-up greater than the theoretical speed-up may be
observed. This means that the number of “black box” function calls in
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Fig. 5. Speed-up: (a) Modified Branin-Hoo function; (b) Rosenbrock 2D function;
(c) Rosenbrock 4D function; (d) Hartmann 6D function

parallel strategy is lower than the number of “black box” function calls under
sequential strategy. It also proves the efficiency of the developed method in
some specific cases. This interesting behavior is observed for the modified
Branin-Hoo function (Fig. 5a) and for the Hartmann 3D function (Fig. 5d)
for low p values (p = 2 and p = 4). This behavior can be explained by the
accuracy of the Kriging predictor for small dimensional problems on these
functions.

• For all four functions, the increase in speed-up is very interesting for low
values of p. In this cases, the measured speed-up is very close to the the-
oretical one. For high values of p, the difference between the measured
speed-up and the theoretical one increases. The parallel enrichment method
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becomes therefore less efficient. This loss of efficiency is clearly observed
with the CLmin criterion in connection with the modified Branin-Hoo func-
tion (Fig. 5a), the Rosenbrock 2D function (Fig. 5b) and the Hartman 6D
functions (Fig. 5d). In fact, speed-up values remain unchanged while p in-
creases from 8 to 16. A maximum speed-up seems to be reached for these 3
functions.

3.3.2. Influence of the initial size of the data base

In previous tests, the databases of master points were always initialized with
a three level full factorial design plan (i.e., a regular 3-by-3 grid of points) for the
modified Branin-Hoo function. In this section, the influence of the size of the initial
plan on the speed-up is studied. Two additional full factorial plans are tested [35]: a
two-levels full plan (i.e., a regular 2-by-2 grid of points), and a four-levels full plan
(i.e., a regular 4-by-4 grid of points). For these tests the KB virtual enrichment is
used. The speed-up is calculated thanks to (Eq. (21)). The Ts values are presented
in Table 2. It appears that the use of different initial data base sizes leads to different
convergence rates for the method. The larger the size of the initial database, the
smaller the number of iterations required for convergence.

Table 2.
Number of sequential iterations Ts to solve the minimization problem

for different initial database sizes

Full plan size Ts

2 levels 23

3 levels 17

4 levels 16

The speed-up results are shown in Fig. 6. Some remarks can be made:
• For all three database sizes, the parallel algorithm is always efficient. In fact,
the speed-up is always greater than 1.

• The three-levels plan and two-levels plan shows good and equivalent speed-
up. Therefore, using a larger initial database may not be the best option.
In fact, it seems that the four-levels plan has a lower speed-up than the
three-levels plan.

It can be seen that the choice of the initial data base has an impact on the speed-
up. The tests on the modified Branin-Hoo function show that a full three-levels plan
is a good choice for this function. The decrease in efficiency with the increase in
the initial database size can be explained. Indeed, the points added during the mini-
mization procedure are placed by maximizing the expected improvement, whereas
the full plans are not optimal regarding the expected improvement criterion. There-
fore, non-optimal points coming from the initial plan can have a negative influence
on the speed-up.
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Fig. 6. Speed-up on the Modified Branin-Hoo function – influence
of the initial size of the data base

No general conclusion can be drawn from this test at this stage. Each problem
can lead to a different optimal initial database size, but this optimal size cannot be
known without a preliminary study (which is time consuming). Nevertheless, the
use of a small initial database (2 or 3-levels plan) seems to be a satisfactory option.

4. Application to a realistic identification case

In this section, the methodology presented above is applied to a real case
of identification. This example deals with the identification of ductile damage
parameters based on a uniaxial tensile test. An aluminum material is tested; its
grade is EN AW-5774[AlMg3]. The “black box” function is composed of a finite
element model of the tensile test and of an objective function. In this section, the
“black box” is detailed, and results of the identification are presented and discussed.

4.1. Black box description

To build the black box function, three parts are necessary: the experimental
results, the finite element model and the definition of an objective function.

4.1.1. Experimental set-up and results

To study the behavior of the aluminummaterial, a uniaxial tensile test is carried
out on a normalized sample. The resulting load/displacement curve is shown in
Fig. 7 (black cross line). Note that experimental results can also be a combination



An efficient parallel global optimization strategy based on Kriging properties suitable . . . 21

of global and local observables such as local strains or displacement fields obtained
by digital image correlation [21].

Fig. 7. Load/displacement curve – experimental data and identification results

4.1.2. Finite element model

The tensile test is modeled using the CIMLib®finite element library developed
at CEMEF [36]. To describe the material behavior, an elastic-plastic law coupled
with a Lemaitre ductile damage model was chosen. The main equations describing
the elastic-plastic behavior and ductile Lemaitre damage model are given here:

Hardening law:
σ0 = σy + K ε̄h . (22)

Damage evolution law:

ẇ =




0 if ε̄ < ε̄d ,

λpl

1 − w

(
−Y
S0

)b
if ε̄ > ε̄d .

(23)

The flow stress σ0 is described by a hardening law equation (22), based on
the yield stress σy , the consistency K , the equivalent plastic strain ε̄, and the
hardening exponent h. The evolution law for the damage parameter w is given by
Eq. (23), where ε̄d is the plastic strain threshold for damage growth, λpl is the
plastic multiplier, Y the strain energy release rate, S0 and b are material damage
parameters. In this model, damage is coupled with the material behavior which
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allows us to model damage-induced softening. More details on this model and its
numerical implementation are given in [37]. The objective of the identification is
to determine the values of 6 material parameters, 3 for plastic hardening (K , σy , h)
and 3 for the ductile damage model (ε̄d, b, S0). The finite element model provides
a numerical load-displacement curve for a given set of material parameters P.

4.1.3. Objective function

In order to evaluate the difference between the experimental and the numerical
results, an objective function has to be defined. The formula is given by Eq. (24).
Fnum and Fexp are respectively the numerical and experimental forces, and disp is
the tensile tool displacement. More details on this formulation and on how to deal
with the softening part of the load-displacement curve can be found in [38].




f cf (p) =

√√√√√√√√√√√ ∑
i

[
Fnum
i (p) − Fexp

i

]2
∆ dispi

min
(∑
i

[
Fnum
i (p)

]2
∆ dispi,

∑
i

[
Fexp
i

]2
∆ dispi

) ,
∆dispi = dispi − ∆ dispi−1,

(24)

where i denote each point of the data set.

4.2. Identification procedure

The identification of the material’s behavior takes place in 2 steps. The first
one is the identification of the plastic behavior described in Eq. (22). To run
this first identification, the objective function is computed on the first part of the
load/displacement curve (0 < d < 6 mm). During this identification the damage
model is disabled. For each parameter, the search range is presented in Table 3,
stage 1.

The second identification deals with the identification of damage parameters
(Eq. (23)). For this second identification, the hardening parameters are set to the
values identified at the previous step, and the objective function is computed using
the full load/displacement curve. The search ranges of each parameter are presented
in Table 3, stage 2.

Both identifications are performed using the parallel version of the EGO algo-
rithm with anisotropic correlation function. Four “black box” functions are called
in parallel for each iteration.

4.3. Identification results

The results are presented inTable 3, Fig. 7 and Fig. 8. The identified parameters,
for both stages, are given in Table 3. The identified load/displacement curves are
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Table 3.
Realistic identification case – parameters search range and identification results

Stage Parameters Search
range

Identified
parameters

Objective
function

Number of
“black box”
function calls

Number of
iterations

σy(MPa) [10, 400] 93

1 K (MPa) [200, 1000] 441 0.77% 139 27

h [0.1, 0.6] 0.44

b [0.5, 3] 1.00

2 S0 (MPa) [0.1, 3] 0.77 0.77% 104 18

ε̄d [0.04, 0.20] 0.097

Fig. 8. Stage 2 – results of a realistic identification case: a) cost function vs. iterations diagram,
b-c-d) final Kriging surface displayed on 3 cutting planes crossing the optimum solution
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shown in Fig. 7, in which we observe that the experimental and identified curves
match perfectly. This good result is in agreementwith the final value of the objective
function (Table 3). In fact, a value of 0.77% is reached for both stages.

5. Conclusion

Aparallel extension of the EGO algorithm is presented to improve computation
time. This parallel strategy can be used in a practical way to solve optimization
problems in a limited time frame. The presented works aims at testing the q-EI
criterion proposed in [19]. A sequential approximation of this criterion is developed
in this work. The goal is to test its efficiency on parameter identification issues.

The parallel EGO optimization procedure has been investigated and tested
on analytical functions (Eq. (20)–(22)), which have been chosen in order to be
representative of material parameters identification issues and on a realistic case
of material parameter identification.

The first tests on isotropic and anisotropic correlations show that anisotropic
correlation can lead to a 20% reduction in CPU time. This result is very interesting
regarding identification issues. Identification problems are often not very sensitive.
The use of anisotropic correlation combined with an efficient calibration of the
correlation parameters is a good way to overcome the issue of low sensitivity.

The second tests on the parallel extension of the EGO algorithm show that the
Kriging Believer criterion (KB) and the minimum Constant Liar criterion (CLmin)
give comparable results. For both criteria, the speed-up values are very interesting
if the number of parallel objective function computations is low (lower than 4 or 8).
A maximum speed-up value seems to appear on some specific functions, when the
number of parallel objective function computations increases. This is probably due
to the fact that the parallel procedure is based on new points, for which the exact
value of the objective function has not yet been computed. In addition, these results
are always validated when other correlation functions or initial database sizes are
considered. In fact, the test on the modified Branin-Hoo function shows that the
initial database size does not have a significant impact on the speed-up.

A third test is performed on a realistic identification case. The identified param-
eters give a numerical load-displacement curve in accordancewith the experimental
curve. The optimization algorithm shows its efficiency on a realistic application.
Moreover, the Kriging surfaces are very interesting in order to evaluate the sen-
sitivity of each identified parameter on the objective function. These surfaces can
help defining more appropriate objective functions or new observable to improve
the efficiency and accuracy of the identification procedure.

Manuscript received by Editorial Board, March 03, 2020;
final version, April 22, 2020.
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