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Abstract—In the context of the energy transition with am-
bitious goals about reducing electric energy use, residential
energy consumption is a large part of total energy use and
has a high potential for energy savings. Recently, deployment
of smart meters have enabled residential load profile data to
be more easily accessible. Therefore, services are emerging to
better inform residential customers about their energy use. These
services have been highly effective to reduce energy use when
feedback is given about appliance specific energy use. This paper
presents a simple and effective algorithm to use non-intrusive
load monitoring analysis combined with a questionnaire to pro-
vide quick appliance specific energy use feedback to residential
customers. The algorithm is only based on the historical energy
use, does not require significant computational capacity, respects
the confidentiality of clients with no data sharing involved and
can be deployed offline if the client does not have access to
internet. This makes this type of algorithm widely applicable
and informative for residential customers.

Index Terms—non-intrusive load monitoring, demand response

I. INTRODUCTION

Residential buildings use a high percentage of total energy
use in developed countries around the world: 25% in France,
25% in Germany, 19% in Spain and 26% in the UK [7]. Smart
meter deployment has recently allowed for increased visibility
of electric load profile data for residential customers. Load
profile data allows for a new understanding of when and how
energy is used in residential houses. Increasing concern about
global warming, ambitious political goals related to energy
security and reducing CO2 emissions are driving a new market
of services that use this data now more easily accessible for
residential clients.

Often residential clients are unaware of how to reduce
their energy use at home. Informing users about their energy
use and strategies to encourage energy efficient behavior can
help reduce their energy use and energy bills. An awareness
raising program has been put in place by the company Eco
CO2 in the context of a public tender in France put forth by
ADEME related to a funding mechanism called Investissement
d’avenir. This awareness raising program aims to educate
residential clients about their energy use and provides feedback
to encourage energy efficient behavior. A tablet is available for
users to observe their energy use and possible ways to decrease
their consumption.

Inneficient behavioural habits can contribute to an excessive
amount of energy use that is unnecessary for the comfort of
building inhabitants. The gap between the design energy use
of building and the actual energy use is called the operational
energy efficiency gap. This gap can be up to 100% implying
that a building will use twice as much energy as stated by the
design requirements [2]. Informing inhabitants of their energy
use and how to reduce it is therefore essential to guaranteeing
energy efficient buildings.

Total energy use of the household has been proven to not be
the most effective way to encourage energy efficient behavior.
More detailed information about the appliances present in
the household and suggestions for specific actions to take is
much more effective in reducing energy use. As stated in [1],
several studies show that real-time feedback about appliance
specific energy use results in the most energy savings. This
may require detailed information about the appliances present
in the household or an energy audit which can be expensive
and time consuming. These intrusive strategies are not widely
applicable. Therefore, many non-intrusive strategies are also
presented in the literature.

Non-intrusive methods often called Non-intrusive Load
Monitoring (NILM) use electric load profile data to partition
the total energy use into individual appliance categories. Smart
meter data for residential customers is typically available
with a 1 min to 30 min resolution depending on the data
collection system. As stated in [1], this resolution of data
allows primarily for differentiating three main categories of
electric load: temperature correlated load, continuous loads
and time-dependent loads. With a resolution of 1 min to
1 s, it is possible to extract the top 10 appliance types
including refrigeration, ACs, heaters, pool pumps, washers,
dryers, etc. [1]. Detailed machine learning algorithms have
been explored to partition data with a high frequency (1 Hz).
These algorithms include Graph Signal Processing, Hidden
Markov Models, or deep neural networks. The algorithms are
either event based or non event based, supervised or non-
supervised [8]. However, this type of high frequency data is
not available through the current smart meter technology being
deployed in Europe for example. These machine learning type
algorithms can also require high computational capacity and a
big data type infrastructure such as cloud computing. In order
to develop a solution that is widely deployable with minimal



requirements of the information technology architecture, a
simpler algorithm is preferable.

This paper presents an effective and simplified algorithm
to partition a total electrical load profile into four main
categories. These four categories are then further separated
by applying statistical studies of typical uses of final devices
in order to provide an estimation of energy use per device.
This strategy requires very minimal computational capacity,
can be applied to a single user and is based on historical
use instead of requiring analytics across a large group of
users. Therefore, the solution is widely applicable and can
be deployed individually for a single household. This avoids
difficult questions about data confidentiality and the security of
a cloud computing solution. The non-intrusive method avoids
high costs of individually metering different appliances within
the home. This non-intrusive analysis of the total electric load
profile provides a cost effective solution to communicate more
pertinent suggestions to clients on how to reduce their energy
use.

Building modeling strategies can be classified into two main
methodologies, top-down modeling or bottom-up modeling.
The main advantage of top-down modeling is that very min-
imal information is needed about the building. Global trends
of the load profile in relation to exogenous variables such
as outside temperatures can be extracted and used to make
conclusions about the temperature dependent loads of a build-
ing. Bottom-up modeling techniques are based on the physical
characteristics of a building and can be much more precise
in comparison to top-down modeling. However, a significant
amount of time is required to collect a detailed inventory of
appliances, envelope characteristics and operational schedules.
Due to the necessity to develop a methodology that can be
widely applicable, a pure bottom-up modeling technique is
not feasible.

A hybrid approach is developed in this paper attempting to
use the advantages of both methods. Limited information about
the household is gathered through a questionnaire about the
building energy systems and operational set points. Secondly,
a top-down approach is used to identify active and non-active
periods as well as the correlation with temperature of these two
categories. This end-use decomposition algorithm is applied
to a group of residential clients in order to inform end-users
about their energy use and improve their behavioral energy
efficiency.

II. METHODOLOGY

This paper presents a hybrid approach based on statistical
studies combined with detailed consumption profile analysis
for calibration and load trending. Multiple benchmark studies
are collected and compared to calculate the appropriate sta-
tistical values of target end-use devices such as ventilation,
refrigeration, domestic hot water use, cooking loads, washing
machines, lighting and multimedia. A top-down analysis is
then performed on the total electric load profile to identify
four main categories: inactive loads, active loads and their
correlation with temperature or not. An active load is defined

TABLE I
LOAD PROFILE ANALYSIS CATEGORIES

Load category Appliance categories
Temperature correlated
active load

Heating, AC, fans, thermal comfort
devices

Temperature correlated in-
active load

Heating, AC, fans, thermal comfort
devices

Non-correlated active load cooking, multimedia, lighting,
washing machines

Non-correlated inactive
load

refrigeration, ventilation, domestic
hot water heater, phantom loads

as a load controlled by an end-user. An inactive load is
classified by a device that automatically turns on or off and
is not manually controlled by an end-user. A detailed analysis
of the total electric load profile is performed to identify the
energy use associated with each of these four categories. The
load profile categories are then decomposed further based on
the end-use device categories and information provided by a
questionnaire such as the number of people, surface area, etc.
For example, an end-uses device such as a ventilation system
is assigned to a load profile category such as non-correlated
temperature inactive load. The four main load categories and
their associated possible contributing devices are listed in table
I.

A. Bottom-up method

Multiple studies have been performed in an attempt to
quantify the annual consumption of household appliances [3],
[4], [6], [9]–[11]. These studies allow for the estimation of the
magnitude of the energy use associated with each appliance in
comparison to the total household energy use. Multiple factors
contribute to the large range of annual energy consumption
present for a majority of appliances presented in these studies.
These factors include the number of people in a household,
the surface area of a household, the age of the appliances,
etc. Therefore, questionnaire information such as surface area
and number of people are used to estimate a percentage of
the overall category associated with each type of appliance.
The value of the energy used for each appliance category
is therefore dependent on the global energy use categories
calculated by the top-down method.

B. Top-down method

Analysis of the load profile data is used to extract more
precise characteristics of the building energy usage and energy
usage habits. Characteristics concerning four main categories
are extracted: active and non-active periods as well as the
temperature correlated part of these two categories.

1) Inactive load vs active load: The inactive or constant
load of a household is detected by analyzing the magnitude of
the values present during a day period as well as the variance
of these values. The average value of a given timestep is
calculated with 10 minutes electric load data by equation 1.

hm,h =

∑N
n=1 Cn

N
(1)



Where hm,h is the average value of energy used during the
10 minute periods, N is the number of data points within the
hour and Cn is the energy use during the 10 minute period
n. To quantify the activity of turning on an off appliances
during a given timestep, the first order difference of a 10
minutes load profile is calculated. The 90th percentile of the
first order difference values is calculated for each hour. This
90th percentile allows for the quantification of activity that
has occurred within the hour period based on 10 minutes load
profile data. The equation used to calculate this indicator is
shown in equation 2.

Qf (90) = x : Pr(X ≤ x) = 90

X = |Cn − Cn−1|
n ⊂ N

(2)

Where Qf (90) is the 90th percentile of all values during
the hour period, X is the first order difference of each data
point during the hour period and Cn−1 is the energy use
for the timestemp n − 1. The mean value and the 90th

percentile are then associated for each hour and a K-means
clustering technique is used to identify three groups of the two-
dimensional data. The physical sense of these three categories
is related to inactive loads, small appliance use during active
periods or large appliance use active periods. This clustering
technique allows the identification of two main categories:
active period and non-active period.

2) Temperature sensitive loads: The temperature sensitive
part of the load is evaluated by analyzing the inactive and
active daily energy use in comparison to degree days per
day. Degree days are often used in building energy analysis
to quantify heating and cooling loads. Degree days represent
the total amount of time during a day where the temperature
is above or below a certain threshold that would require air
conditioning loads to attain the desired inside temperature set
point. The heating degree days and the cooling degree days are
calculated with equation 3 and equation 4 respectively using
a temperature data timeseries with a 3 hour resolution [5].

ddheat =

∑N
n=1(18− Tn)

N
(3)

ddcool =

∑N
n=1(Tn − 21)

N
(4)

Where ddheat is the heating degree days, Tn is the tempera-
ture at time n and ddcool is the cooling degree days. Total daily
energy use for the active and non-active category are analyzed
separately. An initial analysis is completed to compare the
heating degree days and the cooling degree days to determine
weather the dwelling should be in heating or cooling mode.
The linear correlation between the normalized daily energy
use the the normalized daily degree days is then calculated
attempting to use two different models. First, a piece wise
linear fit is calculated with a forced first segment slope of 0.
Secondly a linear regressing is fitted to all data points. The root

mean squared error is then compared for the two fitted models
to determine the final model. These models are calculated with
equation 5 and equation 6 respectively.

yi = y0 x < x0

yi = βxi + (y0 − βx0) x ≥ x0 (5)

yi = βxi + ε (6)

Where y0 is the value of the first segment of the temperature
coorelation curve with a slope of 0, β is the slope of the
temperature coorelated segment with an y intercept of y0−βx0
and ε is the y intercept of the simple linear regression equation.
If a correlation is found in either the active or inactive energy
load, the integral of the linear regression is evaluated to deter-
mine the percentage of the load category that is temperature
coorelated.

III. CASE STUDY

The data used for this study was collected through the
services offered by the company Eco CO2. The data is
anonymized for the purpose of this paper. The data is collected
through sensors that are capable of reading and transmitting
the main electric meter measurements. The data used for this
study is composed of a 100 households. The 100 households
are analyzed with the decomposition algorithm for every week
for a one year period.

IV. RESULTS

The mathematical method used to identify the inactive
load was effective. The clustering method allowed for the
identification of hour periods where the overall value and
relative variation of the 10 minute data is low. A detailed
example of two users with a curve showing the separation of
the inactive periods and the active periods can be seen in figure
1.

As shown in figure 1, the periods of innactivity are iden-
tified. The two profiles analyzed have more or less variation
during the weekly period, however, the algorithm is effective
in both cases. This analysis allows for the separation of loads
that fall into the category of active loads such as domestic
hot water use or multi-media devices as opposed to inactive
loads such as refrigeration or ventilation systems. This also
allows for the analysis of the temperature corelation of the
inactive load and the active load separately. The separation
before analyzing temperature dependence can give insight into
wheather the household leaves their heating system on during
unoccupied periods. An example of the final result showed to
the end user can be seen in figure 3.

The final decomposition results are displayed to the client
to inform them of their energy consumption for the previous
week. Historical values can also be found and information
such as a percentage increase or decrease for each individual
appliance is provided. This allows users to compare their own
behaviour of last week in contrast with their historical use.



Fig. 1. Inactive and active loads identified for end user 1 in an example week
in December (top) and June (bottom)

Fig. 2. Inactive and active loads identified for end user 2 in an example week
in December (top) and June (bottom)

Fig. 3. Final decomposition results showed to end user 1 for December (top)
and June (bottom)

Fig. 4. Final decomposition results showed to end user 2 for December (top)
and June (bottom)

Fig. 5. Restuls for 100 users in relation to the percentage of the annual
consumption in each of the four main decomposition categories

Results of all 100 users for a whole year period was cal-
culated to identify the overall trend of temperature dependent
inactive and active loads. The final yearly results can be seen
in figure 5.

Of the hundred users analyzed, 38% did not have electric
heating and 50% did not have electric domestic hot water.
Therefore, during the decomposition algorithm, these end-use
appliances were not considered. If all users are considered,
the temperature corelated part of the total energy use varies
between users from 1.25% and 38% with an average of 12%.
It is also interesting to see that a large part of the temperature
dependent load is identified in the inactive load category and
not in the active load category. This implies that a majority
of households leave their heating systems on even during
innocupied periods. The final decomposition for all users
during the year period can be seen in figure 6

The proportion of each appliance for individual clients can
vary significantly depending on if the clients have electric
heating and electric domestic hot water production. In general,
electric heating and electric domestic hot water heating are the
highest consumption appliances.



Fig. 6. Restuls for 100 users in relation to the percentage of the annual
consumption in each of the appliance categories

V. CONCLUSION

This paper has presented a simple yet effective decompo-
sition technique that is widely applicable for the analysis of
individual electric load data for each user. It is also compatible
with the type and resolution of data available through the
masive deployment of smart meters. It does not require high
computational power or any sort of cloud computing and
therefore could even be deployed locally with no sharing of
data if a client is concerned about their data privacy. The
solution can also be deployed locally for clients with no
internet connection. As data privacy increases to be a concern,
this solution allows for users to learn and understand details
about their own electric energy use even if they are not
interested in sharing their data or allowing their data to be
used in a larger context. The algorithm has been demonstrated
to be effective for 100 example households.
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