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ABSTRACT 

 The paper suggests a new taxonomy of knowledge search modes to describe the creative process of 

new invention design, in particular how firms combine knowledge components from their own knowledge 

base—taking into account both the components and the structures of knowledge bases—with those from 

newly acquired or newly internally developed. Using network theory techniques, we defined four knowledge 

search modes: (1) refinement, (2) clustering, (3) absorption and (4) recomposition. We conducted an 

exploratory study on the oil & gas industry, reviewing 50,776 utility patents filed by 16 major firms between 

1989 and 2016. The results showed, first, that firms relied to varying extents on different knowledge search 

modes in their invention design processes. Second, reviewing the technological originality of the designed 

inventions showed that simply absorbing new knowledge components, without major changes in knowledge 

base structure, was associated with low technological originality, but constituted one of the main knowledge 

search modes used by the analyzed firms. In contrast, major changes in knowledge base structure favored 

technological originality, with or without new knowledge components, but were nevertheless the least used 

mode. Understanding organizational learning practices associated with the phenomena described here can 

foster innovation performance in firms.  
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Impact of Knowledge Search Practices on the Originality of Inventions: 

 a Study in the Oil & Gas Industry 

 

 Technological novelty is an important driver of innovation (Arthur, 2007; Fleming & 

Sorenson, 2004), which is presumed to have a large impact on organization competitiveness 

and market position (Cooper & Schendel, 1976; Henderson & Clark, 1990). However, 

innovation is a complex process with high uncertainty across different stages, including the 

knowledge search supporting the design of new inventions. Knowledge search activities aimed 

at selecting and combining knowledge components to design new inventions (eg. Arts and 

Fleming, 2016; Chesbrough, 2003; Cohen and Levinthal, 1990; Hatchuel and Weil, 2003; 

Nelson and Winter, 1982; Nonaka, 1994). Therefore, one question for innovation management 

is to better understand how a particular set of knowledge components mobilized by a given 

inventor (or group of inventors) can conduct to design an original invention.  

 To help further the understanding of this issue, scholars have analyzed knowledge 

search practices from the perspective of the global technological landscape, exploring to what 

extent inventors were combining already known or new knowledge components and what the 

effects were of those practices on the value of the designed inventions (Lobo & Strumsky, 2019; 

Strumsky & Lobo, 2015; Verhoeven, Bakker, & Veugelers, 2016). Furthermore, scholars have 

also reviewed what were the effects on the quality of inventions to either, design it with 

knowledge components that the inventor already master or to explore new knowledge 

components to design it (Arts & Fleming, 2016; Fleming, 2001). Exploring new paths is 

leading, in average, to an increase of the technological originality while refinement of already 

mastered knowledge components increase the value and robustness of inventions (Arts & 

Fleming, 2016). 
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 Here, we depart from those analyses by focusing only on firms’ inventors. Hence, a 

firm-level analysis should be conducted because inventors of firms are embedded in particular 

ecosystems and then have distinct design capabilities (Ahuja & Lampert, 2001; Nooteboom, 

Van Haverbeke, Duysters, Gilsing, & van den Oord, 2007). The latter depends of the knowledge 

components mastered by the firm, referred here as firm’s knowledge base (Grant, 1996). 

According to the literature on recombinant innovation (eg. Ahuja and Lampert, 2001), the 

knowledge of the firm is also embedded in its combinative capabilities (Kogut & Zander, 1992). 

Hence, the knowledge base has a particular structure; that is, different couplings exist among 

all knowledge components mastered by the firm based on the ability of the firm to combine 

them (Le Masson, Weil, & Hatchuel, 2010a; Yayavaram & Ahuja, 2008).  As firms 

support their innovation efforts through distinctive innovation capabilities, team management 

practices, and exploration practices (Lawson & Samson, 2001; Le Masson, Weil, & Hatchuel, 

2010b), firms have different knowledge base conducting to a plurality of design capabilities for 

their inventors.  

 Few scholars have successfully reviewed the role of changes in a firm’s knowledge 

base—integration of new components and/or new combinations resulting from knowledge 

search activities—on the global firm’s innovation performances (Yayavaram & Ahuja, 2008; 

Yayavaram & Chen, 2015). They have shown that changes in the combinations between 

existing knowledge components of firms hurt innovation performance, while new combinations 

between new and established knowledge components favor innovation performance. Here, we 

focus only on a particular element of innovation performance: the technological originality 

which is marked by the significant difference between combinations of underlying knowledge 

components embedded in a particular invention and the predominant design 

 Hence, our present contribution aims to provide a detailed review of the plurality of 

knowledge search practices undertake by firms and to measure their direct effect on 
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technological originality of the designed invention itself. It is supported by the analysis of 

firm’s knowledge base structure including components, combinations and distance between 

those components that provide a more fine-grained proxy of the inventors’ ecosystems. In that 

sense, we aim at bridging the literature on firms’ knowledge base and that on inventors’ 

knowledge search practices in global technological landscape.  

 In this study, we develop a taxonomy of four knowledge search modes that are used to 

support the design of novel inventions depending on the firm’s knowledge base structure: (1) 

refinement, (2) clustering, (3) absorption, and (4) recomposition. Our taxonomy was 

implemented though an exploratory study of 16 major oil & gas firms involving a review of 

their patent portfolios between 1989 and 2016, comprising 50,776 utility patent applications. 

We show that, first, the knowledge search modes adopted by firms vary among time and across 

the firms in the sample. Second, however, refinement was the most used knowledge search 

mode in the oil & gas industry, but led to inventions with low technological originality. Third, 

the absorption mode, the second-most used, which focuses on the integration of new knowledge 

components without major changes in the firm’s previous knowledge base structure, scored 

poorly in terms of technological originality. In contrast, the recomposition knowledge search 

mode, a design process that generates major changes in firms’ knowledge base structure (with 

or without integration of new knowledge components), conduces to highly original inventions, 

but was nevertheless the least adopted among the analyzed firms, indicating a major 

organizational learning challenge. Fourth, firms somewhat rely on a clustering mode as its 

technological originality score is better than that of the absorption mode.  

 Finally, the research opens up promising new research paths for the innovation field, 

emerging from the implication that technological originality, when integrating new knowledge 

components, depends on implied changes in the firm’s knowledge base structure. This also has 

consequences for organizational learning and innovation design, as it calls for taking into 
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account the dual status of knowledge component distance, that is, considering it both from the 

firm’s and the firm’s inventor’s points of view. 

 

LITERATURE REVIEW  

Knowledge search practices: (re)combination and the design of new inventions 

Various streams of research on innovation have highlighted the importance of 

knowledge search activities, in areas such as organizational learning (e.g., Cohen and Levinthal, 

1990; Nonaka, 1994), design science (e.g., Hatchuel and Weil, 2009, 2003), evolutionary theory 

(e.g., Nelson and Winter, 1982) or open innovation (e.g., Chesbrough, 2003; West and Bogers, 

2014). For those authors, firms’ knowledge search activities aim at solving problems by 

combining knowledge components to create new products. 

Innovation scholars have mainly operated under the assumption that combining existing 

technological capabilities or knowledge components in novel ways (potentially including new 

knowledge for new combinations) is one of the principal sources of inventive novelty (Dosi, 

1982; Fleming, 2001; Fleming & Sorenson, 2001; Hargadon & Sutton, 1997; Henderson & 

Clark, 1990; Schumpeter, 1934; Teece, 1996). Three main ways of combining knowledge can 

be identified: (1) combining new knowledge only (ie. distant knowledge), (2) designing new 

configurations of previously combined knowledge (ie. local knowledge), and (3) mixing new 

knowledge with previously combined knowledge (Fleming, 2001; Yayavaram & Chen, 2015).  

Based on these theoretical assumptions, scholars have developed techniques based on 

patent analytics to explore how inventions are designed. Those models mainly use Patent 

Classification Codes as a proxy for knowledge components. For example, Lobo and Strumsky 

(2019) and Strumsky and Lobo (2015) used four categories to describe novel inventions: (1) 

origination if all the IPC codes used in a given patent have never been used before, (2) novel 

combination if at least one pair of IPC codes in a given patent contains a code that has never 
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been used before, (3) combination if at least one pair of IPC codes has never been used before 

in a given patent, and finally, (4) refinement for cases where all IPC codes have already been 

used before in other patents. They showed that from 1980 to 2014 for United States Patent and 

Trademark Office (USPTO) patents, combinations and refinements accounted for 47% and 

52% of all patents respectively, while origination and novel combinations were very rare. 

Verhoeven et al. (2016) used another taxonomy: (1) novelty in recombination, when a patent 

contains at least one pair of IPC codes that was previously unconnected, (2) novelty in 

technological origins, when a patent contains at least one pair of IPC codes between the focal 

patent and the patent cited as literature (backward citation) that was previously unconnected, 

and (3) novelty in scientific knowledge, based on the pair of IPC and Web of Science category 

classifications of scientific articles cited as literature in the patent (i.e., Non-Patent Literature). 

By using a sample of patent families, they showed that 7% of patent families scored on novelty 

in recombination, 22% scored on novelty in technological origins, and 11% of patent families 

that cited at least one scientific article scored on novelty in scientific knowledge. Overall, 25% 

of all patent families scored on at least one novelty criteria. 

These valuables techniques help us better understand the nature of the knowledge search 

practices used by inventors to design new inventions and their occurrence in the global 

technological landscape. Furthermore, scholars have also developed more applied research 

conducting analyses at firm level, in order to help a given firm identify what new knowledge 

components could be combined with their established knowledge to design new inventions 

(e.g., Nakamura et al., 2015; Sarica et al., 2019). Thus, the design of new inventions is closely 

related to a firm’s knowledge base, whose structure matters in this regard. 

 

Firm’s knowledge base—components and structures—and its interface with knowledge 

search practices 
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The firm’s knowledge base describes what the firm knows (Grant, 1996; Jaffe, 1986; Kogut 

& Zander, 1992). Knowledge base theory has established that knowledge components are the 

preeminent resource of innovation activities of firms (Grant, 1996). Nevertheless, not only the 

knowledge components themselves matter: the structure of the knowledge base is also a key 

element (Kogut & Zander, 1992). Hence, the knowledge base “can be characterized by the set 

of knowledge elements that is possesses and the relationships that it has forged between the 

knowledge domains to which these elements belong” (Yayavaram & Chen, 2015: 377–378). As 

a result, firms’ knowledge search practices are mainly linked to the firm’s knowledge base: 

local knowledge corresponds to the firm’s knowledge base at time t, while accessed distant 

knowledge components fuel the firm’s knowledge base and are integrated at time t+1, as well 

as internally developed new knowledge generated through the local space (Kogut & Zander, 

1992; Yayavaram & Ahuja, 2008; Yayavaram & Chen, 2015).  

Developed patent techniques also exist to explore firms’ knowledge base components and 

structures. At the adopted starting point, scholars used Patent Classification Codes to reveal the 

knowledge components used by a given firm. For example, Fleming and Sorenson (2001) used 

USPTO subclass references for all patents filed by a given firm to compute knowledge 

components of the firm’s knowledge base. Yayavaram and Ahuja (2008) and Yayavaram and 

Chen (2015) provided a more advanced representation of a firm’s knowledge base by focusing 

on knowledge components and couplings at a firm-level analysis. “[It] suggests that for several 

reasons it is beneficial to conceptualize knowledge bases as networks of knowledge elements in 

which even the ties between knowledge elements are important, rather than as simply sets of 

individual elements.” (Yayavaram & Ahuja, 2008: 357–358). Yayavaram and Ahuja (2008) 

showed that first, there is an inverse-U-shape between continuums of structures—from fully 

decomposed to an integrated knowledge base—and inventions’ usefulness as measured through 

patent citations. Second, they highlighted that firms are pursuing two types of strategies: (1) 
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adding new knowledge components and (2) adding new combinations of existing knowledge 

components (i.e., new couplings). Furthermore, Yayavaram and Chen (2015) explored the 

extent to which changes in knowledge component couplings between (1) familiar knowledge 

components only and (2) both new knowledge and familiar knowledge components affects 

innovation performance, using knowledge base complexity as a moderating variable. By 

reviewing financial and patent data for 1,750 firms between 1976 and 2004, they showed that 

changes in coupling of knowledge with which the firm is familiar (i.e., local knowledge) hurt 

the firm’s innovation performance, while new couplings, using both local and distant 

knowledge components, increase the firm’s innovation performance. Drawing on the literature 

in architectural innovation (Henderson & Clark, 1990), they highlighted that changing 

couplings between local knowledge components in highly complex environments reflects that 

the firm has overcome interdependency issues and uncertainty regarding which couplings are 

valuable. This phenomenon then leads to improved innovation performance. 

 

Sourcing knowledge locally or distantly and the quality of invention 

As firms rely on different knowledge search modes to source and combine knowledge 

components in order to design new inventions, with various implications and dependencies 

regarding firm’s knowledge base, one key question is: to what extent does a given firm need to 

rely on its previous stock of knowledge to foster the design of new inventions (Katila, 2002), 

that is, to what extent does it hold that “old is gold” (Nerkar, 2003)? 

A wide stream of research argues that radical innovation necessarily presupposes the 

utilization of very recent knowledge (Henderson & Clark, 1990; Katila, 2002; O’Connor, 2008) 

and knowledge from different industries and technological domains (Dahlin & Behrens, 2005; 

Dosi, 1982; Katila & Ahuja, 2002; Nooteboom et al., 2007). In principle, such knowledge has 

not yet been integrated into the firm’s knowledge base. By reviewing novelty through patent 
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citations, Ahuja and Lampert (2001) effectively showed that having no backward citations, 

which can be interpreted as only using new knowledge components, is associated with more 

radical invention. Furthermore, Arts and Fleming (2016), relying on semantic analysis of patent 

data, showed that inventors who change fields are more likely to create novel patents due to 

their exposure to new knowledge components. In addition, drawing on state-of-the-art new 

scientific knowledge is also associated with the exploration of completely new innovation 

paths, such as the use of spintronic theories developed by 2007 Nobel laureate Albert Fert for 

semiconductors and the current industrial development on graphene by Nobel laureate Andre 

Geim (e.g., Fleming and Sorenson, 2004; Hatchuel et al., 2013). By measuring scientific article 

novelty and utilization in patent literature, Veugelers and Wang (2019) showed that utilizing 

more original scientific articles conduces to more novel patents (through patent citation 

evaluation). Finally, firms that build on newly developed knowledge components more 

frequently are able to better predict future technological advances and thereby design more 

novel inventions (Cohen & Levinthal, 1989). The frequent exposure to newly developed 

knowledge helps firms to sustain their cognitive capabilities, thereby helping future innovation 

(March, 1991). 

Although relying on external knowledge is positively related to the originality of the 

design of a given invention, extensive reliance on local knowledge has been proven to be 

detrimental to the global innovation process of firms. First, prior learning and existing 

paradigms can cause learning myopia or learning traps (Levinthal & March, 1993) and constrain 

the direction of search due to cognitive path dependence, specific historical pathways, or 

fixation effects (Agogué et al., 2014; Kaplan & Tripsas, 2008; Sydow, Schreyögg, & Koch, 

2009). Nevertheless, it has been underlined by many researchers that firms should exploit and 

build upon their knowledge and expertise (i.e., their knowledge base) to innovate; indeed, as 

technological progress is cumulative, inventors inevitably need to draw on their prior 
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knowledge and expertise (Kline & Rosenberg, 1986). Using knowledge components which the 

firm is familiar with enhances the reliability of the design and its uniqueness, in particular if the 

firm has a distinctive knowledge base (Katila, 2002; March, 1991). Following a combinatorial 

logic, a larger knowledge base evidently give more rooms for combinatorial possibilities, but it 

can also enhance complexity due to interdependency of knowledge components (Fleming, 

2001; Yayavaram & Ahuja, 2008). 

March (1991) characterizes the essential problem as a choice between exploiting known 

knowledge or exploring new and distant possibilities. Literature on “innovation ambidexterity” 

has drawn on those two concepts, advocating for simultaneously pursuing both exploration and 

exploitation (e.g., Andriopoulos and Lewis, 2010; O’Reilly and Tushman, 2008; Raisch et al., 

2009), but mainly through pursuing different projects on similar timeframes. There is also room 

for the combination of both new and old knowledge components at an invention level and not 

at a portfolio level (Hatchuel & Weil, 2003, 2009; Le Masson et al., 2010a; Strumsky & Lobo, 

2015; Yayavaram & Ahuja, 2008; Yayavaram & Chen, 2015). 

 

LITERATURE GAP & RESEARCH QUESTION 

To design novel inventions, firms need to combine knowledge components based on a 

continuum of search practices, depending on the extent of their reliance on familiar knowledge 

components. In our approach, we are bridging the literature on inventor’s knowledge search 

and firm’s knowledge base, focusing solely on invention originality but taking into account that 

the inventor is embedded in a given firm with distinct innovation practices and knowledge base 

(Le Masson et al., 2010a). The combination of knowledge searched for to design a given 

invention is then related to the components, the structure of the knowledge base, and in 

particular, the distance between knowledge components in the knowledge base. Thus, what 
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would previously have been considered “local” knowledge from a firm’s perspective is not 

necessarily local for a given inventor in that firm. 

To our knowledge, we are the first to provide a formal model describing in-depth how 

firms are designing new inventions depending on their knowledge base structure, the 

combination of local and distant knowledge components and the distance between those 

components in firms’ knowledge base. As noted by Yayavaram and Ahuja (2008): “The 

problem of structuring organizational knowledge represents a significant frontier for 

organizational research with immense and exciting possibilities” (Yayavaram and Ahuja, 2008, 

p. 358). In particular, a better understanding of firms’ knowledge search practices helps answer 

the question of what knowledge search practices may best foster the probability of designing 

an invention with high technological novelty. 

Our research questions are then the following (analytical framework and research 

questions are synthesized in Figure 1): 

QR1: How are knowledge search practices undertaken by firms to design novel 

inventions related to both their previous knowledge base—components and structures—and the 

sourcing of new external knowledge? 

QR2: How are knowledge search practices related to the technological originality of 

those inventions? 

Insert Figure 1 about here 

 

 

TAXONOMY OF INNOVATION SEARCH PRACTICES 

 

Designing firm’s knowledge base 

In order to define a firm’s knowledge base, we drew on the common assumption that to 

design a given invention, firms need to combine knowledge components (Katila, 2002; Nelson 
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& Winter, 1982). Hence, to design invention i, a given firm needs to combine n-tuples of 

knowledge components (referring to the sequence of all knowledge components that have to be 

mobilized to produce the invention). We adopted a pairwise logic, following the methodologies 

of Strumsky and Lobo (2015), Verhoeven et al. (2016), Yayavaram and Ahuja (2008), and 

Yayavaram and Chen (2015). Then, by using network theories2 Graph 𝐺𝑖 for invention i is 

comprised of vertex 𝑉(𝐺𝑖), representing the knowledge components that have to be mobilized 

to design the invention and edges 𝐸(𝐺𝑖).  

At a given time t, the firm may have developed multiple inventions; we are then able to 

map the knowledge base generated by all those inventions at given time by simply unifying the 

different graphs of each invention. We made the assumption that, following this operation, the 

weight of each existing vertex and edge can be considered equal to 13. Over time, a given firm 

produces diverse inventions by combining previously existing components from time 𝑡 and 

newly accessed knowledge components at time 𝑡 + 1.  

 

Generating the taxonomy of knowledge search modes 

To help in the understanding of knowledge search practices, we developed a taxonomy 

based on backward reasoning: what would be the effects of a newly designed invention at time 

t+1 on the previous knowledge base at time t. The taxonomy was designed based on three key 

dimensions: (1) the integration, or not, of new knowledge components in the firm’s knowledge 

base; (2) the creation, or not, of new combinations of pre-existing knowledge components; and 

(3) the distance between the knowledge components in the firm’s knowledge base. The Figure 

                                                           
 

 

2 See Phelps & al. 2012 for a review. 
3 There is no escalation for knowledge accumulation, as we only focused on knowledge base structure and 

components. 
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2 provide a synthesis of the taxonomy and the Appendix A provide the formal network analysis 

and stylized examples. 

Insert Figure 2 about here 

 

 Refinement mode. 

Inventions relying on the refinement mode are entirely based on the firm’s previous 

efforts to acquire and combine knowledge. Hence, refinement inventions do not add any new 

vertex or edge to the previous knowledge structure, as those inventions are only reemploying 

existing knowledge and combination of knowledge. This definition is in line with Strumsky and 

Lobo (2015). Inventions designed through this mode are related to local search and can be 

viewed as a proxy for knowledge depth: the firm is incrementally improving its knowledge in 

an already known and mastered technical discipline or area of expertise. 

 

 Clustering mode. 

Inventions relying on clustering mode are based on combining knowledge components 

searched locally, already present in the firm’s knowledge base, but not yet combined by the 

firm. Hence, the design leads to at least one new combination of already “close” existing 

knowledge components.  We consider that the geodesic distance between two knowledge 

components constitutes an indicator of what can be considered local throughout the firm’s 

knowledge base. For instance, combining knowledge components that have a geodesic distance 

strictly equal to 2 can be considered local from a firm’s inventor’s standpoint; the combination 

is then creating a knowledge cluster. We made the assumption that those elements could 

describe new product development projects involving, for example, two divisions of a given 

business unit; this would also guarantee higher modularity for future projects.  
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 Absorption mode. 

Inventions based on the absorption mode are those that draw on new knowledge 

components that were not part of the knowledge structure at time t-1 and that do not imply new 

combinations of previously unconnected existing components in the firm’s knowledge 

structure, except for local components (i.e., geodesic distance strictly equal to 2). Hence, those 

inventions can either be based on a combination of new knowledge components that are 

completely unconnected to the main knowledge structure, which leads to creation of a new 

component in the graph (case 1), or they can be based on new knowledge components that are 

combined with only one existing knowledge component (case 2). This mode refers to the 

situation in which the firm is sourcing knowledge outside of its knowledge base to complete 

the design of the invention; most probably, those new distant knowledge components are the 

results of an explorative knowledge search practice with external partners or of completely new 

greenfield research projects.  

 

 Recomposition mode. 

Inventions based on the recomposition mode comprise new combinations of existing 

knowledge that are not considered local in the firm’s knowledge base (i.e., that entail major 

changes in the structure). Potentially, this category also includes combinations involving new 

knowledge components. This practice is particularly challenging, as the firm needs to combine 

knowledge components that are already mastered within the firm but are not considered local 

from the inventor’s point of view. This can occur because of fixation (Agogué & Le Masson, 

2014) or lack of communication between silos, for example. This redefinition of the links 

between familiar and mastered knowledge components can be generated through access to new 

knowledge components.  
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IMPLEMENTATION OF THE TAXONOMY TO OIL & GAS INDUSTRY 

  

Oil & Gas industry specifics 

We conducted an exploratory study on the energy sector, in particular the oil & gas 

subsector. The oil & gas industry is key to almost all modern economies because of its major 

dependency on fossil fuel, significance in the global energy mix and impacts on societies 

(Korotayev, Bilyuga, Belalov, & Goldstone, 2018). In this study we are focusing on oil & gas 

industry innovation practices. In this subsector, R&D efforts are dynamically increasing due 

largely to three major shifts in the market: (1) the decreasing stock of oil & gas resources, 

requiring the development of new technologies to find and produce hydrocarbons as they 

become more difficult to source and produce; (2) major disasters such as Exxon Valdez (1989), 

Brent Spar (1995), or Deepwater Horizon (2010), which have led to increasing R&D efforts to 

sustain human and environmental safety; and finally (3) the diversification of major players 

towards more renewable energy alternatives (cf. Perrons (2014) for a detailed review of R&D 

trends in the sector).  

Regarding our research questions, on the one hand, firms in the oil & gas industry have 

shown a dynamic innovation trend over the last decades, while on the other hand, some actors 

are old, very well-established companies we can assume have accumulated a large knowledge 

base over time. The subsector thus constitutes a good candidate for research on knowledge 

search and the design of new inventions. 

 

Data sample 

 We only focused on major firms in the worldwide market, as we wanted to select firms 

with a large knowledge base. Firms were selected using the Thomson Reuters Top 100 Energy 

Report (Thomson-Reuters, 2017) subsection on the top 25 companies for the oil & gas 

subsector. This sample includes five most prominent oil- & gas-integrated companies: 
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companies operating in upstream (exploration and exploitation), midstream (transportation, 

storage, and processing) and downstream (refining, purifying and marketing and commercial 

distribution of various products, such as natural gas, kerosene, asphalt and other petrochemicals 

materials). We retrieved patent data using the Clarivate Derwent database, which includes 

patents filed in major patent offices (EP, WO, and US); we used the “Optimized Assignee” 

function to retrieve patents for the top 25 oil & gas companies. Clarivate Derwent conducted 

in-depth analyses for the 21,000 top worldwide companies in terms of patents, to retrieve filed 

patents, identify major subsidiaries, and correct company name spelling issues. We were able 

to retrieve 16 companies’ patent portfolios from among the 25 selected in the sample4.  With 

the help of experts from the Technological Intelligence Unit and the Global R&D Patent Unit 

of one of the major Oil & Gas companies present in the sample, we were able to obtain more 

fine-grained data due to corrections on subsidiaries; non-completely integrated subsidiaries 

were excluded from the sample. Patent data were initially retrieved for applications between 

January 1, 1980 and September 9, 2019. 

Ultimately, our sample comprises 16 firms accounting for 125,465 unique patents and 

48,662 International Patent Documentation (INPADOC) families (i.e., inventions). 

 

Methodology 

We used Patent Classification Codes to compute knowledge base components for a given 

firm at time t and applied co-classification data to build the network (i.e., the structure of the 

knowledge base). We relied on the International Patent Classification (IPC) codes from the 

                                                           
 

 

4 Excluded companies included Bharat Petroleum, Gazprom, Hess Corporation, MOL, Lukoil, PKN Orlen, PTT 

Public Company Limited, Thai Oil, and S-Oil, as for these companies Clarivate Derwent did not perform in-depth 

analysis (i.e., did not have optimized assignee functionality); therefore, we considered that patent data for those 

companies were not reliable enough to be included. 
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World Intellectual Property Organization, which are more suitable for assessing the 

recombinant nature of invention than the United States Patent Office Classification (Gruber, 

Harhoff, & Hoisl, 2013). To design the firm’s knowledge base, we relied on the IPC subclasses 

(i.e., IPC-4) as we considered that we only need to account for consequential knowledge 

components and combinations. This assumption is consistent with practices in the field (e.g., 

Verhoeven et al., 2016). To model the base, we looked at all the patent applications of a given 

firm at time t; due to issues related to international extensions and other patenting specificities, 

we do not account for patents individually but for families of patents, to analyze inventions per 

se (Martínez, 2011). We used all patent applications, including for patents that were not granted, 

under the assumption that if the firm is willing to apply for a patent, due to the costs of 

application procedures, the knowledge components involved in the given invention have been 

mastered by the company. We interpret it that if a given patent is not issued, it is due to 

competitors’ previous applications, procedural issues, or incomplete review of the previous 

state of the art, none of which interferes with what knowledge components are mastered or not 

by the firm. 

To compute the final version of the model, we had to specifically deal with both (1) time 

constraints, to implement the network dynamic, and (2) mono-class patents. To avoid a binary 

model and to take into account time-lag due to investment and research duration required to 

master given new knowledge, a new vertex would be considered new for a period of 3 years 

(Yayavaram & Ahuja, 2008; Yayavaram & Chen, 2015). On the other hand, it has been shown 

that knowledge comprising of filed patents is depreciated over time (Park, Shin, & Park, 2006) 

and that the depreciation rate is industry dependent. We set a knowledge components and 

combinations lifetime of 8 years following Park et al. (2006) findings for the studied industry. 

As for mono-class patents, some inventions only comprise a unique IPC code; studies focusing 

on combinatorial innovations do not take in account those patents (e.g., Verhoeven et al., 2016). 
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Our approach is different, as in the initial phase mono-class patents are taken into account for 

knowledge base computation, knowledge component newness, and lifetime duration 

calculation. Nevertheless, mono-class patent families are not consistent with our approach to 

take into account technological originality, and thus are excluded from the final studied sample 

after knowledge base computation. 

Using the detailed data sample, we implemented our taxonomy to define knowledge search 

modes. We followed the steps described in Figure 3 and detailed in Appendix B. The model 

was developed using R code (through an R Studio Interface) developed by the authors 

specifically for this study. The final sample comprised 19,863 INPADOC patent families 

representing 50,776 patent applications filed between 1989 and 2016 for which the knowledge 

search taxonomy has been specified. The breakdown per company is detailed in Appendix C. 

Insert Figure 3 about here 

 

Invention technological originality measurement 

The measure of technological invention originality is a complete innovation 

management field in itself, and it is not our objective here to provide an exhaustive assessment 

(see Squicciarini et al. (2013) for a review). Generally, when using patent data, scholars are 

accounting for patent citations in order to proxy the value of the invention, such as its 

commercial potential, usefulness, or social welfare benefits (Hall, Jaffe, & Trajtenberg, 2000; 

Harhoff, Narin, Scherer, & Vopel, 1999; Jaffe & de Rassenfosse, 2010; Trajtenberg, 1990). In 

this study, our focus was on patent classification classes and then the combinatorial originality 

of combinations; as a result, we looked for a technological originality proxy using patent 

classification classes. One of the main advantages of this approach is that the measure would 

not be affected by citations time lag. 
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We chose to rely on global Patent Classification Class mapping (Leydesdorff, Kushnir, 

& Rafols, 2014; Schoen et al., 2012). Specifically, we used an indicator derived from Alstott et 

al. (2017a, 2017b), who developed a methodology to compute technology network structure 

and draw a measure of proximity between each pairwise technological combination at IPC-4 

level. In more detail, the technology network was computed by reviewing 3,911,050 utility 

patents issued from 1976 to 2010 by the United States Patent and Trademark Office. The 

measure of technological proximity aggregated multiple proximity indicators: direct citations, 

co-citation, cosine similarity, co-occurrence and co-classification, along with several 

normalization measures in order to correct impinging factors. In particular, the authors showed 

that on one hand, the technology network is sparse, as very few pairs of technology classes are 

significantly related, while on the other hand, the network is very stable over time. We called 

this the Alstott Score: the proximity between two IPC-4 patent classes, which was normalized 

between [0; 1]. 

In our study, we used an Alstott Derived Originality Indicator (ADOI). As the 

technology network is considered stable, we made the assumption that combining two IPC-4 

classes that were not close in Alstott et al.’s network was an adequate indicator of technological 

originality meaning that the combination depart from the technological dominant design. Thus, 

the ADOI for the pairwise combination of IPC-4s i and j was computed as follows: 

𝐴𝐷𝑂𝐼𝑖−𝑗 = 1 − 𝐴𝑙𝑠𝑡𝑜𝑡𝑡 𝑆𝑐𝑜𝑟𝑒𝑖−𝑗 

As an INPADOC patent family can comprise several pairwise combinations, we used an 

arithmetic mean to compute the ADOI score. The Alstott Score database was sourced from a 

file made publicly available by those authors following their publication. Our sample contained 

496 single IPC-4s, of which 9 had not been computed by Alstott et al., (2017b). A total of 48 

INPADOC patent families were impacted by those 9 classes and were excluded from our 
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sample. The final sample thus comprised 61,901 IPC-4 pairwise combinations, of which 7,261 

were unique IPC-4 pairwise combinations. 

 

   RESULTS 

Knowledge search practices 

 As per our taxonomy, we estimated the proportions of the respective knowledge search 

mode in the sample: (1) refinement, (2) clustering, (3) absorption, and (4) recomposition. 

Results are presented in Figure 4. The refinement knowledge search mode was the most used 

(47% of the sample). This indicates that firms in this industry are mainly developing in-depth 

knowledge in or applying existing scientific and technological disciplines in order to 

incrementally develop new inventions. The second most common knowledge search mode was 

the absorption mode (38% of the sample). This reflects the promotion of open innovation 

projects across the industry. As noted, due to major changes in the field and the increase in firm 

innovation efforts, companies are looking more to greenfield projects; impacts on invention 

may be driven, for example, by new start-up acquisitions that became fully integrated in the 

organization, bringing non-traditional research areas for the company. Finally, clustering and 

recomposition modes were the least used modes. Those knowledge search modes face particular 

silo issues because they require new combinations of the mastered knowledge components in 

the firm’s knowledge base, which probably indicates that the knowledge components are 

mastered by a different team or business unit and not by the one currently handling the 

invention. 

Insert Figure 4 about here 

 

We also looked at the breakdown of knowledge modes by firm and at representations of 

each mode in terms of patent family application portfolios. As a result, we were able to highlight 

huge variations in knowledge search practices across the firms in the sample, as shown in Figure 
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5 below. As, there was variation in the number of patents filed each year per firm, we also 

detailed total number of patent families filed through each knowledge search mode and total 

number of associated INPADOC patent family applications in Appendix D. 

Insert Figure 5 about here 

 

Technological originality of inventions 

We computed the ADOI score for each patent family in the sample. There were only a 

few patent families with high ADOI scores: 2.1% had an ADOI score of higher than 0.9, which 

indicates high technological originality. Very low scores were common: 59.3% of the patent 

families had an ADOI score below 0.2 (Figure 6). This is consistent with the findings of Alstott 

et al. (2017b), which show using a large set of patents that only a few classes are connected 

together. 

Insert Figure 6 about here 

 

Knowledge search modes and technological originality 

In this section we analyzed what knowledge search mode conduced to the highest originality 

score for the designed inventions. We crossed the two variables Knowledge search mode, 

computed according to our taxonomy, and ADOI per patent family applications. Thus, for the 

oil & gas industry, we obtained a clear hierarchy for which knowledge modes gain the highest 

scores for technological originality. The refinement mode is the least helpful in this regard, with 

a very low average score of 0.16; at the opposite end, recomposition is the most helpful mode 

for technological originality in this industry, and is also the mode that accounted for the fewest 

patent families (3.5% of all the patent families in the sample). Furthermore, we also showed 

that inventions designed through the recomposition mode without including new knowledge 

components also recorded high technological originality scores (Appendix E). Clustering and 

absorption modes were respectively the second- and third-most helpful knowledge search 



11439 

22 
 

practices in terms of outcome technological originality. The detailed analysis results and t-tests 

are presented in Figure 7. 

Insert Figure 7 about here 

 

DISCUSSION & CONCLUSION 

Theoretical implications 

In this research, we examined firms’ knowledge search practices to support the design 

of new inventions. We departed from the extant literature by (1) proposing a formal taxonomy 

of how firms combine knowledge components to design new inventions depending on their 

degree of reliance on their own knowledge base components and structure and (2) by exploring 

the relationship between the design of technologically original inventions and the selected 

knowledge search mode. The formal model was operationalized using patent data and network 

theory techniques and was applied to a set of companies in the oil & gas industry. The study 

findings have several important implications for research in the innovation and design field in 

this industry and in general, as explained next. 

First, extent innovation literature shows that firms can combine knowledge components 

searched locally or distantly in order to design new inventions. However, in the literature, no 

in-depth analysis of how firms rely both on their previous knowledge base—components and 

structure—and on sourcing knowledge externally to design new inventions was found. We 

developed a taxonomy based on four knowledge search modes describing knowledge 

component combinations for a given invention: (1) refinement, (2) clustering, (3) absorption 

and (4) recomposition. The taxonomy was elaborated through backward reasoning by exploring 

the effects of a new invention on the firm’s previous knowledge base structure. Our model 

sheds light on both the design of new inventions and the associated creative process in relation 

to the firm’s knowledge base.  



11439 

23 
 

Second, we showed to what extent firms relied on the four knowledge search modes in 

a specific industry, oil & gas. Based on the analysis of 16 key players in this market, we showed 

that firms mainly designed new inventions by relying solely on their already mastered 

knowledge components and pre-existing combinations, as the refinement mode accounted for 

47% of our sample. This gives new insight on Strumsky and Lobo (2015), who found that, 

across all firms in all industries, 52% of designed inventions reuse a set of similar knowledge 

components and associated structures existing in the USPTO database. Here, we showed that 

in addition, firms were reusing sets of similar knowledge components and associated structures 

existing in their own knowledge base. It has to be highlighted that innovation in the oil & gas 

industry has been driven by incremental innovation for a long time; it has even been considered 

an industry of “medium-low R&D intensity” (Moncada-Paternò-Castello, Ciupagea, Smith, 

Tübke, & Tubbs, 2010: 527). When reviewing the technological originality of the refinement 

knowledge search mode, we found that it scored the lowest of the four tested modes as well as 

very low in absolute terms (0.16). This means that the set of combined knowledge components 

used when designing new inventions had been already extensively used in global technological 

history as sourced through USPTO-filed inventions. 

Third, we reviewed the absorption knowledge search mode, which consists in designing 

new inventions by integrating new knowledge components without major changes in the 

previous knowledge structure (apart from the new knowledge components themselves). As this 

implies, this knowledge search mode requires the usage of distant-searched knowledge. Either 

of two assumptions, or one assumption encompassing two alternatives, can be made regarding 

the source of this knowledge: either the new knowledge component has been developed through 

completely new greenfield research projects within the company, or it has been sourced 

externally by firm acquisitions or partnerships (academia, inter-industry or intra-industry). It is 

highly probable that the latter approach is more extensively used by firms, as developing new 
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greenfield projects with almost no relations with an established firm’s previous expertise would 

be a rare event. The absorption mode was widely diffused among the 16 firms in our sample (at 

37.9%). It echoes the concept introduced by Cohen and Levinthal (1990) of absorptive capacity, 

which assumes that firms (1) recognize and understand new external knowledge, (2) assimilate 

valuable external knowledge, and (3) apply assimilated external knowledge (Lane, Koka, 

Pathak, & Lane, 2006). Among the top 5 oil & gas firms, Exxon Mobil and BP have particular 

expertise in this domain, as respectively 58.9% and 47.3% of their inventions are designed 

through this knowledge search mode (making it their most used design mode). Furthermore, as 

knowledge components in this mode are mainly sourced externally, it refers to open innovation 

practices(Chesbrough, 2003), practices that firms in the oil & gas industry in the sample have 

also extensively embraced, as highlighted by Perrons (2014). Nevertheless, on average, 

technological originality score is relatively low for this mode (i.e., 0.279), in particular 

compared to the recombination mode. This means that, on average, the knowledge components 

sourced and combined by firms using this mode have also previously been extensively 

combined in the global technical landscape. Firms that extensively rely on this mode could face 

difficulties recognizing radically new industry knowledge, as supported by Perrons' (2014) 

finding that major firms in this sector prefer to be “fast followers” regarding new technology 

advancements due to high cost implications in case of failure. However, these firms could also 

face difficulties in the transformative learning stage when mirroring new knowledge 

components using more familiar firm components. 

Fourth, the knowledge search mode that conduces to the highest technological 

originality score is the recomposition mode, which implies new inventions based on major 

changes regarding firm’s knowledge base structure, potentially associated with new knowledge 

components. This mode was the least represented on average in the sample, as it only accounted 

for 3.5% of the designed inventions. In fact, 7 firms out of 16 in the sample filed fewer than 10 
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INPADOC family patent applications through that knowledge search mode. Furthermore, it 

was consistently the least developed knowledge search mode among the 16 firms in the sample, 

and SK Innovation Corp., BP, and Total Group were only three firms with more than 5% of 

inventions designed through it in their portfolios. The low occurrence of this mode in our 

sample seems to show that designing new inventions through this mode is particularly 

challenging for firms. Indeed, even in the top 5 companies, historical silos were strong (for 

example, between oil & gas exploration business units or refining & chemical business units). 

Mirroring knowledge components that the firm is familiar with but that have to be considered 

distant from the firm’s inventor would be a complex task, but it has been shown in the literature 

that combining knowledge the firm is familiar with and new knowledge components is 

generally associated with high innovation performances (Ahuja & Lampert, 2001; Katila & 

Ahuja, 2002). Our results for inventions designed through the recomposition mode when 

specifically including new knowledge components, support these findings. While combining 

knowledge components with which the firm is familiar has in the past been mainly associated 

with learning traps (Ahuja & Lampert, 2001), focusing on knowledge couplings and the 

distance between combined knowledge components is a promising new areas of research. The 

findings also highlight the fact that the distinction between local and distant knowledge at firm 

level should also be envisioned at firm’s inventor level. 

 

Limitation and further research 

The first limitation of the study concerns the generalizability of the results. The 

knowledge search taxonomy developed was applied only to one industry and to a restricted 

sample of firms. Nevertheless, we were able to perform the analysis on a large dataset of 

inventions (19,863). Extending our methodology through a larger sample of firms and 

industries will be a worthwhile avenue for future research. In particular, in-depth qualitative 
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analysis of organizational implications of each knowledge search mode could help the 

understanding of knowledge search practices. 

Second, we only focused here on the technological originality of the studied inventions, 

whereas other techniques could be applied to measure technological originality and examine 

whether similar results are found when using, for example, semantic analysis or citation data. 

In addition, other innovation performance indicators could be reviewed at firm level, in 

particular financial data or numbers of new launched products. We also see room for further 

research exploring mitigating variables, such as knowledge complexity, R&D intensity, 

spending, or reliance on basic science. Further research could also look at how mastering a 

combination of the four knowledge search modes at different levels could favor R&D 

efficiency. 

Third, the findings contribute to the absorptive capacity and open innovation fields, as 

the various knowledge search modes encompass new knowledge components or combinations 

of knowledge components in the firm’s knowledge base, some of which may have been sourced 

externally. We did not control for partnership effects or acquisitions. Looking at the extent to 

which these practices help the design of original inventions and how this relates to knowledge 

search modes could also be fruitful areas of research. Furthermore, heeding the call of 

Yayavaram and Ahuja (2008) to look closely at both the combination of knowledge and 

knowledge components, it would be interesting to look at whether open innovation practices 

favor new knowledge component sourcing or new combinations. 

Fourth, our model is dependent on the usage of patents as a proxy for firm’s knowledge 

base. Patenting activities, however, are subject to several biases, in particular related to 

competitive landscape and firm’s intellectual property business units’ practices. Other research 

could benefit from the usage of a different proxy for firm’s knowledge base, such as academic 
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publications, or from more fine-grained qualitative analysis. It could be promising in particular 

to explore the case of small firms with no or limited patent portfolios. 

Fifth, the knowledge clustering mode received a high ADOI score, an intriguing 

research result. In particular, knowledge components combined were familiar from the firm’s 

standpoint and the knowledge was considered local also from the firm’s inventor’s standpoint. 

The low share of the clustering knowledge mode in the firm’s inventions portfolio could 

indicate that firms are highly fragmented and silos effects are impacting the design of new 

inventions at a sub-business-unit level. Further research could benefit from exploring this mode 

in depth to determine what causes this effect. 

In summary, this study has yielded several findings that can be useful for both theory 

and practice. We have argued that an in-depth taxonomy of how firms are relying on their 

knowledge base and new knowledge acquisition to develop new inventions, focusing both on 

knowledge components and knowledge structures and their effects, will help in the 

understanding of the innovation process. We also showed that designing inventions that 

combine knowledge components that the firm is familiar with but that are considered distant 

from a firm’s inventor’s perspective leads to high technological originality. A greater 

understanding of the organizational learning practices associated with this finding may offer 

great potential to understand firms’ innovation performance. 
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FIGURE 1  

Analytical framework and research questions 

 

 

 

FIGURE 2 

Rationales of the knowledge search taxonomy 
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FIGURE 3 

Stages of model implementation 

 

 

 

FIGURE 4 

Knowledge search modes in the sample 

 

Table 1 - Knowledge search modes in the sample 

 

 

FIGURE 5 

Firm's INPADOC patent family applications per Knowledge Search Mode 

 

 

No. patent families Repartition

Refinement mode 9,336                                  47.0%

Absorption mode 7,534                                  37.9%

Clustering mode 2,304                                  11.6%

Recomposition mode 689                                      3.5%

Total 19,863                                100%
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FIGURE 6 

ADOI density in the sample 

 

 

 

FIGURE 7 

Analysis ADOI score and knowledge search mode 

 

min. max.

Refinement mode 0.160 0.156 0.165 p < 0.001

Absorption mode 0.279 0.273 0.285 p < 0.001

Clustering mode 0.387 0.376 0.397 p < 0.001

Recomposition mode 0.466 0.448 0.484 p < 0.001

ADOI average score 

per filed patent 

families

95% confidence interval
p-value
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APPENDIX A 

Formal model of Knowledge Search Modes & Stylized Examples 

 

 Initialization Refinement mode Custering mode Absorption mode Recomposition mode 

Invention NA 𝐼𝑡+1 = {1, … , 𝑛} 𝐼𝑡+1 = {1, … , 𝑛} 𝐼𝑡+1 = {[1, … , 𝑚], [𝑛, … , 𝑜]} 𝐼𝑡+1 = {1, … , 𝑛} 

Period t t+1 t+1 t+1 t+1 

Vertex 
properties 

NA 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) = 0 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) = 0 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) ≥ 1 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) ≥ 0 

Edge 
properties 

NA 𝐸(𝐺𝑡+1) − 𝐸(𝐺𝑡) = 0 𝐸(𝐺𝑡+1) − 𝐸(𝐺𝑡) ≥ 1 𝐸(𝐺𝑡+1) − 𝐸(𝐺𝑡) ≥ 1 (𝐺𝑡+1) − 𝐸(𝐺𝑡) ≥ 1 

Geodesic 
distance 
properties 

NA max (𝑑𝑡
𝑖−𝑗

) = 1, ∀ 𝑖, 𝑗 ∈ [1, 𝑛] 
𝑑𝑡

𝑖−𝑗
= 2, ∃ 𝑖, 𝑗 ∈ [1, 𝑛] 

max (𝑑𝑡
𝑘−𝑙) ≤ 2, ∀ 𝑘, 𝑙 ∈ [1, 𝑛] 

Case 1: 
𝑉(𝐼𝑡+1) ∩ 𝑉(𝐺𝑡) =  ∅  

Case 2: 

𝑑𝑡
𝑖−𝑗

 {
= ∅, ∃ 𝑖, 𝑗 ∈ [1, … 𝑚]

≤ 2, ∀ 𝑖, 𝑗 ∈ [𝑛, … , 𝑜]
 

𝑑𝑡
𝑖−𝑗

∈ [3; +∞[ 
 ∃ 𝑖, 𝑗 ∈ [1, 𝑛] 

Stylized 
example 

 

 
 
 
 

 
 
 
 
 
 
 
 

𝐼𝑡 = {𝐵, 𝐶, 𝐷} 

 
 
 
 
 
 
 
 

𝐼𝑡 = {𝐴, 𝐶} 

 
 
 
 
 
 
 
 

𝐼𝑡 = {𝐴, 𝐽} 

 
 
 
 
 
 
 
 

𝐼𝑡 = {𝐴, 𝐾, 𝐸} 
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APPENDIX B 

Methodology Details 

 
 

Stage 1: Collect data & extract IPC-4 classes 

IPC-4 classes that were part of a given patent were 

aggregated at INPADOC patent family level; we 

computed IPC-4 data for the 48,662 INPADOC patent 

families. The date used for the INPADOC patent family is 

the earliest date for any of the patents in the family. Each 

INPADOC patent family including application year and 

IPC-4 n-tuples, was assigned to a company portfolio. 

  

Stage 2: Compute combination of classes 

Based on the list of IPC-4 n-tuples of each INPADOC 

patent family, a list of IPC-4 pairwise combinations was 

built. A total of 83,970 combinations and INPADOC 

patent family pairs were retrieved from the sample. 

 

Stage 3: Introduce time lags 

Time lags are introduced to take into account newness of 

knowledge components and knowledge stock 

depreciation. Each new IPC-4 or IPC-4 pairwise 

combination in a firm’s patent portfolio is considered new 

to the firm for a duration of 3 years. We set a knowledge 

components and combinations lifetime of 8 years; if a 

given IPC-4 or pairwise combination of IPC-4s was not 

filed again through another INPADOC patent family in 

that time, it was deleted from the firm’s knowledge base 

after 8 years. Following the application of time lags, 

204,239 combinations of IPC codes were computed. It has 

to be noted that for a given company, if an IPC-4 is deleted 

after 8 years due to no further applications but is then filed 

again after 8 years, it is treated as a new one. 

 

Stage 4: Compute firm’s IPC-4 network each year 

Based on IPC-4s extracted from mono-class INPADOC 

patent families and IPC-4 pairwise combinations extracted 

from multi-class INPADOC patent families, with the 

application of time lags, IPC-4 networks were computed 

to design firms’ knowledge base. A network graph was 

generated each year from 1980 to 2019 for each firm in the 

sample. Because of variations regarding the first year of 

patenting due on different dates of firm establishment, 558 

graphs were generated.  

 

Stage 5: Compute network indicators 

For each network graph, the geodesic distance between 

any pair of IPC-4s is computed, generating 4,777,396 

observations. Furthermore, each vertex of each network 

graph was classified as belonging to the principal 

component or to a non-principal component. 

 

Stage 6: Compute taxonomy at IPC-4 pairwise 

combination level 

For each pairwise IPC-4 combination, a first level of 

analysis is computed to generate the complete taxonomy 

at INPADOC patent family level at the next stage. Hence, 

we distinguished between: 

 IPC-4 pairwise combinations with only non-new 

IPC-4s that had been filed for more than 3 

years—refinement pairwise combinations. 

 IPC-4 pairwise combinations with only non-new 

IPC-4s and with a previous geodesic distance 

strictly equal to 2—knowledge cluster 

enhancement pairwise combinations. 

 New combinations of IPC-4s not related to the 

principal component—strict external absorption 

pairwise combinations. 

 New IPC-4 pairwise combinations with a 

geodesic distance strictly superior to 2, with 

interactions only with principal components and 

including both a new and a non-new IPC-4—

non-strict external absorption. 

 New IPC-4 pairwise combinations with a 

geodesic distance strictly superior to 2, with 

interactions only with principal components and 

including two non-new IPC-4s—recomposition 

pairwise combination. 

 

Stage 7: Compute taxonomy at patent family level 

As INPADOC patent families may comprise multiple 

combinations depending on the size of the IPC-4 n-tuples, 

we defined an algorithm to apply the complete taxonomy. 

The steps are applied successively to the stock of IPC-4 

pairwise combinations per INPADOC patent family. 

 Step 1: At least one strict external absorption 

pairwise combination—absorption patent 

family; 

 Step 2: At least one recomposition pairwise 

combination (entailing no absorption pairwise 

combination)—recomposition patent family; 

 Step 3: At least one non-strict external 

absorption pairwise combination (entailing no 

strict external absorption pairwise combination 

or recomposition pairwise combination)—

absorption patent family; 

 Step 4: At least one knowledge cluster 

enhancement pairwise combination (entailing 

no step 1 to 3 combinations)—knowledge 

cluster enhancement patent family; 

 Step 5: other cases leading to at least one 

refinement pairwise combination—refinement 

patent family. 

 

Stage 8: Data extraction 

As we were focusing on knowledge bases that were 

dynamically changing over time, we needed to account for 

time to allow network stabilization. We thus used the 

sample of patent families only after one complete cycle of 

knowledge depreciation (i.e., 8 years); furthermore, 

INPADOC patent families filed between 2017 and 2019 

were deleted due to the delay between the moment of 

patent publication and submission to ensure data 

consistency. After these restrictions, the sample contains 

32,594 INPADOC patent families. Finally, in line with 

previous studies, we excluded INPADOC patent families 

with only a single class, as we were focusing on 

combinations. The final sample contained 19,825 

INPADOC patent families
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APPENDIX C 

Repartition of the knowledge search modes in the sample (thousands of INPADOC patent families) 

 

 

 

Average no. 

patent 

families fi led 

per year

Standard 

deviation

Average no. 

IPCs in the 

knowledge 

base

Standard 

deviation

Average no. 

IPCs pairwise 

combinations 

in the 

knowledge 

base

Standard 

deviation

Total number 

of patent 

families in 

the sample

Exxon Mobil 199.9           47.1     235.3           26.2     1,174.4        191.5  5,596          

Royal Dutch Shell 139.0           31.5     228.2           30.2     982.6           261.1  3,891          

Chevron 74.5              32.0     166.4           24.5     580.7           132.8  2,087          

BP 58.9              32.3     185.1           51.2     598.0           224.2  1,648          

Saudi Basic Industries Corp. 65.5              78.2     75.0              74.0     348.0           417.4  1,638          

Total Group 57.5              28.9     129.2           43.3     435.2           244.8  1,609          

ConocoPhill ips 40.6              24.7     139.1           38.1     387.7           132.3  1,138          

Eni 36.3              14.3     102.7           34.3     323.1           146.2  1,017          

Equinor 14.1              6.7       53.7              30.2     95.9              69.7     380              

SK Innovation Corp. 41.0              13.3     69.4              42.5     255.7           161.5  246              

Reliance Industries 9.5                11.7     28.2              34.7     69.0              101.4  181              

PetroChina 9.0                6.2       27.9              19.3     35.9              33.3     117              

Repsol 4.9                2.9       33.1              14.5     49.9              25.7     88                

Indian Oil Corp. 5.7                5.5       21.3              16.1     32.9              31.9     86                

INPEX Corp. 6.3                6.6       12.2              9.6       30.6              28.6     76                

Suncor Energy 3.1                2.0       22.0              8.0       42.7              34.6     65                

Average / Total 47.9              54.4     95.5              76.2     340.1           350.3   19,863.0     
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   APPENDIX D  

Repartition of the knowledge search modes in the sample (thousands of INPADOC patent families) 

 

No. patent families
% of firm’s 

portfolio
No. patent families

% of firm’s 

portfolio
No. patent families

% of firm’s 

portfolio
No. patent families

% of firm’s 

portfolio

Exxon Mobil 1,818                 32.5% 387                    6.9% 3,295                 58.9% 96                       1.7% 5,596      

Royal Dutch Shell 2,422                 62.2% 587                    15.1% 726                    18.7% 156                    4.0% 3,891      

Chevron 1,371                 65.7% 270                    12.9% 359                    17.2% 87                       4.2% 2,087      

BP 570                    34.6% 206                    12.5% 779                    47.3% 93                       5.6% 1,648      

Saudi Basic Industries Corp. 945                    57.7% 196                    12.0% 470                    28.7% 27                       1.6% 1,638      

Total Group 804                    50.0% 245                    15.2% 476                    29.6% 84                       5.2% 1,609      

ConocoPhill ips 636                    55.9% 114                    10.0% 335                    29.4% 53                       4.7% 1,138      

Eni 508                    50.0% 148                    14.6% 301                    29.6% 60                       5.9% 1,017      

Equinor 48                       12.6% 57                       15.0% 267                    70.3% 8                         2.1% 380         

SK Innovation Corp. 94                       38.2% 57                       23.2% 79                       32.1% 16                       6.5% 246         

Reliance Industries 8                         4.4% 11                       6.1% 157                    86.7% 5                         2.8% 181         

PetroChina 46                       39.3% 7                         6.0% 60                       51.3% 4                         3.4% 117         

Repsol 6                         6.8% 3                         3.4% 79                       89.8% -                          0.0% 88            

Indian Oil Corp. 4                         4.7% 7                         8.1% 75                       87.2% -                          0.0% 86            

INPEX Corp. 45                       59.2% 9                         11.8% 22                       28.9% -                          0.0% 76            

Suncor Energy 11                       16.9% -                          0.0% 54                       83.1% -                          0.0% 65            

Total 9,336                47.0% 2,304                11.6% 7,534                37.9% 689                    3.5% 19,863   

Total no. 

patent 

families

Recomposition modeAbsorption modeClustering modeRefinement mode
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APPENDIX E 

Analysis ADOI score and Recomposition mode—details
 

 

min. max.

Recomposition mode - without new knowledge components 0.448 0.427 0.469 528 76.6% p < 0.001

Recomposition mode - with new knowledge components 0.525 0.494 0.555 161 23.4% p < 0.001

Recomposition Mode - average 0.466 0.448 0.484 689 100.0% p < 0.001

p-value

Share of 

recombination 

mode

ADOI of 

recomposition 

mode inventions

95% confidence interval
Occurrence


