

DE LA RECHERCHE À L'INDUSTRIE

Mechanism of O₂ bubble formation in borosilicate melts

Society of Glass Technology annual conference – Cambridge 2nd – 4th September 2019

Luiz F.P. Pereira,* Annabelle Laplace, Franck Pigeonneau

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

→ HOW DO BUBBLES BEHAVE IN NUCLEAR GLASS MELTS ?

• Nucleation type ?

Introduction

 $\mathcal{C}\mathcal{A}$

- Main growth mechanism ?
- Bubble density decay ?
- Is bubble behaviour function of temperature ?
- How do bubbles behave with time ?
- Influence of insoluble crystals ?

Fig. 1: Example of bubbled glass

PhD goal : Fundamental comprehension of O₂ bubble formation linked to redox reaction.

> Nuclear glass = Glass matrix + nuclear waste

- The waste may contain multivalent elements: Fe, Ce, Cr ...
- Redox reaction might happen :
 - $Ce^{4+} + \frac{1}{2}O^{2-} \rightleftharpoons Ce^{3+} + \frac{1}{4}O_{2(g)}$
 - Т_{нл} _с О_{2 нл}
 - Ce speciation and/or PO₂ give clues about O₂ production

1) Pinet et al., Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry. JNCS, 352, 5382-5390 (2006).

Cea

Experimental procedure

Glass synthesis :

- Borosilicate glass powder + CeO₂
- Temperature (800-1100 °C) and duration
 - e.g. 1100°C (20, 30, 40, 60, 120min)
- With and without cerium
- Different granulometries

> Sample preparation :

- Cutting
- Polish

> Optical microscope :

- Mapping
- Reconstruction a cross-section

Image treatment :

- Bubble number density (N_{b})
- Bubble diameter (d_{mean})
- Occupied bubble area (A%)

- Bubble size distribution (histograms)
- 2D , 3D conversion
- Statistic plots (QQ plots)

Characterisations :

- Viscosity (η)
- Density (ρ)
- Surface tension (σ)
- XANES
- Gas bubble composition by mass spectroscopy
- Laser granulometry

Results and discussion

Experiment at 800 °C :

 $\mathcal{O}\mathcal{O}$

- Borosilicate glass powder with and without CeO2
 - Glass powder (250 < glass < 500 μm)
 - Apparent density: 50% of bulk glass

> What have we seen ?

- Large air package in both cases
- Entrapped air as microbubbles (well dispersed)
 - Bubble number density and size distribution

> Melting mechanism ?

- Air percolation towards unmelted regions (large air package)
- Remaining trapped air (microbubbles)
- > Bubble gas composition :
 - N_2 rich in the beginning (70 vol%)

a) 800 °C 20min with Ce

800 °C 20min without Ce

Fig. 3: Optical microscope images of glass a) 800 $^{\circ}\mathrm{C}$ 20min with Ce b) 800 $^{\circ}\mathrm{C}$ 20min without Ce

luiz.pereira@cea.fr

Results and discussion

- Bubble behaviour in the molten glass :
- Bubbles mean diameter (dmean)

• Bubble occupied area (A%)

• Bubble number density (N_b)

cea

regardless of temperature

Conclusions

Conclusions and insights :

- Bubble "nucleation" from pre-existing air trapped bubbles
- The mechanisms that govern bubble evolution are essentially the same, regardless of temperature

> Perspectives :

- Numerical model mathematical prediction
- Influence of crystals in bubble formation in the same system (ongoing)
- Camera in-situ observation
- Bubbles linked to crystallisation

THANK YOU FOR YOUR ATTENTION

<u>A special thank to :</u>

- Dr. A. Laplace
- Dr. F. Pigeonneau
- Dr. R.B. Nuernberg
- O. Podda

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr