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1. Introduction

FIGURE 1 – Sketch of the fused deposition modelling process.

non isothermal process
I What is the temperature history through the hot end extruder?
I How does the inlet velocity impact temperature history?
I What is the residence time distribution in the hot end extruder?
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42. Problem statement
I Geometry taken according to Peng et al. 1.
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FIGURE 2 – (a) E3D-v6 hot-end liquefier (https ://e3d-online.com/)
and (b) geometry used in the numerical computations (dimensions in
mm).

1. F. PENG/B. D. VOGT/M. CAKMAK : Complex flow and temperature history
during melt extrusion in material extrusion additive manufacturing, in : Addit.
Manuf. 22 (2018), p. 197-206, URL : https://www.sciencedirect.com/
science/article/pii/S2214860417303718.

https://www.sciencedirect.com/science/article/pii/S2214860417303718
https://www.sciencedirect.com/science/article/pii/S2214860417303718


52. Problem statement

I As in Peng et al., the polymer is the bisphenol-A
polycorbonate (Makrolon R© 3208) 2.

(a) (b)

FIGURE 3 – (a) µ/aT vs. aT γ̇ and (b) aT vs T .

2. Makrolon R© 3108, 3158 and 3208, Bayer Material Science, 2008.



62. Problem statement

I Mass balance equation :

∇ · u = 0. (1)

I Momentum balance equation :

∇ · [2µ(γ̇,T )D]−∇P = 0. (2)

I Energy balance equation :

ρCp
DT
Dt

= λ∇2θ + µ(γ̇, θ)γ̇2. (3)



72. Problem statement

T = Tin, u = Uinez

−λ∂T
∂n = h(T − T∞), u = 0

T = T∞, u = 0

∂T
∂n = 0, σ · n = 0
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82. Problem statement

I h depends on the air thermal resistance between the
filament and the hot end extruder :

h ∼ λair

eair
= 200 W/(m2K). (4)

I To be in agreement with experiments of Peng et al. 3 :
I Tin = 24◦C;
I T∞ = 325◦C.

3. PENG/VOGT/CAKMAK : Complex flow and temperature history during melt
extrusion in material extrusion additive manufacturing (cf. note 1).



93. Thermal behavior
3.1 Comparison to Peng et al. experiment

I Peng et al. 4 measured the thermal history by introducing a
thermocouple in the filament.

FIGURE 4 – Experimental set-up of Peng et al.

4. PENG/VOGT/CAKMAK : Complex flow and temperature history during melt
extrusion in material extrusion additive manufacturing (cf. note 1).



103. Thermal behavior
3.1 Comparison to Peng et al. experiment

FIGURE 5 – T vs. t recorded by thermocouples [Peng et al. (2018)].
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325◦ C314◦ C306◦ C

FIGURE 5 – T vs. t recorded by thermocouples [Peng et al. (2018)].



113. Thermal behavior
3.1 Comparison to Peng et al. experiment

(a) Uin = 90 mm/min (b) Uin = 180 mm/min

FIGURE 6 – T vs. z in r = 0 for (a) Uin = 90 mm/min and (b)
Uin = 180 mm/min.



123. Thermal behavior
3.1 Comparison to Peng et al. experiment

(a) (b)

FIGURE 7 – (a) T vs. z in r = 0 for Uin = 270 mm/min (b) T vs. r at
the exit.

Ù Heat transfer between the hot end extruder and the
polymer very efficient
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133. Thermal behavior
3.2 Effect of the inlet velocity

(a) Uin = 90 mm/min

(b) Uin = 180 mm/min

(c) Uin = 270 mm/min

FIGURE 8 – T field in Kelvin for three Uin.
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143. Thermal behavior
3.2 Effect of the inlet velocity

FIGURE 9 – Liso−Tg vs. Pe = UD/κ.
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143. Thermal behavior
3.2 Effect of the inlet velocity

FIGURE 9 – Liso−Tg (T∞ − Tin)/(Tg − Tin) vs. Pe = UD/κ.



153. Thermal behavior
3.2 Effect of the inlet velocity

I This result shows that

T∞ − Tin

Tg − Tin
= 4.08 · 10−3 UD2

κL
. (5)

Uin =
9.804λL
ρCpD2

T∞ − Tin

Tg − Tin
. (6)

I The inlet velocity decreases with Tg .
I The inlet velocity increases with T∞ :

I T∞ = 275∞C, Uin = 644 mm/min ;
I T∞ = 300∞C, Uin = 708 mm/min ;
I T∞ = 325∞C, Uin = 773 mm/min.



164. Kinematic behavior
4.1 Velocity profiles

FIGURE 10 – u vs. r in dimensionless units for Uin = 270 mm/min.



174. Kinematic behavior
4.2 Residence time

I The residence time distribution is determined by 5

E(t) =
dF (t)

dt
, (7)

with

F (t) =

∫
∂Ωout

Cu · ndS∫
∂Ωout

u · ndS
. (8)

I C is solution of
∂C
∂t

+ ∇C · u = 0, (9)

with

C(x ,0) = 0, ∀x ∈ Ω, (10)
C(x , t) = 1, ∀x ∈ ∂Ωin. (11)

5. P. V. DANCKWERTS : Continuous flow systems. Distribution of residence
times, in : Chem. Eng. Sci. 2 (1953), p. 1-13.



184. Kinematic behavior
4.2 Residence time

(a) t = 0.53 s (b) t = 2.66 s

(c) t = 5.33 s (d) t = 8 s

(e) t = 10.66 s (f) t = 13.33 s

FIGURE 11 – Snapshots of C for Uin = 90 mm/min.



194. Kinematic behavior
4.2 Residence time

FIGURE 12 – E (s−1) vs. t (s).



204. Kinematic behavior
4.2 Residence time

I According to Villermaux 6, normalization by tgeo = V/Q.

FIGURE 13 – E vs. t .

6. J. VILLERMAUX : Génie de la réaction chimique, Paris 1993.



214. Kinematic behavior
4.2 Residence time

FIGURE 14 – L {E(t)} vs. p.



224. Kinematic behavior
4.2 Residence time

G(p) =
exp(−τ1p)

1 + τ2p
,
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FIGURE 15 – Plug flow reactor
(PFR).

E(t) = δ(t − τ1). (12)
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E(t) =
1
τ2

exp

(
− t
τ2

)
. (13)

G(p) similar to the function of Bellini et al. 7.
7. A. BELLINI/S. GUCERI/M. BERTOLDI : Liquefier dynamics in fused

deposition, in : J. Manuf. Sci. Eng. 126.2 (2004), p. 237-246.



234. Kinematic behavior
4.2 Residence time

Uin τ1 τ2

90 mm/min
0.632
6.30 s

0.405
4.03 s

180 mm/min
0.729
3.63 s

0.307
1.53 s

270 mm/min
0.795
2.64 s

0.241
0.80 s

TABLE 1 – τ1 and τ2 of a PFR mixer in serial with CSTR mixer.



245. Conclusion and future works

I Heat & mass transfer are solved numerically with the
thermal and shear rate dependence in µ.

I Using the same working conditions of Peng et al. 8, we
argue :
I the heat transfer coefficient is important Ù very efficient

contact between the hot end extruder and the polymer ;
I the presence of a plug flow mainly upstream where T < Tg .

I The determination of the iso-Tg spreading allows to define
the limit of the liquefier in terms of flow rate.

I The residence time distributions show :
I the hot-end extruder is equivalent to a plug flow reactor and

a continuous stirred tank reactor in serial.
I The importance of the plug flow reactor increases with the

inlet velocity.

8. PENG/VOGT/CAKMAK : Complex flow and temperature history during melt
extrusion in material extrusion additive manufacturing (cf. note 1).



255. Conclusion and future works

I Reproduce the same study for another polymer (for
instance ABS).

I Introduce a more realistic constitutive law to describe the
solid to fluid transition.

I Study the hot-end extruder on the whole.
I Describe the thermal transfer during the deposition.



255. Conclusion and future works

I Reproduce the same study for another polymer (for
instance ABS).

I Introduce a more realistic constitutive law to describe the
solid to fluid transition.

I Study the hot-end extruder on the whole.
I Describe the thermal transfer during the deposition.


depotfdmgap012.avi
Media File (video/avi)


	Introduction
	Problem statement
	Thermal behavior
	Comparison to Peng et al. experiment
	Effect of the inlet velocity

	Kinematic behavior
	Velocity profiles
	Residence time

	Conclusion and future works

