

Nancy, le 24 janvier 2019

Modélisation des processus d'affinage et d'oxydoréduction dans les fours industriels

F. Pigeonneau (Mines-ParisTech PSL - CEMEF)

1. Affinage des liquides formateurs de verre²

- 200 kg de CO₂/tonne de verre :
 - 25 Nm³ de CO₂/m³ de verre, soit 140 m³ de CO₂/m³ de verre à T = 1400°C.
- La faible solubilité du CO₂ ⇒ formation de bulles : 10⁸ bulles/m³.

Nancy, le 24 janvier 2019

Affinage et oxydoréduction

1. Affinage des liquides formateurs de verre²

200 kg de CO₂/tonne de verre :

- 25 Nm³ de CO₂/m³ de verre, soit 140 m³ de CO₂/m³ de verre à T = 1400°C.
- La faible solubilité du CO₂ ⇒ formation de bulles : 10⁸ bulles/m³.

Affinage : élimination des inclusions gazeuses et des infondus

Nancy, le 24 janvier 2019 Affinage et oxydoréduction

1. Affinage des liquides formateurs de verre³

Comment faire pour éliminer les bulles ?

$$V_T = \frac{\rho g a(t)^2}{3\mu(T)}.$$
 (2)

- Augmenter T;
- Augmenter a.
- > Pour faire grossir les bulles, on ajoute des « affinants » :
 - Sulfate : Na₂SO₄;
 - Métaux de transition : As⁵⁺/As³⁺, Sb⁵⁺/Sb³⁺, etc.

Nancy, le 24 janvier 2019 Affinage et oxydoréduction Cemer

1. Affinage des liquides formateurs de verre

2. Oxydoréduction des liquides formateurs de verre

- 2.1 Modèle thermodynamique
- 2.2 Affinage d'un verre à vitre

3. Transfert de masse entre bulle et verre

- 3.1 Bulle isolée
- 3.2 Population de bulles

4. Synthèse

5. Élaboration du verre selon le génie chimique

Nancy, le 24 janvier 2019

Affinage et oxydoréduction

2. Oxydoréduction des liquides formateurs ⁵ de verre

2.1 Modèle thermodynamique

$$\underbrace{\mathbf{M}^{(n+k)+}}_{\text{état oxydé}} + \frac{k}{2}O^{2-} \rightleftharpoons \underbrace{\mathbf{M}^{n+}}_{\text{état réduit}} + \frac{k}{4}O_2, \quad (3)$$

La production d'entropie liée à cette réaction¹:

$$d_i S = \frac{A}{T} d\zeta, \ A = \mu_{M^{(n+k)+}} + \frac{k}{2} \mu_{O^{2-}} - \mu_{M^{n+}} - \frac{k}{4} \mu_{O_2}.$$
 (4)

• L'équilibre thermodynamique $\Rightarrow A = 0$:

$$\mathcal{K}_{\rm M} = \frac{a_{{\rm M}^{\rm n+}} a_{{\rm O}_2}^{k/4}}{a_{{\rm M}^{\rm (n+k)+}} a_{{\rm O}^{2-}}^{k/2}}, \ \mathcal{K}_{\rm M}' = \frac{C_{{\rm M}^{\rm n+}} \mathcal{P}_{{\rm O}_2}^{k/4}}{C_{{\rm M}^{\rm (n+k)+}}}. \tag{5}$$

1. I. PRIGOGINE/D. KONDEPUDI : Thermodynamique. Des moteurs thermiques aux structures dissipatives, Paris 1999.

2. Oxydoréduction des liquides formateurs ⁶ de verre

2.1 Modèle thermodynamique

Si on a plusieurs réactions, par exemple cas du Fe et de S :

$$\underbrace{\operatorname{Fe}^{3+}}_{\text{état oxydé}} + \frac{1}{2}\operatorname{O}^{2-} \rightleftharpoons \underbrace{\operatorname{Fe}^{2+}}_{\text{état réduit}} + \frac{1}{4}\operatorname{O}_{2}, \quad (6)$$

$$\underbrace{\operatorname{SO}_{4}^{2-}}_{\text{état oxydé}} \rightleftharpoons \underbrace{\operatorname{SO}_{2}}_{\text{état réduit}} + \frac{1}{2}\operatorname{O}_{2} + \operatorname{O}^{2-}, \quad (7)$$

$$\underbrace{\operatorname{état oxydé}}_{\text{état réduit}} \operatorname{d}_{i}S = \frac{1}{T} \left(\mathcal{A}_{\operatorname{Fe}} d\zeta_{\operatorname{Fe}} + \mathcal{A}_{\operatorname{S}} d\zeta_{\operatorname{S}} \right). \quad (8)$$

A l'équilibre chimique :

$$\mathcal{A}_{Fe} = \mathbf{0}, \quad \mathcal{K}_{Fe} = \frac{C_{Fe^{2+}} P_{O_2}^{1/4}}{C_{Fe^{3+}}}$$

$$\mathcal{A}_{S} = \mathbf{0}, \quad \mathcal{K}_{S} = \frac{P_{SO_2} P_{O_2}^{1/2}}{C_{SO_4^{2-}}}.$$
(9)

2. Oxydoréduction des liquides formateurs de verre

2.1 Modèle thermodynamique

► La règle des phases de Gibbs impose : $f = C - R - \varphi + 2$.

- R équilibres chimiques à satisfaire ;
- C équilibres chimiques à satisfaire entre les phases :

$$\mu_{O_2}(\textit{Verre}) = \mu_{O_2}(\textit{Gaz}) \Rightarrow C_{O_2} = \underbrace{\mathcal{L}_{O_2}}_{\text{Constante de Henry}} P_{O_2}, (10)$$

$$\mathcal{L}_{O_2} = A_{O_2}^{(s)} e^{B_{O_2}^{(s)}/T}$$
. (11)

2. Oxydoréduction des liquides formateurs⁸ de verre

2.1 Modèle thermodynamique

R réactions d'oxydo-réduction :

$$\sum_{i=1}^{N_I} \nu'_{ii} A_i + \sum_{j=1}^{N_g} \beta'_{ij} G_j \Longrightarrow \sum_{i=1}^{N_I} \nu''_{ii} A_i + \sum_{j=1}^{N_g} \beta''_{ij} G_j, \ r \in [1; R].$$
(12)

▶ A_i : espèce ionique $i \in [1; N_i]$; G_j : espèce gazeuse $j \in [1; N_g]$

$$\frac{\mathcal{A}_r}{\mathcal{R}\mathcal{T}} = -\frac{\Delta G_r}{\mathcal{R}\mathcal{T}} - \ln \prod_{i=1}^{N_l} C_{A_i}^{\nu_{ri}} \prod_{j=1}^{N_g} C_{G_j}^{\beta_{rj}}, \qquad (13)$$

$$\nu_{ri} = \nu_{ri}'' - \nu_{ri}', \forall i \in [1; N_i], \ \beta_{rj} = \beta_{rj}'' - \beta_{rj}', \forall j \in [1; N_g].$$
(14)

Les équilibres entre les deux phases sont pour les Ng gaz :

$$\alpha_j G_j(g) \rightleftharpoons G_j(f), \forall j \in [1; N_g]$$
(15)

$$C_{G_j} = \mathcal{L}_{G_j} P_{G_j}^{\alpha_j}, \ \mathcal{L}_{G_j} = A_{G_j}^{(s)} e^{B_{G_j}^{(s)}/T}.$$
 (16)

2. Oxydoréduction des liquides formateurs ⁹ de verre

2.1 Modèle thermodynamique

- équilibre thermodynamique entre un liquide et une phase atmosphérique à P_{atm}.
 - K_r : obtenue par équilibrage chimique², par électrochimie³.
 - *L*_{Gj}: obtenues par calcul (gaz physiquement dissous), par équilibrage et analyse chimique (gaz chimiquement dissous)⁴.
- Modèle résolu numériquement par la recherche des zéros de R + Ng équilibres des réactions et des gaz entre les deux phases sous Python.

2. M.-H. CHOPINET/D. LIZARAZU/C. ROCANIÈRE : L'importance des phénomènes d'oxydo-réduction dans le verre, in : C. R. Chim. 5.12 (déc. 2002), p. 939–949.

3. C. RÜSSEL : Iron oxide-doped alkali-lime-silica glasses, in : Glastech. Ber 66 (1993), p. 68–74.

4. F. W. KRÄMER : Solubility of gases in glass melts, in : Properties of glass-forming melts, 2005, chap. 13, p. 405–482.

2. Oxydoréduction des liquides formateurs ¹⁰ de verre

2.2 Affinage d'un verre à vitre

 Verre affiné au sulfate à faible concentration en Fe. A 1280°C :

$$\mathcal{R}_{\rm Fe} = \frac{C_{\rm Fe^{2+}}}{C_{\rm Fe}} = 0,186,$$
 (17)

$$C_{\mathrm{SO}_3^{2-}} = 0,49$$
 % masse. (18)

- K_r prises dans les 2 références ⁵.
- \mathcal{L}_{G_i} issues de Beerkens.

^{5.} CHOPINET/LIZARAZU/ROCANIÈRE : L'importance des phénomènes d'oxydo-réduction dans le verre (cf. note 2); R. G. C. BEERKENS : Analysis of advanced and fast fining processes for glass melts, in : Advances in Fusion and Processing of Glass III, New York 2003, p. 3–24.

2. Oxydoréduction des liquides formateurs ¹¹ de verre

2.2 Affinage d'un verre à vitre

2. Oxydoréduction des liquides formateurs de verre

2.2 Affinage d'un verre à vitre

FIGURE $3 - C_i$ vs T pour un verre équilibré avec ou sans atmosphère.

2. Oxydoréduction des liquides formateurs ¹ de verre

2.2 Affinage d'un verre à vitre

Le volume de gaz produit lors des réactions :

$$V_{\text{gaz}} = \frac{\mathcal{R}T \sum_{j=1}^{N_g} C_{G_j}(g)}{P_0} - V_{\text{gaz}}(T_0),$$
(19)

et le taux de production de gaz

$$J_{\rm gaz} = \frac{dV_{\rm gaz}}{dT} \frac{dT}{dt}.$$
 (20)

2. Oxydoréduction des liquides formateurs de verre

2.2 Affinage d'un verre à vitre

FIGURE 4 – V_{gaz} et J_{gaz} vs T.

Transfert de masse avec des bulles multicomposants.

Le volume des bulles change au cours du temps à cause d'un gradient de masse entre la bulle et le liquide.

FIGURE 5 – C_i vs. r.

FIGURE 6 – C_{O_2} autour d'une bulle en ascension.

• Pour une bulle en ascension, C_{G_i} change sur une couche très fine, δ :

$$J_{G_i} = \frac{\mathcal{D}_{G_i}\left(C_{G_i}^{\infty} - C_{G_i}^{S}\right)}{\delta} = \frac{2a}{\delta} \frac{\mathcal{D}_{G_i}}{2a} \left(C_{G_i}^{\infty} - C_{G_i}^{S}\right).$$
(21)

Le nombre de Sherwood est donc :

$$\mathbf{Sh}_{\mathbf{G}_{\mathbf{i}}} = \frac{\mathbf{2a}}{\delta}, \ Sh_{G_{i}} = f(Pe_{G_{i}}), \ \text{avec } \mathbf{Pe}_{\mathbf{G}_{\mathbf{i}}} = \frac{\mathbf{2aV}_{\mathsf{T}}}{\mathcal{D}_{\mathbf{G}_{\mathbf{i}}}}.$$
 (22)

FIGURE 7 – Sh_{O₂} vs. Pe_{O₂} et en fonction de C_{Fe} à $T = 1400^{\circ}C^{6}$.

^{6.} F. PIGEONNEAU : Mass transfer of rising bubble in molten glass with instantaneous oxidation-reduction reaction, in : Chem. Eng. Sci. 64 (2009), p. 3120–3129.

• H_2O , N_2 ; CO_2 ; O_2 and SO_2 .

$$\frac{dn_{G_i}}{dt} = 2\pi a \operatorname{Sh}_{G_i} \mathcal{D}_{G_i} (C_{G_i}^{\infty} - \mathcal{L}_{G_i} P_{G_i}^{\beta_{G_i}}), \quad (23)$$

$$\frac{3\mathcal{R}T \sum_{i=1}^{N_g} n_{G_i}}{4\pi a^3} = P_0 + \rho g(H - z) + \frac{2\sigma}{a}, \quad (24)$$

$$\frac{dz}{dt} = \frac{ga^2}{3\nu}. \quad (25)$$

 Système résolu numériquement par une méthode Runge-Kutta d'ordre 4 en temps.

FIGURE 8 – a/a_0 vs. t pour 2 verres à taux de fer différents $T = 1400^{\circ}$ C⁸.

7. F. PIGEONNEAU/D. MARTIN/O. MARIO : Shrinkage of oxygen bubble rising in a molten glass, in : Chem. Eng. Sci. 65 (2010), p. 3158–3168. 8. Ibid.

FIGURE 9 – $a (\mu m)$ vs. $\sqrt{t} (\sqrt{s})$ pour un verre à vitre ⁹.

^{9.} D. BOLORÉ/F. PIGEONNEAU : Spatial distribution of nucleated bubbles in molten glasses undergoing coalescence and growth, in : J. Am. Ceram. Soc. 101.5 (2018), p. 1892–1905.

- Une bulle échange $\sim 10^{-8}$ mol/s.
- > Dans un verre en cours d'élaboration, $N_b \sim 10^8$ bulles/m³.

FIGURE $10 - N_b$ vs. 2a dans un verre en fusion ($T = 1300^{\circ}$ C) (données SGR/EV, N. McDonald).

3.2 Population de bulles

La consommation (libération) d'un nuage de bulles est un puits (une source) importante de gaz :

$$SO_4^{2-} \Rightarrow SO_2 + \frac{1}{2}O_2 + O^{2-}.$$
 (26)

3.2 Population de bulles

La consommation (libération) d'un nuage de bulles est un puits (une source) importante de gaz :

$$SO_4^{2-} \xrightarrow{\rightarrow} SO_2 + \frac{1}{2}O_2 + O^{2-}.$$
 (26)
puits

3.2 Population de bulles

La consommation (libération) d'un nuage de bulles est un puits (une source) importante de gaz :

$$SO_4^{2-} \underbrace{\leftarrow}_{\text{source}} SO_2 + \frac{1}{2}O_2 + O^{2-}.$$
 (26)

3.2 Population de bulles

La consommation (libération) d'un nuage de bulles est un puits (une source) importante de gaz :

$$SO_4^{2-} \leftarrow SO_2 + \frac{1}{2}O_2 + O^{2-}.$$
 (26)

Le transfert de masse entre le nuage de bulles et le verre est donc essentiel pour l'état chimique du verre à l'issue de l'élaboration. Étude du couplage entre l'oxydo-réduction et l'affinage (transfert de masse)

- ► Milieu spatialement homogène ⇒ seul t est considéré.
- Milieu = liquide + N_{cl} classes de bulles, $N_{b,k}$ ($k = 1, N_{cl}$).
- R réactions sont prises en compte :

$$\sum_{i=1}^{N_l} \nu'_{ri} A_i + \sum_{j=1}^{N_{ga}} \beta'_{rj} G_j \Longrightarrow \sum_{i=1}^{N_l} \nu''_{ri} A_i + \sum_{j=1}^{N_{ga}} \beta''_{rj} G_j, \quad (27)$$
$$\frac{dC_{A_i}}{dt} = \sum_{r=1}^{R} \nu_{ri} \dot{\zeta}_r, \text{ pour } i = 1 \text{ à } N_l, \qquad (28)$$
$$\frac{dC_{G_j}}{dt} = \sum_{r=1}^{R} \beta_{rj} \dot{\zeta}_r + S_{b,G_j}, \text{ pour } j = 1 \text{ à } N_g. \quad (29)$$

- ► Milieu spatialement homogène ⇒ seul t est considéré.
- Milieu = liquide + N_{cl} classes de bulles, $N_{b,k}$ ($k = 1, N_{cl}$).
- R réactions sont prises en compte :

$$\sum_{i=1}^{N_l} \nu'_{ri} A_i + \sum_{j=1}^{N_{ga}} \beta'_{rj} G_j \Longrightarrow \sum_{i=1}^{N_l} \nu''_{ri} A_i + \sum_{j=1}^{N_{ga}} \beta''_{rj} G_j, \quad (27)$$
$$\frac{dC_{A_i}}{dt} = \sum_{r=1}^{R} \nu_{ri} \dot{\zeta}_r, \text{ pour } i = 1 \text{ à } N_l, \qquad (28)$$
$$\frac{dC_{G_j}}{dt} = \sum_{r=1}^{R} \beta_{rj} \dot{\zeta}_r + S_{b,G_j}, \text{ pour } j = 1 \text{ à } N_g. \quad (29)$$

- ► Milieu spatialement homogène ⇒ seul t est considéré.
- Milieu = liquide + N_{cl} classes de bulles, $N_{b,k}$ ($k = 1, N_{cl}$).
- R réactions sont prises en compte :

$$\sum_{i=1}^{N_l} \nu'_{ri} A_i + \sum_{j=1}^{N_{ga}} \beta'_{rj} G_j \Longrightarrow \sum_{i=1}^{N_l} \nu''_{ri} A_i + \sum_{j=1}^{N_{ga}} \beta''_{rj} G_j, \quad (27)$$
$$\frac{dC_{A_i}}{dt} = \sum_{r=1}^{R} \nu_{ri} \dot{\zeta}_r, \text{ pour } i = 1 \text{ à } N_l, \qquad (28)$$
$$\frac{dC_{G_j}}{dt} = \sum_{r=1}^{R} \beta_{rj} \dot{\zeta}_r + S_{b,G_j}, \text{ pour } j = 1 \text{ à } N_g. \quad (29)$$

3.2 Population de bulles

• S_{b,G_i} s'obtient facilement en remarquant que

3.2 Population de bulles

► *S*_{b,Gi} s'obtient facilement en remarquant que

$$\frac{dn_{G_j}}{dt} = 2\pi a \operatorname{Sh}_{G_j} \mathcal{D}_{G_j} \left(C_{G_j} - \mathcal{L}_{G_j} P_{G_j}^{\alpha_{G_j}} \right).$$
(30)

3. Transfert de masse entre bulle et verre 3.2 Population de bulles

► S_{b.Gi} s'obtient facilement en remarquant que

$$\frac{dn_{G_j}}{dt} = 2\pi a \operatorname{Sh}_{G_j} \mathcal{D}_{G_j} \left(\mathcal{C}_{G_j} - \mathcal{L}_{G_j} \mathcal{P}_{G_j}^{\alpha_{G_j}} \right).$$
(30)

Pour la classe de bulle k de densité N_{b,k}, la quantité de gaz consommée est égale à

$$N_{b,k}\frac{dn_{G_j}}{dt} = 2\pi a_k \operatorname{Sh}_{G_j,k} \mathcal{D}_{G_j} \left(C_{G_j} - \mathcal{L}_{G_j} P_{G_j}^{\alpha_{G_j}} \right) N_{b,k}.$$
 (31)

3.2 Population de bulles

• S_{b,G_i} s'obtient facilement en remarquant que

$$\frac{dn_{G_j}}{dt} = 2\pi a \operatorname{Sh}_{G_j} \mathcal{D}_{G_j} \left(\mathcal{C}_{G_j} - \mathcal{L}_{G_j} \mathcal{P}_{G_j}^{\alpha_{G_j}} \right).$$
(30)

 Pour la classe de bulle k de densité N_{b,k}, la quantité de gaz consommée est égale à

$$N_{b,k}\frac{dn_{G_j}}{dt} = 2\pi a_k \operatorname{Sh}_{G_j,k} \mathcal{D}_{G_j} \left(\mathcal{C}_{G_j} - \mathcal{L}_{G_j} \mathcal{P}_{G_j}^{\alpha_{G_j}} \right) N_{b,k}.$$
 (31)

Ainsi, S_{b,Gi} est égal pour l'ensemble des classes :

$$S_{b,G_{j}} = -2\pi \mathcal{D}_{G_{j}} \sum_{k=1}^{N_{cl}} a_{k} \operatorname{Sh}_{G_{j},k} \left(C_{G_{j}} - \mathcal{L}_{G_{j}} P_{G_{j},k}^{\alpha_{G_{j}}} \right) N_{b,k}.$$
 (32)

- ► ∀t, équilibres chimiques vérifiés et l'état chimique s'adapte à consommation ou production de gaz.

$$\sum_{i=1}^{N_{l}} \frac{\nu_{ri}}{C_{A_{i}}} \frac{dC_{A_{i}}}{dt} + \sum_{j=1}^{N_{ga}} \frac{\beta_{rj}}{C_{G_{j}}} \frac{dC_{G_{j}}}{dt} = \frac{1}{K_{r}} \frac{dK_{r}}{dt}, \quad (33)$$

$$\sum_{k=1}^{R} M_{rk} \dot{\zeta_{k}} = \frac{d \ln K_{r}}{dT} \frac{dT}{dt} - \sum_{j=1}^{N_{g}} \frac{\beta_{rj}}{C_{G_{j}}} S_{b,G_{j}}, r \in [1; R] (34)$$

$$M_{rk} = \sum_{i=1}^{N_{l}} \frac{\nu_{ri}\nu_{ki}}{C_{A_{i}}} + \sum_{j=1}^{N_{g}} \frac{\beta_{rj}\beta_{kj}}{C_{G_{j}}}. \quad (35)$$

- ► ∀t, équilibres chimiques vérifiés et l'état chimique s'adapte à consommation ou production de gaz.

$$\sum_{i=1}^{N_{l}} \frac{\nu_{ri}}{C_{A_{i}}} \frac{dC_{A_{i}}}{dt} + \sum_{j=1}^{N_{ga}} \frac{\beta_{rj}}{C_{G_{j}}} \frac{dC_{G_{j}}}{dt} = \frac{1}{K_{r}} \frac{dK_{r}}{dt}, \quad (33)$$

$$\sum_{k=1}^{R} M_{rk} \dot{\zeta_{k}} = \frac{d \ln K_{r}}{dT} \frac{dT}{dt} - \sum_{j=1}^{N_{g}} \frac{\beta_{rj}}{C_{G_{j}}} S_{b,G_{j}}, r \in [1; R] (34)$$

$$M_{rk} = \sum_{i=1}^{N_{l}} \frac{\nu_{ri}\nu_{ki}}{C_{A_{i}}} + \sum_{j=1}^{N_{g}} \frac{\beta_{rj}\beta_{kj}}{C_{G_{j}}}. \quad (35)$$

3.2 Population de bulles

- ► ∀t, équilibres chimiques vérifiés et l'état chimique s'adapte à consommation ou production de gaz.

$$\sum_{i=1}^{N_{l}} \frac{\nu_{ri}}{C_{A_{i}}} \frac{dC_{A_{i}}}{dt} + \sum_{j=1}^{N_{ga}} \frac{\beta_{rj}}{C_{G_{j}}} \frac{dC_{G_{j}}}{dt} = \frac{1}{K_{r}} \frac{dK_{r}}{dt}, \quad (33)$$

$$\sum_{k=1}^{R} M_{rk} \dot{\zeta_{k}} = \frac{d \ln K_{r}}{dT} \frac{dT}{dt} - \sum_{j=1}^{N_{g}} \frac{\beta_{rj}}{C_{G_{j}}} S_{b,G_{j}}, r \in [1; R] (34)$$

$$M_{rk} = \sum_{i=1}^{N_{l}} \frac{\nu_{ri}\nu_{ki}}{C_{A_{i}}} + \sum_{j=1}^{N_{g}} \frac{\beta_{rj}\beta_{kj}}{C_{G_{j}}}. \quad (35)$$

3. Transfert de masse entre bulle et verre 3.2 Population de bulles

▶ Verre :
$$T = 1200^{\circ}$$
C ($\mathcal{R}_{Fe} = 0, 2, C_{Fe} = 0, 1$ % m et $C_{SO_3} = 0, 35$ % m) avec 5 classes de bulles ¹⁰ :

Classe, k	1	2	3	4	5
$N_{b,k}$ (m ⁻³)	$2, 2 \cdot 10^{7}$	1,2 · 10 ⁸	1, 2 · 10 ⁸	$5, 7 \cdot 10^{7}$	$1, 4 \cdot 10^{7}$
<i>a_k</i> (m)	$4,9 \cdot 10^{-5}$	$9,4 \cdot 10^{-5}$	$1, 5 \cdot 10^{-4}$	$2, 3 \cdot 10^{-4}$	$3, 3 \cdot 10^{-4}$

TABLE 1 – Densités volumiques et rayons initiaux des 5 classes de bulles.

- Seules SO₂ et O₂ sont considérées.
- Initialement, les bulles ne sont composées que d'O₂.

1.
$$dT/dt = 10$$
 K/min;

2. dT/dt = 1 K/min.

10. O. STAHLAVSKY et al. : The bubble effect on the redox state of glass, in : VIII International Seminar on Mathematical Modelling and Advanced Numerical Methods in Furnaces Design and Operation, Velké Karlovice 2005.

3. Transfert de masse entre bulle et verre 3.2 Population de bulles

FIGURE 11 – *a* (mm) vs. *T* (°C) pour les 5 classes à $\frac{dT}{dt} = 10$ K/min. FIGURE 12 – *a* (mm) vs. *T* (°C) pour les 5 classes à $\frac{dT}{dt} = 1$ K/min.

FIGURE 13 – C_{SO_3} total (% masse) vs. T (°C).

3.2 Population de bulles

FIGURE 13 – C_{SO_3} total (% masse) vs. T (°C).

Le verre chauffé à un taux de chauffe élevé est sursaturé en sulfate.

3. Transfert de masse entre bulle et verre 3.2 Population de bulles

FIGURE $14 - \mathcal{R}_{Fe}$ vs. T (°C).

3. Transfert de masse entre bulle et verre 3.2 Population de bulles

FIGURE 14 – \mathcal{R}_{Fe} vs. T (°C).

Le verre chauffé à un taux de chauffe élevé est plus oxydé.

4. Synthèse

- Modèle thermodynamique permet de décrire facilement les interactions entre le verre et une phase gazeuse.
- Modèle cinétique basé sur le fait que les réactions sont infiniment rapides.
- Les taux de croissance des bulles changent fortement lorsque la consommation des gaz est prise en compte.
- A fort taux de chauffe, la chimie du verre à l'issue de l'affinage n'est pas à l'équilibre thermodynamique.

4. Synthèse

- Modèle thermodynamique permet de décrire facilement les interactions entre le verre et une phase gazeuse.
- Modèle cinétique basé sur le fait que les réactions sont infiniment rapides.
- Les taux de croissance des bulles changent fortement lorsque la consommation des gaz est prise en compte.
- A fort taux de chauffe, la chimie du verre à l'issue de l'affinage n'est pas à l'équilibre thermodynamique.
- Remerciements :
 - Marie-Hélène Chopinet, Jean-Marc Flesselles, Dorothée Martin, Olivier Mario, Neill McDonald.
 - Étudiants : Éric Grignon (stage M2 2007), Marion Perrodin (thèse 2011), Helena Kočárková (thèse 2011), Damien Boloré (thèse 2017), Luiz Pereira (doctorant CEA).

► Selon Bastick¹¹, N(t) :

FIGURE 15 - N vs. *t* en creuset (système fermé).

$$N(t) = N_0 e^{-\alpha t}, \tag{36}$$

11. R. E. BASTICK : Laboratory experiments on the refining of glass, in : Symposium sur l'affinage du verre, Paris 1956, p. 127–138.

 N(t) peut-être vu comme le degré de conversion de la matière première en liquide d'un réacteur fermé (RF) :

$$X_{RF}(t) = 1 - \frac{N(t)}{N_0} = 1 - e^{-\alpha t}.$$
 (37)

- Pour un réacteur ouvert (RO), le processus se fait le long des trajectoires des particules fluides :
 - X_{RO} est une intégrale pondérée par la distribution des temps de séjour E(t)¹²:

$$X_{RO} = \int_0^\infty X_{RF}(t) E(t) dt = 1 - \hat{E}(\alpha), \quad (38)$$
$$\hat{E}(\alpha) = \int_0^\infty e^{-\alpha t} E(t) dt. \quad (39)$$

^{12.} J. VILLERMAUX : Génie de la réaction chimique, Paris 1993.

- Deux types de réacteurs modèles :
 - Réacteur parfaitement agité :

$$E(t) = \frac{e^{-t/\langle t \rangle}}{\langle t \rangle}, \qquad (40)$$
$$\hat{E}(p) = \frac{1}{1+\langle t \rangle p}. \qquad (41)$$

Réacteur piston :

$$E(t) = \delta(t - \langle t \rangle), \qquad (42)$$

$$\hat{E}(p) = e^{-\langle t \rangle p}. \qquad (43)$$

(t) est égal à

$$\langle t \rangle = \frac{m}{\dot{m}}.$$
 (44)

 Pour un four verrier, on considère une combinaison des 2 types de réacteurs modèles.

FIGURE 16 – DTS des réacteurs modèles et d'un four float.

- Verre plat : moins 1 bulle de 200 µm/18 m²
 - 10 bulles/m³, $1 X(\alpha) = 10^{-7}$.
- Verre bouteille : moins 1 bulle/bouteille
 - 10^4 bulles/m³, $1 X(\alpha) = 10^{-4}$.
- D'après Bastick, à 1350°C :

$$lpha \approx 5 \cdot 10^{-4} \, {
m s}^{-1},$$
 (45)
 $au \approx 2000 \, {
m s}.$ (46)

