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Abstract

A big challenge of sustainable power systems is to integrate climate vari-
ability into the operational and long term planning processes. In this paper,
we focus on the run-of-river based hydro power generation. In particu-
lar, we deal with the modeling of this form of power production based on
weather variables. Translating time series of meteorological data (precipi-
tations, snowfall and air temperature) into time series of run-of-river based
hydro power generation is not an easy task as it is necessary to capture the
complex relationship between the availability of water and the generation
of electricity. Indeed, this kind of hydro power generation is limited by the
flow of the river in which the power plants are located. Moreover, the water
flow is a nonlinear function of the weather variables and the physical char-
acteristics of the river basins. Finally, the impact of the weather variables
on the runoff may occur with a certain delay, whose determination depends
on physically based phenomena (e.g., melting snow–local temperature).

This work aims at formalizing an efficient technique for the prediction
of the run-of-river based hydro power generation. Several well-established
regression algorithms based on machine learning are used and compared
in terms of correlation coefficient, adjusted coefficient of determination,
mean absolute and mean square percentage errors. We consider three case
studies: France, Portugal and Spain. Results indicate that the models based
on ensemble of trees and neural networks exhibit the best performance for
evaluating both the short term and the long term hydro power generation.

1 Introduction

Hydro power is the world’s most dominant (86%) source of renewable electrical
energy. Installed hydro power capacity continues to grow quickly with the aim
at decreasing carbon-based or nuclear power generation. This is in line with the
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Figure 1: Europe map of Köppen climate classification.

objective of the European Community strategy, which called for a mandatory
target of a 20% share of renewable energies by 2020.

Hydro power is either produced in run-of-river plants with low hydraulic
heads or from water stored in accumulation lakes with hydraulic heads up to
several hundred meters, possibly with recirculation of water between lower and
higher level reservoirs in so-called pump-storage systems. Among these existing
technologies, we focus on the run-of-river based one, which is the most affected
by meteorology. This exists alongside rivers and does not contain large reservoir
to store or regulate the flow of the adjacent river. Typically, it generates elec-
tricity according to the water flow. This latter is defined by seasonal patterns
of precipitations, evaporation, drainage, and other characteristics, which all de-
pend on the geography and weather peculiarity of a location [1]. Although the
seasonal patterns of wet and dry seasons are relatively predictable, they are not
guaranteed and can change from one year to another [2]. An assessment of
climate change impacts on hydroelectric generation in different climate regions
requires an in-depth analysis of individual case studies. Given the dominance
of local conditions, generalizations are difficult, sometimes even for small re-
gions. Another difficulty is the determination of the temporal relation between
the hydro power generation and meteorological variables. In fact, the impact
of the weather variables on the water flow, and on the corresponding power
production, may occur with a certain delay, whose determination depends on
physically based phenomena. For instance, the melting process of snow at high
altitude requires a certain amount of time which depends on the local air tem-
perature. Therefore, the increment of the water flow due to the snow fallen
during the winter period may occur only after many months with an increase of
the temperature. Due to climate changes, such delay is not easy to be predicted.

In this paper, we consider the challenging problem of predicting the daily to-
tal national run-of-river hydro power generation based on the impact of weather
variables such as precipitation, snow fall and air temperature of some climate re-
gions. We consider climate regions based on the Europe map of Köppen climate
classification [3] shown in Figure 1 and we analyze three case studies: France,
Portugal, and Spain. This goal will be addressed by using well-established ma-
chine learning (ML) techniques. ML has been gaining more and more impor-
tance in many areas of science, finance and industry [4]. Typically it is used
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Figure 2: Machine learning workflow.

to predict an outcome based on a set of features. Clearly, in the case of the
present paper, the outcome is the run-of-river hydro power generation and the
features are the climate variables. The workflow of ML procedure is given in
Figure 2. The procedure starts by training a so-called (supervised) learner with
a set of data including the observed outcome and feature measurements. This
leads to build a prediction model, which enables predicting the unobserved out-
come based on a different set of input features. A good learner is one that
accurately predicts such an outcome. In the statistical literature, the features
are often called the predictors or the inputs, whereas the outcomes are called
the responses or the outputs. Along this paper, we will make use of all these
terms. Based on an evaluative metric such as the correlation coefficient, the
adjusted coefficient of determination, the mean absolute and mean square per-
centage errors, we will apply and compare five ML algorithms with the aim at
determining a model of highest accuracy.

It has been shown that machine learning methods and neural networks are
well-suited to the domain of wind speed and wind power prediction [5] and also
for solar radiation and solar production [6]. On the other hand, ML techniques
have been applied for the run-off forecast, see [7] and references therein, but
at the best of our knowledge few attention has been dedicated in the literature
to the prediction of run-of-river based hydro power generation from meteo-
rological data. The reason for this lack could be due to the fact that, while
the spatio-temporal relation between wind speed-wind power generation (solar
radiation-solar power) is local [8], the one between weather variables and river
run-off and hydro power generation is way more complex, as we mentioned
above. It also interesting to look at the percentages of hydro, wind and so-
lar electric power production generated over the total one in 2017 in the three
countries under consideration. In France, we have 10.1%, 4.5%, and 1.7%, re-
spectively, (it was 12%, 3.9%, and 1.6% in 2016), in Portugal it is 12.8%, 20.6%,
and 1.7%, respectively, (it was 28.1%, 20.7%, and 1.4% in 2016), finally, in Spain
we have 7.5%, 19%, and 3.2% (14.5%, 19%, and 3.1% in 2016). As highlighted
by these data, differently from wind and solar production, there exists a big
variability of hydro power generation from a year to another. This behavior,
which is mainly due to climate changes, makes the prediction very challenging,
but decisive for the optimal power planning [9, 10]. To give a better insight of
this phenomena, in Figure 3 we plot the standard deviation around the calen-
dar mean of the observed capacity factor of the hydro power generation (to be
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(a) France (b) Portugal

(c) Spain

Figure 3: Calendar mean and standard deviation of the observed capacity factor
computed over 22 years (1982-2004).

defined later) over 22 years.
This work is carried on within the CLIM2POWER project [11], whose overall

goal is to provide improved guidance to power systems’ stakeholders by combin-
ing high resolution weather variables and enhanced energy system model. The
predicted values of hydro power production computed in this paper as well as
the variability analysis of the prediction error will be used as input for stochastic
versions of energy system models (TIMES [12]) and unit commitment models
for understanding the impact of the climate variability on the energy systems.

The paper is organized as follows. In Sections 2 and 3, we present the
data collection and the ML algorithms used in this paper. Details about the
design of the performed experiments and the evaluation criteria are given in
Sections 4 and 5, respectively. We dedicate Section 6 to the presentation of the
main results. Section 7 concludes this paper providing final remarks and future
research ideas.

2 Data collection

Meteorological data include the time series of precipitations, air temperature
and snow depth. The historical meteorological dataset is extracted by the ECEM
project [13] and is based on the ERA-Interim Reanalysis. The precipitation bias
adjustment is carried out by calibrating the parameters of the gamma distri-
bution of ERA-Interim based on the E-OBS (http://eca.knmi.nl/download/
ensembles/ensembles.php) dataset (version 12.0, from 1979 to 2016) of grid-
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ded observed precipitation. Air temperature bias-adjusted datasets is measured
about 2m height from the surface. Snow depth is provided as the average over
a relevant time period. This variable is calculated by ERA-Interim and is not
bias adjusted. Datasets are on a standard 0.5° latitude/longitude grid. The me-
teorological data at daily level are aggregated considering the same clustering
procedure used in the ECEM demonstrator [13].

The historical data for hydro power generation are again from the ECEM
project. In particular in this paper, we consider the capacity factor, which is
defined as the unitless ratio between the actual power and the installed capac-
ity, assumed to be unchanged in the time period considered in this document.
Note that the lack of hydro power generation historical data is a serious issue.
Only starting from 1 January 2015, energy demand and generation data were
systematically collected at hourly time resolution for almost all countries in Eu-
rope, see [14]. This period is however very short to build models aiming at
reproducing climate variability effects. Therefore, we rely on the huge effort
made by the ECEM project team, for gathering, cleaning and homogenizing
different datasets and we use those hydro energy data for our work.

3 ML Algorithms

We use five regression methods: Linear Regressor (LR) [4], Support Vector Ma-
chine (SVM) [15], Boosted Ensemble of Trees (BT) [16], Random Forests (RF)
[17] and Artificial Neural Networks (ANN) [4]. The first four regression meth-
ods are implemented in the Statistics and Machine Learning Toolbox 11.4 [18],
while the ANN is in the Deep Learning Toolbox 12.0 [19] in Matlab R2018b. In
the following, we give a few details of the algorithms cited above.

The most simple algorithm is the linear regression, which consists of finding
the best-fitting straight line through the points of input and response variables.
The best-fitting line is called a regression line. The most common type of linear
regression is obtained by minimizing a loss function which is the squared error
between the observed values and the linear combination of the inputs.

In SMV regression, the goal is to find a function that has at most ε deviation
from the target points for all the training data and at the same time is as flat as
possible. SVM regression uses a type of loss function called ‘insensitive’ which
was proposed by Vapnik [20]. This function defines a ε-tube so that if the
predicted value is within the tube the loss is zero, while if the predicted point
is outside the tube, the loss function is the magnitude of the difference between
the predicted value and the radius ε of the tube. The optimization problem
derived in [20] is solved by considering its dual formulation. Nonlinearities are
then added to the SVM algorithm by mapping the training patterns onto a high-
dimensional feature space using some fixed nonlinear functions (kernels). It is
well known that SVM regression performance (estimation accuracy) depends
on a good setting of hyper parameters, which are the regularization constant
used in the definition of the objective function, the width ε of the insensitive
zone and the kernel parameters.

The RF algorithm is based on an ensemble of decision trees. Random vectors
are used for growing each tree in the ensemble. A tree is grown by considering a
random selection of training set. Then each tree depends on the values of a ran-
dom vector sampled independently and with the same distribution for all trees
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in the forest. In [17], it has been proved that a significant accuracy improve-
ment is gained when randomness is introduced for the parameter selection in
ensemble of trees.

The BT algorithm is also based on ensemble of decision trees. The difference
is that the predictors are not trained independently but in an iterative manner:
every training instance gets a weight assigned that is adapted in every iteration.
In every iteration, a new predictor is added to the ensemble and afterwards the
prediction quality of the ensemble is tested on the training set instances.

The ANN model simulates the characteristics of the human neural network
to deal with distributed parallel information. A classical ANN architecture con-
sists of input, hidden, and output layers with node activation functions. The
activation function used in the Matlab toolbox is the sigmoid function in the
hidden layer and a linear function in the output layer. Careful attention must
be put on the building of the model, as too complex ANN will easily overfit
the training data. The most used technique for estimating the ANN model’s
parameter is the Levenberg-Marquardt learning method.

The tuning of the hyper parameters for all the algorithms is implemented by
using the optimization procedure offered by the Matlab toolboxes and the trial
and error approach.

3.1 Hybrid method

Recently, it has been shown that the ensemble of machine learning techniques
may improve the prediction accuracy [6, 21]. The idea goes as follows: one
first uses several ML algorithms to obtain the predicted response, then some
combination of the algorithms’ outputs is built. In this paper, we simply apply
a weighted linear combination of the two best methods for each country. Simi-
larly to [21], we consider the weights derived from each model’s mean absolute
percentage error (MAPE), to be defined in Section 5, over the validation set and
we consider the output of the hybrid method to be

ŷhyb = w1ŷM1 + w2ŷM2,

where wi =
MAPE−1

i

MAPE−1
1 +MAPE−1

2

, i = 1, 2 and ŷM1 and ŷM2 being the outputs of

the two ML algorithms with the best accuracy. This means that ŷhyb is obtained
by giving more importance, that is a bigger weight, to the algorithm’s output
with a smaller MAPE.

4 Experiment design

The experiments aim at formalizing an ML model of highest accuracy for the
prediction of the capacity factor of the run-of-river-based hydro power genera-
tion at daily level.

The first step in the ML workflow is the training phase. Let us indicate with
Ttrain = {t1, ..., tj , ..., tN} a given daily spaced time interval, where t1 and tN
are respectively the initial and final date in the ISO8601 format ‘YYYY-MM-DD’
and tj is the j-th day of this interval. We assume that over the training period
we collect the data corresponding to
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• Month, Day in Ttrain

• Air temperature, i.e., the time series AT = [ATt1 , ..., ATtN ]

• Precipitation, i.e., the time series P = [Pt1 , ..., PtN ]

• Snow depth, i.e., the time series SD = [SDt1 , ..., SDtN ]

• Capacity factor of hydro power generation, i.e., the time series y = [yt1 , ..., ytN ].

Note that the time series of air temperature, precipitations and snow depth
correspond to the regions in [13]. For each one of the three case studies, we se-
lected different regions’ data. For instance, in the case of France, we considered
time series corresponding to the fourteen national regions, plus one German
region and the two Swiss ones. This choice was suggested by the fact that those
neighbor regions have a similar climate, as shown in Figure 1. Moreover, we
have taken into consideration the location of the run-of-river based hydro power
plants and the corresponding basins [22]. Similarly, by crossing the climate map
with the information in [23], in the case of Portugal we collect data relative to
the two national regions and four neighbor Spanish ones. Finally, for Spain,
besides the eleven national regions, we also select part of France and the two
Portuguese regions, see also [24].

As we explained above, the effects of the weather data on hydro power
generation occur with a certain delay. In order to counting that, we enrich
the list of inputs by considering that the hydro power generation at a day ti is
influenced by

• the air temperature at the preceding k1-th day with respect to ti, where
k1 is computed by considering the lag that maximizes the sample Pearson
correlation [25] between the time series of the hydro power generation y
and of the air temperature AT , say ρ(y,AT );

• the precipitation at the preceding k2-th day with respect to ti, where k2 is
computed similarly to k1 by considering ρ(y, P );

• the sum of precipitation in the last k2 + 1 days with respect to ti, with k2

defined above;

• the sum of precipitation in the last k3 days with respect to ti, where k3 is
the lag which maximizes ρ(y, sumP ), with sumP being the moving sum
of the precipitations;

• the snow depth at the preceding k4-th day with respect to ti, where k4 is
computed by evaluating the lag which maximizes ρ(y, SD).

Depending on the country, not all the above listed datasets are relevant for
the prediction of the hydro power generation. Then, in order to choose if a
certain time series is used as input in the ML algorithms, we compute the cor-
relation ρ between this time series and that of the response over the training
period. Then, this dataset is added to the list of predictors if |ρ| is bigger than a
certain threshold ρ̄. This choice was implemented as we observed that adding
inputs whose correlation with the response is lower that a chosen threshold does
not improve the prediction in terms of the evaluation criteria to be presented
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below. Moreover, it is well-known that predictors generated as linear combina-
tions of input variables may improve the accuracy of the learner. Then, in this
paper, we also add to the input the meteorological data aggregated considering
the national average.

For efficient learning, all input features as well as the output data are nor-
malized by subtracting the mean and dividing by the standard deviation [4],
which are computed over the training period. Then, the predicted hydro gener-
ation is re-transformed using the same normalization parameters.

Once the predictors are selected, these are used for training a learner. The
way of learning depends on the ML algorithm selected. We use the ML algo-
rithms presented in Section 3, and we generate several models for determining
the one which provides the highest accuracy.

5 Model evaluation

In this section, we introduce the criteria selected for evaluating the prediction
accuracy of the ML algorithms.

We are now in the second part of the ML workflow in Figure 2. Once a model
has been built, we can use it for the prediction of the response by considering
a new dataset of features. Such features are of the same type of the inputs de-
scribed above, but corresponding to the time interval chosen for the prediction.
For instance, if the time series of the air temperature over the training period
was used for the generation of the model, now the time series of the air tem-
perature over the new time interval will be used for the prediction. We also set
the lags ki, i = 1, .., 4 to the values computed in the training phase. The main
difference here is that the input list does not include the time series of the hydro
power generation, which instead will be the final output of this second phase.

As in this section we wish to measure the prediction accuracy of the ML
algorithms, we will perform the second phase of the ML workflow over a time
interval in which the time series of the response is actually known. We call
Ttest = {τ1, ..., τM} this daily spaced time interval and we indicate with ȳ =
[ȳτ1 , ..., ȳτM ] the time series of the observed capacity factor over this testing
period. From now on, we will use the term ‘modeled’ instead of ‘predicted’
output for the results of the ML process, which we indicate as ŷ = [ŷτ1 , ..., ŷτM ].
It is important to highlight that the testing period is distinct from Ttrain and
that ȳ is not used as input to the model, but it will be used only for reason of
comparison.

For the performance evaluation of the regression models used in this report,
we consider the following measures:

• Correlation coefficient (R)

R =
cov(ȳ, ŷ)

σȳσŷ
,

where cov is the covariance, and σȳ and σŷ are the standard deviation of
ȳ and ŷ, respectively. It is a measure of the strength and direction of the
linear relationship between the observed and the modeled variables.
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• Adjusted R-squared (R̄2)

R̄2 = 1− (1−R2)
M − 1

M −m− 1
,

where M is the number of observations, m is the number of predictors
and R2 is the determination coefficient, that is the square of the correla-
tion coefficient. It compares the explanatory power of regression models
that contain different numbers of predictors. The adjusted R-squared is a
modified version ofR2 that has been adjusted for the number of predictors
in the model.

• Mean Absolute Percentage Error (MAPE)

MAPE =
100

M

M∑
i=1

∣∣∣∣∣ ŷi − ȳiȳi

∣∣∣∣∣
• Mean Squared Percentage Error (MSPE)

MSPE =
100

M

M∑
i=1

(
ŷi − ȳi
ȳi

)2

MAPE and MSPE give a measure of the residual value between the ob-
served and the modeled responses in percentage terms.

6 Results

In this section, we analyze the performance of the ML algorithms presented in
Section 3 on two sets of experiments. First, we evaluate their accuracy for the
computation of the one-year-ahead daily capacity factor. Then, the best trained
models are used in the second experiments for estimating the response with a
lead time bigger than one year.

6.1 Modeling the one-year-ahead hydro power generation

Let us start with the first analysis. For each one of the case studies, we set
the training period T itrain such that t1 = 1982-01-01 and tN = (2003 + i)-
12-31, whereas for the testing period T itest we set τ1 = (2004 + i)-01-01 and
τM = (2004 + i)-12-31, with i ∈ {1, 2, ..., 12}. For each i and for each ML al-
gorithm, we generate a model which is used for computing the hydro power
generation over the period T itest. The values of the modeled response are com-
pared with the observed ones. Hence for each algorithm, we collect twelve
values of each evaluation coefficient. In Table 1, we present the worst and the
average performance of the ML algorithms. From this table, we can see that the
algorithms based on ensemble of trees, both RF and BT and also the artificial
neural networks perform quite well in most of the evaluative criteria. Moreover,
the hybrid method introduced in Section 3.1 seems to obtain a slightly better
accuracy than the RF algorithm in all the three case studies.
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Table 1: Performance evaluation of the ML algorithms for the computation of
the one-year-ahead run-of-river based hydro power generation for France (FR),
Portugal (PT) and Spain (ES). We highlight in orange the two ML algorithms
with the best performace and in yellow the results of the hybrid method ob-
tained by their combination.

Country ML min R avg R min R̄2 avg R̄2 max MAPE avg MAPE max MSPE avg MSPE

FR

RF 0.6461 0.8672 0.4077 0.7538 11.7623 8.4720 2.7961 1.5269

BT 0.6113 0.8412 0.3632 0.7094 13.7290 9.0403 3.3508 1.8065

LR 0.5963 0.7071 0.3448 0.4993 18.2396 12.9408 6.8176 3.3627

SVM 0.6137 0.8442 0.3662 0.7142 11.6795 8.6811 2.9344 1.6266

ANN 0.3294 0.6623 0.0935 0.4559 18.4999 13.7608 6.0919 3.6061

hyb 0.6394 0.8707 0.3990 0.7595 11.5576 8.2000 2.6991 1.4431

PT

RF 0.7498 0.9057 0.5340 0.8164 19.6537 12.4886 5.4753 2.5109

BT 0.7093 0.8889 0.4711 0.7856 21.0215 13.4691 6.5617 3.1715

LR 0.6591 0.8478 0.3980 0.7080 28.0094 17.5775 11.0646 4.7761

SVM 0.6044 0.8392 0.3245 0.6945 28.8882 17.4627 11.4810 4.6905

ANN 0.6445 0.8690 0.3896 0.7575 21.3948 12.9696 7.1421 3.6641

hyb 0.7058 0.9007 0.4898 0.8175 19.5963 12.5053 5.3985 2.5696

ES

RF 0.7498 0.9578 0.4990 0.9102 6.5761 4.0459 0.6980 0.3106

BT 0.6567 0.9417 0.3490 0.8795 7.3091 4.7837 0.8845 0.4417

LR 0.5329 0.8601 0.1804 0.7199 13.1970 10.4631 2.4494 1.5959

SVM 0.5417 0.8593 0.1913 0.7165 16.0668 10.6341 3.3280 1.6646

ANN 0.6267 0.9205 0.3049 0.8351 7.5446 6.3769 0.9904 0.6999

hyb 0.7211 0.9552 0.5119 0.9161 6.6079 4.1791 0.7041 0.3148

In Figures 4, 5, and 6, we report the results obtained by the RF algorithm
over the twelve testing periods. In particular, Figures 4(a), 5(a), and 6(a) show
the comparison of the observed and the modeled time series of the hydro power
generation capacity factor. Coherently with the evaluation criterion values, the
modeled response is quite close to the observed data for all the cases considered.
It is worthy to highlight that only testing data are shown in those figures. This
means that once the leaner has been trained, the resulting model is fed only
with a new set of meteorological input for the computation of the response.

Let us define the daily relative error at the calendar day j as follows∣∣∣∣∣ ŷj − ȳjȳj

∣∣∣∣∣, j ∈ {1, ..., 365},

where ŷ and ȳ are the modeled and the observed response, respectively. We
compute the calendar mean and the standard deviation of this error over T itest
for all i and we report these values in Figures 4(b), 5(b), and 6(b). We can
notice that the prediction is typically more accurate in the first part of the year
for France, whereas for the case of Portugal and Spain the variability of the
prediction error is smaller during the summer. By comparing these results with
Figure 3, as expected, we notice that the level of the daily relative error is well
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adjusted to the dynamics of the variability in the distribution of the data. In par-
ticular, in France graphs, we clearly have two distinct periods in the year: from
January to the end of July the relative error is uniformly distributed between 3%
and 7%, and from August to December the error increases to be uniformly dis-
tributed around 12%. This simple pattern is visible also in Figure 3(a) for same
period and level of the standard deviation. In Portugal, the error in the daily
prediction along the year is relatively uniformly distributed as well around 12%
with a short period apart from mid-August to end of October where the magni-
tude of the error is slightly smaller around 9%. Again this is in phase with the
pattern of the variability level that we find in the observations, see Figure 3(b).
The situation is similar for Spain, which is characterized by the same pattern of
the variability. The level of the relative error is slightly lower in the period of
the lowest level of production. This is what we observe also for Portugal, but it
is in contrast with the situation in France. It should be noticed that the overall
level of error for Spain is globally better than for Portugal and France. However,
this could be also due to the fact that the capacity factor values for Spain have
been renormalized differently.

For sake of completeness, let us consider that the modeled capacity factor
is given by the calendar mean of the observed response computed over the
training period. This is the red line in Figure 3. We compute the relative er-
ror between this value and the observed response. The calendar mean and the
standard deviation computed over the twelve testing years are depicted in Fig-
ure 7. As expected, these results show that the use of the calendar mean for the
prediction leads to a much less accurate model.

6.2 Relevance for long term modeling

The second set of experiments aims at showing how the best trained models
behave in terms of MAPE and adjusted R-squared values, when they are used
for computing the hydro power generation with a lead time bigger than one
year. In particular, in Figure 8, we present the performance the RF algorithm.
First, we show the variation of the evaluation measures, when an RF model,
which is built over a fixed training period, is used over several distinct testing
periods. For the results in Figure 8(a), we consider the training period Ttrain such
that t1 = 1982-01-01 and tN = 2004-12-31 and we generate a model by using the
RF algorithm. This model is then used for the prediction over the intervals T itest
with τ1 = (2004 + i)-01-01 and τM = (2004 + i)-12-31 and i = 2, ..., 12. These
results show that the trained model keeps the accuracy also for computing a
response with a bigger lead time. This can be seen by comparing this figure
with Table 1 in which MAPE and R̄2 are computed by performing a prediction
with a lead team equal to one year. This evaluation view also allows us to point
out countries or areas for which this modeling approach could be more sensitive.
In our study, this is the case for Portugal where we clearly see that some years
are quite difficult to be modeled, such as 2007, 2008 and 2015. These years
correspond to recent repeating events of very low level of rainfall that strongly
contrast with long term historical data.

Now let 2016 be the year chosen for the testing. Then for Ttest we have τ1 =
2016-12-01 and τM = 2016-12-31. The training period is T itrain such that t1 =
1982-01-01 and tN = (2016− i)-12-31, with i = 2, ..., 12 being the lead time. So,
we retrain the RF model with less and less input information and we evaluate
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the accuracy of the prediction over the same year. The results are depicted in
Figure 8(b) and show that the elimination of more recent meteorological and
energy data for the training set does not impact much the quality of prediction.

This second set of results are quite promising as they suggest that the pro-
posed approach could be applied also for long term prediction.

7 Conclusion and future works

This paper investigates the potential of using machine learning (ML) for pre-
dicting hydro power generation from meteorological data. We compared the
performance of five ML algorithms and selected the models with the highest ac-
curacy. The experiments showed that the algorithms based on ensemble of trees
and the artificial neural networks perform quite well in most of the evaluative
criteria. We also showed that the obtained models are quite stable and can be
applied also for the long term prediction of the hydro power generation.

Future works will be dedicated to the extension of the proposed approach
to other European countries. We also plan to evaluate the impact of the un-
certainty of the weather data on the model results. The idea is to measure
the variability of the predicted response for different meteorological data and
enrich the prediction with dedicated variability scenarios.

The prediction of the hydro power production along with the estimation of
the variability of the prediction error will be used within the CLIM2POWER
project for the generation of appropriate power production scenarios for the
optimal integration of renewable resources into existing power systems.

We will also study possible improvements in the ML prediction of hydro
power production based on a two-step methodology. First, we use the informa-
tion on the weather variables for predicting the river discharge of some selected
basins. Then, in the second step, we pass from the predicted river discharge to
the hydro power generation. The reason for this two-step approach is supported
by the more direct physical connection between the rainfall and the river flow
and the fact that the hydro power generation is typically a linear function of
this river discharge. The application of this new strategy to the Portuguese case
have shown promising results.
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(a)

(b)

Figure 4: RF models for the hydro power prediction in France: (a) Time series
of the observed and modeled capacity factor. (b) Calendar mean and standard
deviation of the prediction error computed over the twelve years of testing.
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(a)

(b)

Figure 5: RF models for the hydro power prediction in Portugal: (a) Time series
of the observed and modeled capacity factor. (b) Calendar mean and standard
deviation of the prediction error computed over the twelve years of testing.
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(a)

(b)

Figure 6: RF models for the hydro power prediction in Spain: (a) Time series of
the observed and modeled capacity factor. In theory, the capacity factor assumes
values in the range 0 and 1. In ECEM data, the capacity factor is obtained by
considering a fixed installed capacity along the years. This is the reason for
having a capacity factor bigger than one in this case. (b) Calendar mean and
standard deviation of the prediction error computed over the twelve years of
testing.
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(a) France

(b) Portugal

(c) Spain

Figure 7: Calendar mean and standard deviation of the prediction error com-
puted over the twelve years of testing. Here the modeled response is the calen-
dar mean of the observed data over the training period.

16



(a)

(b)

Figure 8: Performance of the RF algorithm for the prediction of hydro power
generation with a lead time bigger than one year. (a) Evaluation errors obtained
by considering a model trained over a fixed period for computing the response
over several different testing periods. (a) Evaluation errors for modeling the
response over the year 2006 obtained by training the RF algorithm with different
input data.
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