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Abstract
A big challenge of sustainable power systems is the integration of cli-

mate variability into the operational and long-term planning processes. In
this paper, we focus on the run-of-river based hydropower generation on a
European scale. In particular, we deal with the modeling of this form of
power production based on climate variables. Translating time series of cli-
mate data (precipitation and air temperature) into time series of run-of-river
based hydropower generation is not an easy task as it is necessary to capture
the complex relationship between the availability of water and the genera-
tion of electricity. Indeed, this kind of electricity generation is limited by the
flow of the river in which the power plants are located. Moreover, the water
flow is a nonlinear function of the climate variables and the geographical
characteristics of the river basins. Finally, the impact of the climate variables
on the runoff may occur with a certain delay, whose determination depends
on physically based phenomena (e.g., melting snow–local temperature). In
this work, we first compare well-established machine learning regression
algorithms to be used for modeling the run-of-river hydropower generation.
Then, the technique showing to have the best performance is used for pro-
ducing long-term estimates of hydropower capacity factors based on future
climate scenarios for each European country.

Keywords: Energy modeling; machine learning; hydropower generation; en-
ergy and climate systems.
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1 Introduction

Hydropower (HP) is the world’s most dominant (86%) source of renewable
electrical energy [1]. Installed hydropower capacity continues to grow quickly
with the aim at empowering the transition towards climate neutrality. This is in
line with the long-term objectives of the European Community strategy, which
called for fully decarbonized power generation by 2050. This means that more
than 80% of the EU’s electricity will be produced by renewable energy sources.
During 2018, more than 21.8 GW of renewable hydroelectric capacity was put
into operation worldwide (2.2 GW in Europe) [1].

Table 1: Top five EU countries by installed hydropower capacity (2019) (*ex-
cluding pumping storage).

Country Total Installed Capacitity(*) (RoR + Res) [MW] Total Generated [TWh]
Norway 28675 (992 + 27683) 139.51
Spain 20302 (1156 + 19146) 34.12
France 19234 (10955 + 8279) 63.10
Italy 14507 (10650 + 3857) 49.28

Austria 7998 (5558 + 2440) 16.29

Hydropower is either produced in run-of-river (RoR) plants with low hy-
draulic heads or from water stored in accumulation lakes with hydraulic heads
up to several hundred meters (Res), possibly with recirculation of water be-
tween lower and higher level reservoirs in so-called pump-storage systems.
Among these existing technologies, we focus on the run-of-river based one,
which is the most affected by climate. This exists alongside rivers and does
not contain large reservoir to store or regulate the flow of the adjacent river.
Typically, it generates electricity according to the water flow. This latter is de-
fined by seasonal patterns of precipitation, evaporation, drainage, and other
characteristics, which all depend on the geography and climate peculiarity of
locations [2]. Although the seasonal patterns of wet and dry seasons are rel-
atively predictable, they are not guaranteed and can change from one year to
another [3]. An assessment of climate change impacts on hydroelectric genera-
tion in different climate regions requires an in-depth analysis of individual case
studies. Given the dominance of local conditions, generalizations are difficult,
sometimes even for small regions. Another difficulty is the determination of the
temporal relation between the hydropower generation and climate variables.
In fact, the impact of the climate variables on the water flow, and on the corre-
sponding power production, may occur with a certain delay, whose determina-
tion depends on physically based phenomena. For instance, the melting process
of snow at high altitude requires a certain amount of time which depends on
the local air temperature. Therefore, the increment of the water flow due to the
snow fallen during the winter period may occur only after many months with
an increase of the temperature. Due to climate changes, such delay is not easy
to be predicted.
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(a) 2016 (b) 2050

Figure 1: Capacity factor of the run-of-river hydropower generation over 2016
(Source: ENTSO-E), and simulated values over 2050 under one of the climate
scenarios (A85) for four European countries.

An overview on the run-of-river HP generation of some European countries
for the years 2016 and 2050 is shown in Figure 1. In these figures, we can
observe the daily variation of the hydropower capacity factor and its variation
along the years. For instance, note a decrease of about 10% in the capacity
factor for Spain in the spring period of 2050. Indeed, as our results will show,
Western South and central Europe are expected to have a decrease in the an-
nual average RoR hydropower production at the target years 2030 and 2050.
It is also worthy to note the quite different shapes of the capacity factors for
these four countries. This happens even with the values belonging to Spain and
Italy, which are countries with similar climate (Mediterranean climate). More
details about the projections of climate data and of hydropower production are
provided in the next sections.

By what discussed so far, it is clear that the definition of a common hydro-
logical model for all European countries subject to different climate conditions
is not an easy task. In this paper, we use Machine Learning (ML) techniques
which have the advantage of catching specific trends and patterns in large vol-
umes of data. The obtained models along with the projection of climate data
are then used for the prediction of the daily national HP generation in terms of
capacity factor (i.e., fraction of produced power over the installed one) for all
European countries.

In the literature, it has been shown that machine learning methods are well-
suited to the domain of wind speed and wind power prediction [4] and also for
solar radiation and solar production [5]. ML techniques have also been applied
for the run-off forecast, see [6] and references therein, but at the best of our
knowledge few attention has been dedicated in the literature to the prediction
of run-of-river hydropower generation from climate data. The reason for this
lack could be due to the fact that, while the spatial-temporal relation between
wind speed-wind power generation (solar radiation-solar power) is local [7],
the one between climate variables, river run-off and hydropower generation is
way more complex, as we explained above.

It is also interesting to look at the percentages of hydro, wind and solar
power share of the electric power produced in 2018. For instance, in France,
we have 12.5%, 5.1%, and 1.9%, respectively (it was 10.1%, 4.5%, and 1.7% in
2017; Source: RTE), in Portugal it is 25.7%, 24.3% and 1.6%, respectively, (it was
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12.8%, 20.6%, and 1.7% in 2017; Source: REN ), finally, in Spain we have 13.5%,
19.8% and 4.6% (7.5%, 19%, and 3.2% in 2017; Source: REE). As highlighted
by these data, differently from wind and solar production, there exists a high
variability of hydropower generation from a year to another. This behavior,
which is mainly due to climate impact, makes the prediction very challenging,
but decisive for the optimal power planning [8, 9].

The recent paper [10] also applies machine learning for the modeling of
hydropower production based on climate data but with a completely different
goal. Indeed, the machine learning output is used to create hydropower hind-
casts to investigate the relationship between the North Atlantic Oscillation and
climate variables. Their analysis is focused on the past period 1979-2017, while
in this paper we use the best performing ML models for predicting the hydro-
electricity generation for the target years 2030 and 2050.

This work is carried on within the CLIM2POWER project [11], whose overall
goal is to provide improved guidance to power systems’ stakeholders by combin-
ing high resolution climate variables and enhanced energy system model. The
values of hydropower production computed in this paper will be then used as
input for stochastic versions of energy system models for assessing the impact
of the climate variability on the optimal operation of the EU power system. A
first attempt of a fully integrated analysis of climate impact on the European
power system is given in [12]. Some studies on the impact of climate change on
hydro-dominated power systems can be found in [13]-[14] for South America,
in [15] for Asia, in [16] Africa and, finally, in [17] for U.S.

The paper is organized as follows. In Section 3, we present the histori-
cal energy and climate data and we describe how the climate projections are
provided. Section 3 includes a brief description of the ML algorithms and the
evaluation criteria used in this paper. We dedicate Section 4 to the presentation
of the main results. Section 5 concludes this paper providing final remarks and
future research ideas.

2 Materials

2.1 Historical data

Climate data include the daily time series of precipitation (TP) and air tem-
perature (AT) remapped to the 6 km COSMO-REA grid. Reanalysis climate data
covering the period 1995-2019 are provided by one of the Clim2Power partners,
that is Deutscher Wetterdienst (DWD) [18].

Historical data of hydropower production aggregated at country level are
from the ENTSO-E Transparency Platform [19], where energy demand and gen-
eration data are systematically collected at hourly time resolution starting from
1 January 2015 to the current days. Although this period is relatively short,
we will show that our models are able to reproduce the climate impact on run-
of-river hydroelectricity production, although some extreme events are still dif-
ficult to be predicted. Nevertheless, we are confident that the validity of our
approach still holds and it will improve with the increase of historical data.
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2.2 Climate projections

In order to obtain climate projections, eleven combinations of Regional Climate
Models (RCM) and their driving Global Climate Models (GCMs) were selected
(Table 2) from the extensive database provided by the World Climate Research
Programme’s CORDEX initiative. Datasets are freely available through the Earth
System Grid Federation (ESGF) Nodes, and more information on the CORDEX
framework can be found in, e.g [20, 21]. Considering a single RCM-GCM com-
bination would imply analyzing only one of a large range of possible outcomes.
Instead, the use of several models guarantees a ‘better’ estimation, as a high
level of uncertainty performed by individual models is expected. Moreover, the
accuracy of a scenario is defined by both the RCM and its driving GCM. Averag-
ing climate model outputs is commonly done, yet the average might mask the
results and smooth the heterogeneity in climate change regimes.

The simulations cover the European domain (EURO-CORDEX), and the spa-
tial resolution considered for this study was the highest available, i.e., 0.11
(around 12.5 km) (EUR-11). For each climate variable, i.e., precipitation and
air temperature, daily time series were provided. Special attention needs to
be paid when analyzing the state of the climate system for short time periods.
In this context, simulations were provided along the twenty-first century focus-
ing on near-future and mid-century (20 years long centered at 2030 and 2050,
respectively).

Table 2: List of climate models generating the climate projections and scenarios.
Regional
Climate Model (RMC)

Driving
Global Climate Model (GCM)

Short
code

CLMcom-CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 A45 - A85
CLMcom-CCLM4-8-17 ICHEC-EC-EARTH B45 - B85
SMHI-RCA4 ICHEC-EC-EARTH C45 - C85
DMI-HIRHAM5 ICHEC-EC-EARTH D45 - D85
KNMI-RACMO22E ICHEC-EC-EARTH E45 - E85
IPSL-INERIS-WRF331F IPSL-IPSL-CM5A-MR F45 - F85
SMHI-RCA4 IPSL-IPSL-CM5A-MR G45 - G85
KNMI-RACMO22E MOHC-HadGEM2-ES H45 - H85
SMHI-RCA4 MOHC-HadGEM2-ES I45 - I85
MPI-CSC-REMO2009 MPI-M-MPI-ESM-LR J45 - J85
DMI-HIRHAM5 NCC-NorESM1-M L45 - L85

Regarding the main sources of uncertainty of climate projections, apart from
the ones already mentioned, such as the uncertainty inherent in the model by
itself, and the internal natural variability, the uncertainty of the climate scenar-
ios is also considered. Data comprises future projections under two different
Representative Concentration Pathways (RCPs 4.5 and 8.5), which are scenar-
ios that include time series of emissions and concentrations of the full suite of
greenhouse gases and aerosols and chemically active gases, as well as land use.
The RCP4.5 is an intermediate stabilization pathway in which radiative forcing
is stabilized at approximately 4.5 W/m2, while for RCP8.5 the radiative forcing
reaches greater than 8.5 W/m2 by 2100 and continues to rise for some amount
of time [22].
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(a) 2030

(b) 2050

Figure 2: Difference in the annual average temperature per country: compari-
son 2016 and projections for 2030 and 2050 under RCP 8.5.

The output of the climate projection models are adjusted with respected to
the reanalysis data for the year 2016 [23].
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(a) 2030

(b) 2050

Figure 3: Difference in the annual average precipitation per country: compari-
son 2016 and projections for 2030 and 2050 under RCP 8.5.

In Figures 2 and 3, we show the difference in the annual average tempera-
ture when our projections under RCP 8.5 are compared with the values in 2016.
The comparison here is taken with respect to 2016 and not with a longer his-
torical period, in order to be coherent with the hydropower generation analysis,
which is carried on considering the same reference year. This choice is linked to
the lack of historical energy data. In these figures, we only consider the coun-
tries with installed capacity bigger than 2 GW. Difference for RCP 4.5 can be
found in A. It is important to mention that our climate projections represent
different possible future trends regarding climate evolution. For instance, we
may have a drier PT with almost less 50% of annual precipitation in scenario
A85 or even an increase up to 25% in scenario G45 when compared with 2016.
Indeed, despite the updated and detailed information on climate projections
estimated from GCMs/RCMs, considerable uncertainties are involved, either re-
sulting from the unknown future evolution of GHG concentrations and other
forcing agents of the climate system, as well as climate model simplifications of
the chaotic behavior of the climate system [24, 25, 26].
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3 Methodology

3.1 Machine learning algorithms

Machine learning has been gaining more and more importance in many areas
of science, finance and industry [27]. Typically it is used to predict an outcome
based on a set of features. In the case of the present paper, the outcome is the
capacity factor of the run-of-river hydropower generation and the features are
the climate variables. The workflow of ML procedure is given in Figure 4.

Figure 4: Machine learning workflow.

The procedure starts by training a so-called (supervised) learner with a set
of data including the observed outcome and feature measurements. This leads
to build a model, which enables predicting the unobserved outcome based on
a different set of input features. A good learner is one that accurately predicts
such an outcome. In the statistical literature, the features are often called the
predictors or the inputs, whereas the outcomes are called the responses or the
outputs. Along this paper, we will make use of all these terms. Based on an
evaluative metric such as the correlation coefficient, the adjusted coefficient of
determination, the mean absolute and mean square percentage errors, to be
defined in Section 3.3, we will apply and compare five ML algorithms with the
aim at determining a model of highest accuracy.

We use five regression methods: Linear Regressor (LR) [27], Support Vector
Machine (SVM) [28], Boosted Ensemble of Trees (BT) [29] and Random Forests
(RF) [30]. The four regression methods are implemented in the Statistics and
Machine Learning Toolbox 11.4 [31]. In the following, we give a few details of
the algorithms cited above.

The most simple algorithm is the linear regression, which consists of finding
the best-fitting line through the points of input and response variables. The
best-fitting line is called a regression line. The most common type of linear
regression is obtained by minimizing a loss function which is the squared error
between the observed values and the linear combination of the inputs.

In SMV regression, the goal is to find a function that has at most ε deviation
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from the target points for all the training data and at the same time is as flat as
possible. SVM regression uses a type of loss function called ‘insensitive’ which
was proposed by Vapnik [32]. This function defines a ε-tube so that if the
predicted value is within the tube the loss is zero, while if the predicted point
is outside the tube, the loss function is the magnitude of the difference between
the predicted value and the radius ε of the tube. The optimization problem
derived in [32] is solved by considering its dual formulation. Nonlinearities are
then added to the SVM algorithm by mapping the training patterns onto a high-
dimensional feature space using some fixed nonlinear functions (kernels). It is
well known that SVM regression performance (estimation accuracy) depends
on a good setting of hyper parameters, which are the regularization constant
used in the definition of the objective function, the width ε of the insensitive
zone and the kernel parameters.

The RF algorithm is based on an ensemble of decision trees. Random vectors
are used for growing each tree in the ensemble. A tree is grown by considering a
random selection of training set. Then each tree depends on the values of a ran-
dom vector sampled independently and with the same distribution for all trees
in the forest. In [30], it has been proved that a significant accuracy improve-
ment is gained when randomness is introduced for the parameter selection in
ensemble of trees.

The BT algorithm is also based on ensemble of decision trees. The difference
is that the predictors are not trained independently but in an iterative manner:
every training instance gets a weight assigned that is adapted in every iteration
when a new predictor is added to the ensemble. Afterwards the prediction
quality of the ensemble is tested on the training set instances.

The tuning of the hyper-parameters for all the algorithms is implemented by
using the optimization procedure offered by the Matlab toolboxes along with
the trial and error approach.

Recently, it has been shown that the ensemble of machine learning tech-
niques may improve the prediction accuracy [5, 33]. The idea goes as follows:
one first uses several ML algorithms to obtain the predicted response, then some
combination of the algorithms’ outputs is built. In this paper, we simply apply a
weighted linear combination of the two best methods for each country. Similarly
to [33], we consider the weights derived from each model’s mean arctangent
percentage error (MAAPE), to be defined in Section 3.3, over the validation set
and we consider the output of the hybrid method to be

ŷhyb = w1ŷM1 + w2ŷM2,

where wi =
MAAPE−1

i

MAAPE−1
1 +MAAPE−1

2

, i = 1, 2 and ŷM1 and ŷM2 being the outputs

of the two ML algorithms with the best accuracy. This means that ŷhyb is ob-
tained by giving more importance, that is a bigger weight, to the algorithm’s
output with a smaller error.

3.2 Choice of the predictors

The experiments aim at formalizing an ML model of highest accuracy for the
prediction of the capacity factor of the run-of-river based hydropower genera-
tion at daily level for each EU country.
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The first step in the ML workflow is the training phase. Let us indicate with
Ttrain = {t1, ..., tj , ..., tN} a given daily spaced time interval, where t1 and tN
are respectively the initial and final date in the ISO8601 format ‘YYYY-MM-DD’
and tj is the j-th day of this interval. We assume that over the training period
we collect the data corresponding to

• Month, Day in Ttrain

• Air temperature, i.e., the time series AT = [ATt1 , ..., ATtN ]

• Precipitation, i.e., the time series TP = [TPt1 , ..., TPtN ]

• Capacity factor of hydropower generation, i.e., the time series y = [yt1 , ..., ytN ].

As we explained above, the effects of the climate data on hydroelectricity
generation occur with a certain delay. In order to count that, we enrich the list
of inputs by considering that the hydropower generation at a day ti is influenced
by

• the air temperature at the preceding k1-th day with respect to ti, where
k1 is computed by considering the lag that maximizes the sample Pearson
correlation [34] between the time series of the hydropower generation y
and of the air temperature AT , say ρ(y,AT );

• the precipitation at the preceding k2-th day with respect to ti, where k2 is
computed similarly to k1 by considering ρ(y, TP );

• the sum of precipitation in the last k2 + 1 days with respect to ti, with k2

defined above;

• the sum of precipitation in the last k3 days with respect to ti, where k3 is
the lag which maximizes ρ(y, sumP ), with sumP being the moving sum
of the precipitation;

Depending on the country, not all the above listed datasets are relevant for
the prediction of the hydropower capacity factor. Then, in order to choose if a
certain time series is used as input in the ML algorithms, we compute the cor-
relation ρ between this time series and that of the response over the training
period. Then, this dataset is added to the list of predictors if |ρ| is bigger than a
certain threshold ρ̄. This choice was implemented as we observed that adding
inputs whose correlation with the response is lower that a chosen threshold
does not improve the prediction in terms of the evaluation criteria to be pre-
sented below. Moreover, it is well-known that predictors generated as linear
combinations of input variables may improve the accuracy of the learner. Then,
in this paper, we also add to the input the climate data aggregated considering
the national average. A similar list of predictors was used also in [10]; here we
consider that the predictors are aggregated not only at country level but also at
regional one.

Once the predictors are selected, these are used for training a learner. The
way of learning depends on the ML algorithm selected. We use the ML algo-
rithms presented in Section 3.1, and we generate several models for determin-
ing the one which provides the highest accuracy.
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3.3 Model evaluation

In this section, we introduce the criteria selected for evaluating the prediction
accuracy of the ML algorithms.

We are now in the second part of the ML workflow in Figure 4. Once a model
has been built, we can use it for the prediction of the response by considering
a new dataset of features. These features are of the same type of the inputs de-
scribed above, but corresponding to the time interval chosen for the prediction.
For instance, if the time series of the air temperature over the training period
was used for the generation of the model, now the time series of the air temper-
ature over the new time interval will be used for the prediction. We set the lags
ki, i = 1, .., 4 to the values computed in the training phase. The main difference
here is that the input list does not include the time series of the hydropower
generation, which instead will be the final output of this second phase.

As in this section we wish to measure the prediction accuracy of the ML
algorithms, we will perform the second phase of the ML workflow over a time
interval in which the time series of the response is actually known. We call
Ttest = {τ1, ..., τM} this daily spaced time interval and we indicate with ȳ =
[ȳτ1 , ..., ȳτM ] the time series of the observed capacity factor over this testing
period. From now on, we will use the term ‘modeled’ instead of ‘predicted’
output for the results of the ML process, which we indicate as ŷ = [ŷτ1 , ..., ŷτM ].
It is important to highlight that the testing period is distinct from Ttrain and
that ȳ is not used as input to the model, but it will be used only for reason of
comparison.

For the performance evaluation of the regression models used in this report,
we consider the following measures:

• Correlation coefficient (R)

R =
cov(ȳ, ŷ)

σȳσŷ
,

where cov is the covariance, and σȳ and σŷ are the standard deviation of
ȳ and ŷ, respectively. It is a measure of the strength and direction of the
linear relationship between the observed and the modeled variables.

• Adjusted R-squared (R̄2)

R̄2 = 1− (1−R2)
M − 1

M −m− 1
,

where M is the number of observations, m is the number of predictors
and R2 is the determination coefficient, that is the square of the correla-
tion coefficient. It compares the explanatory power of regression models
that contain different numbers of predictors. The adjusted R-squared is a
modified version ofR2 that has been adjusted for the number of predictors
in the model.

• Mean Arctangent Absolute Percentage Error (MAAPE)

MAAPE =
100

M

M∑
i=1

arctan

(∣∣∣ ŷi − ȳi
ȳi

∣∣∣)
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• Symmetric Mean Absolute Percentage Error (sMAPE)

sMAPE =
100

M

M∑
i=1

∣∣∣ ŷi − ȳi
0.5(ȳi + ŷ)

∣∣∣
Note that we preferred to use MAAPE [35] and sMAPE [36] instead of the
classical MAPE as the actual capacity factor may include also zero or close
to zero values, then MAPE yields extremely large percentage errors.

4 Results

In this section, we compare the performance of the machine learning algorithms
mentioned above. This will guide us in the choice of the most suitable model to
be used for the long-term prediction of the RoR hydropower capacity factor.

4.1 Modeling the one-year-ahead hydropower capacity factor

We set the training period Ttrain with t1 = 2015-01-01 and tN = 2018-12-31,
whereas for the testing period Ttest we set τ1 = 2019-01-01 and τM = 2019-10-
31. For each ML algorithm, we generate a model which is used for computing
the capacity factor over the period Ttest.

In Figures 5, 6, 7, 8, 9, and 10(a)-(c), we report the comparison of the
observed and the modeled time series of the hydropower capacity factor both in
the training and the testing phases for some European countries with installed
capacity bigger that 2 GW. The modeled capacity factor is the one corresponding
to the ML model with the best performance, see Table 11.

Figures 5, 6, 7, 8, 9, and 10(b)-(d) show the scatter plot of the output models
and the observed capacity factor. We indicate with blue dots the values in the
period December-January-February (DJF), with orange circles the values in the
period March-April-May (MAM), with red dots for June-July-August (JJA) and,
finally, with green circles for September-October-November (SON).
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(a)

(b)

(c)

(d)

Figure 5: Country: AT. (a)-(c): Time series of the observed and modeled capac-
ity factor in the training and testing phases, respectively. (b)-(d): Scatter plot
of the modeled and observed capacity factor in the training and testing phases,
respectively.
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(a)

(b)

(c)

(d)

Figure 6: Country: DE. (a)-(c): Time series of the observed and modeled capac-
ity factor in the training and testing phases, respectively. (b)-(d): Scatter plot
of the modeled and observed capacity factor in the training and testing phases,
respectively.
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(a)

(b)

(c)

(d)

Figure 7: Country: ES. (a)-(c): time series of the observed and modeled capac-
ity factor in the training and testing phases, respectively. (b)-(d): scatter plot
of the modeled and observed capacity factor in the training and testing phases,
respectively.
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(a)

(b)

(c)

(d)

Figure 8: Country: PT. (a)-(c): Time series of the observed and modeled capac-
ity factor in the training and testing phases, respectively. (b)-(d): Scatter plot
of the modeled and observed capacity factor in the training and testing phases,
respectively.
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(a)

(b)

(c)

(d)

Figure 9: Country: FR. (a)-(c): Time series of the observed and modeled capac-
ity factor in the training and testing phases, respectively. (b)-(d): Scatter plot
of the modeled and observed capacity factor in the training and testing phases.
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(a)

(b)

(c)

(d)

Figure 10: Country: IT. (a)-(c): Time series of the observed and modeled capac-
ity factor in the training and testing phases, respectively. (b)-(d): Scatter plot
of the modeled and observed capacity factor in the training and testing phases.
Note that no data are available for the whole 2015, then the training phase is
performed only over three years.
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We can observe that the modeled response is, in general, quite close to the
observed data. In the training phase, the ML models tend to underestimate the
capacity factor values when these are greater than 0.6 for all the countries ana-
lyzed. This behaviour was also observed in [10]. As shown in Table 11, for coun-
tries with relevant RoR installed capacity (> 10 GW), such as Italy and France,
we obtain a correlation coefficient equal to 0.87 and 0.7 andMAAPE = 15.18%
and 17.19%, respectively. The worst results in terms of correlation coefficient
are for Ireland for which only R = 0.56 and MAAPE = 38.57%. It has to
be noted that almost 20% of the values for 2017 and 2018 are missing in the
ENTSO-E data for this country. We obtain also a lower performance for Portu-
gal (R = 0.60 and MAAPE = 56.04%). In fact, in Figure 8, we can notice that
also in the training phase, the model is not able to reproduce well the obser-
vations. A possible explanation for that is the fact that most of the run-of-river
hydropower plants in Portugal are located downstream of large water dams.
Then operational decisions affect the flow of the rivers and, consequently, the
power generation of RoR plants [37].

The correlation coefficient for the neighboring countries Austria and Ger-
many is about 0.7 with MAAPE = 16% and MAAPE = 10%, respectively. In
the case of Austria, the high values of capacity factors are underestimated by
the model also in the testing phase.

A lower accuracy is achieved in the MAM period both in Spain and Portugal.
In the latter case, in particular, in Figure 8(d), we can observe that the capacity
factor in the MAM period (orange circles) was particularly low if compared with
the historical data in 8(c). In order to investigate further this discrepancy with
the results obtained with our model, we considered the monthly anomalies of
temperature and precipitation in 2019. These are computed as difference be-
tween the monthly average temperature (or precipitation) in the testing period
and the monthly calendar mean computed over the training period (four years)
and given in percentage. By looking at Figure 11, we can see that both in Spain
and Portugal, the precipitation values are far from the historical values in the
MAM period. In particular, February and March were warmer and drier in 2019.
This may cause a lower observed capacity factor in April, which increases only
in May with an increment of rain fall. Our models were not able to accurately
predict that, probably due to the lack of historical data.

Another issue can be found in the prediction of the capacity factor for the last
two weeks of October 2019. Both in Spain and Italy, this month was warmer
with respect to the historical period (2015-2018), in particular, the monthly
temperature anomaly was almost +1C in Spain and about +2C in Italy, see
Figures 11 and 12. The monthly average precipitation was close to the historical
period, but exceptional rain falls happened at specific days of this month (21rst-
23rd for Spain and 24th for Italy) yielding a fast increase of HP generation in
the second part of this month. Finally, also for the case of France, the ML
model presents the largest error in the same period. As we can see in Figure 12,
October in France registered an exceptional amount of precipitation if compared
with average of the four previous years.

As preliminary conclusions of this testing phase, we find the results quite
satisfactory considered the limited quantity of available data. The modeled
capacity factor is close to the observed values and the performance evaluation
in Table 11 is quite good for almost all countries. Yet some particular event could
not be well predicted, but we are confident that the accuracy of ML models will
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improve with the increase of an historical database to be used in the training
phase.

20



(a) Temperature monthly anomalies - ES

(b) Precipitation monthly anomalies - ES

(c) Temperature monthly anomalies -PT

(d) Precipitation monthly anomalies - PT

Figure 11: Countries: ES and PT. Monthly anomalies in the temperature and
precipitation over 2019. 21



(a) Temperature monthly anomalies - IT

(b) Precipitation monthly anomalies - IT

(c) Temperature monthly anomalies - FR

(d) Precipitation monthly anomalies - FR

Figure 12: Countries: IT and FR. Monthly anomalies in the temperature and
precipitation over 2019. 22



4.2 Variability in the long-term prediction of the run-of-river
capacity factor

In this section, we present the results obtained by the ML algorithms with the
best performance for the long-term prediction of the RoR HP capacity factor. It
is worthy to mention also here that the time series of the climate projections
used in this paper cannot be considered as an estimation of the year-to-year
or season-to-season climate variables. Instead, they are estimations of average
conditions. Hence, for the prediction of HP generation over the years 2030
and 2050, for each climate model, we generate time series of hydroelectricity
generation as the average over 20 years centered in 2030 and 2050, respectively.

Let us start by considering the difference between the actual annual average
RoR HP generation in 2016 and the predicted values for 2030 and 2050. We
assume here that the installed capacity remains unchanged and equal to that
in 2016. In Figure 13, we show the results obtained for RCP 8.5. Values for
other EU countries in both RCP 4.5 and 8.5 are given in the corresponding
tables in C. In general, the annual average predicted values are close to the
reference year values. In the case of Italy, the increment in HP generation is
around +1%. The largest variation in percentage of HP production is forecast
for Portugal with a decrease up to −23% for 2030 and −25% for 2050. This is
in line with the climate projections of a warmer and dried region for RCP 8.5.
Also Spain is expected to have a decrease up to −3% in 2030 and −5% in 2050.
The results obtained for Austria and France show a big variability among the
possible scenarios. The interval of variation goes from −2% to −12% in 2030
and −3% to −14% in 2050.
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(a) 2030

(b) 2050

Figure 13: Difference in the annual average hydropower generation per coun-
try: comparison 2016 and predictions for 2030 and 2050 under RCP 8.5.

Yet there are strong limitations of using only these average behaviors for fu-
ture power generation assessment in Europe. In fact, to give a coherent picture
of the future variability in HP generation in each country we need to consider
the calendar variability of capacity factors, the variability induced by the differ-
ent future climate models, and the variability associated to the sliding window
of 20 years around each target year.

As an example, we show the time series of the capacity factor and of the
precipitation along 20 years centered in 2030 and 2050 for some of the EU
countries with large installed hydropower capacity as Austria, France, Portugal
and Italy. The results shown in Figures 14, 15, 16 and 17 are obtained by
considering the climate projection model A85. From this figures, we can see
that the largest variability is found in MMA period in Portugal and SON period
in France. In particular, in the first case, the capacity factor values are within
the interval 0.3-0.7. This is in line with the range of variation found also in the
observations for the same period as shown in Figure 8(b). The lowest values
are achieved during JJA period, when we also observe a small variability of the
precipitation for all the 20 years. Note also that the predicted 20-year average
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capacity factor is 10% smaller than the one in the reference year 2016. For the
case of France, SON is the most uncertain period for precipitation as shown in
Figures 15(e)-(f). This yields a larger interval of variation for the capacity factor
between 0 to 0.4. The amplitude of the variation interval for Austria and Italy
remains almost uniform along the target years. As depicted in Figures 5 and 10,
these amplitudes are about 0.2 for Austria and 0.08 for Italy.

It is interesting to show how the variability of the hydropower generation
reflects that of the climate projections. In order to have a deeper insight of
that, let us consider the country that showed to have the largest interval of
variations, e.g., Portugal. We select now the climate projection model ‘F’ and
we are interested in showing how the HP capacity evolves from 2030 under RCP
4.5 to 2050 under RCP 8.5 based on the precipitation projections. At this aim,
we report in Figure 18, the boxplots built by considering the weekly average of
the 20-year window data centered in 2030 (or 2050). The blue dots are the
weekly average values in the reference year 2016. The computed values of the
capacity factor are presented in Figure 18(a)-(b), while the precipitation values
are given in Figure 18(c)-(d). First of all, we can see that both in 2030 F45 and
2050 F85 the maximum values of the predicted capacity factor are smaller than
those in 2016 for the period going from May to October. The reason for a bigger
decrease of hydropower production in the last scenario could be understood by
looking at the values of precipitation. Indeed, the first part of the year 2050
shows a smaller variability in the precipitation with few outliers and 90% of
data points distributed below the value of 10 mm. We also observe a smaller
variability in the dried season, so as observed for the capacity factor.
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(a) 2030 (b) 2050

(c) 2030 (d) 2050

Figure 14: Country: AT. Variability of the capacity factor and precipitation along
20 years: maximum and minimum envelops (black), calendar mean of the 20-
year time series centered in 2030 (or 2050) (red), and observed values in 2016
(blue).
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(a) 2030 (b) 2050

(c) 2030 (d) 2050

Figure 15: Country: FR. Variability of the capacity factor and precipitation
along 20 years: maximum and minimum envelops (black), calendar mean of
the twenty-year time series centered in 2030 (or 2050) (red), and observed
values in 2016 (blue).
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(a) 2030 (b) 2050

(c) 2030 (d) 2050

Figure 16: Country: PT. Variabily of the capacity factor and precipitation along
20 years: maximum and minimum envelops (black), calendar mean of the
twenty-year time series centered in 2030 (or 2050) (red), and observed val-
ues in 2016 (blue).
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(a) 2030 (b) 2050

(c) 2030 (d) 2050

Figure 17: Country: IT. Variability of the capacity factor and precipitation along
20 years: maximum and minimum envelops (black), calendar mean of the
twenty-year time series centered in 2030 (or 2050) (red), and observed val-
ues in 2016 (blue).

29



(a) Capacity factor F45 (2030)

(b) Capacity factor F85 (2050)

4.3 Accessing the worst case scenarios

As we mentioned, the results produced in this paper will be used as input in en-
ergy system models for analyzing the climate influence on the optimal operation
of power systems. From the point of view of optimal energy planning problem,
beside the value of the capacity factor obtained averaging over the twenty-year
window centered in 2030 and 2050, it is also interesting to have access to the
worst case scenario. In the case of the present paper, this corresponds to the
minimum annual average capacity factor computed over the twenty predicted
time series. In Figure 19, we depict the worst case capacity factor obtained for
each one of the climate models and the values of the observed capacity factor
in the reference year. Also from this perspective, we can see that Portugal is
expected to be the most impacted by climate changes as the daily time series of
the eleven scenarios are all smaller than the observed capacity factor almost for
every day of 2050. Yet a high variability among the different scenarios is found
in this country in the first five months of the year where the values vary from 0.2
to 0.7. Still staying with the Iberian Peninsula, we can see a decrease of more
than 10% of the Spanish capacity factor in the dried period starting in June. For
France and Austria, the minimum values of the capacity factors for each models
fall below the ones in the reference year in the second part of the year (begin-
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ning of July to the end of November). This can be also observed in the winter
period in Germany (November-December) and Norway (January-March).

Once again we highlight the diverse possible scenarios involving the dif-
ferent countries. Our methodology offers to power systems’ stakeholders and
energy system modelers the possibility of addressing the variability of the hy-
dropower production under the future climate conditions described in this pa-
per.

(c) Precipitation F45 (2030)

(d) Precipitation F85 (2050)

Figure 18: Country: PT. Variability of the capacity factor and precipitation along
20 years corresponding to the climate models F45 for 2030 and F85 for 2050.
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(a) PT

(b) ES

(c) IT

(d) FR

(e) AT

(f) DE

(g) NO

(h) RO

Figure 19: Variability of the worse case capacity factor for 2050 under RCP 8.5
for some EU countries.
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5 Conclusion

Europe is expected to strongly expand its wind and solar power capacity by
2050 to meet its climate goals. In an interconnected system, balancing these
highly intermittent sources by hydropower will also involve a European wide
evaluation of the variability of hydropower generation for future climatic con-
ditions.

The methodological framework described in this paper offers the possibility
of addressing this issue. The two main ingredients are: the formalization of an
accurate model and the long-term climate forecasts.

The models are built to translate time series of climate variables into time se-
ries of hydropower capacity factor. At this aim, we investigate the performance
of several machine learning (ML) methods. The testing phase showed that ML
has a good performance in modeling the hydropower capacity factor for almost
all European countries. Some errors observed in this phase are due to the lack
of historic hydropower generation data. Although this is an important issue
now, it will be naturally fixed with time and the methodology used in this paper
will still hold and earn more value.

Climate projections are from EURO-CORDEX and consist of 11 models and
two RCP scenarios, .i.e., 4.5 and 8.5. The accurate choice in the selection of the
models combination allows expressing the variability of the climate behavior for
the target years 2030 and 2050.

The combination of ML models and climate projections provide an overview
of the long-term variability of capacity factors at country scale for Europe. The
results show, in general, a decrease of hydropower in both RCP 4.5 and 8.5. The
strongest impact of the temperature increase on the RoR hydropower produc-
tion, we found in the Western South Europe. In particular, in the Iberian Penin-
sula, our result show a reduction up to −25% in Portugal and −5% in Spain for
2050 RCP 8.5. A high variability among the several scenarios is shown by the
central western countries such as Austria and France with a decrease up to 14%
2050 under RCP 8.5.

Although there are still limitations in this work, it represents a first attempt
to access the variability of the future climate scenarios on the run-of-river hy-
dropower production. Our results should be seen as possible realizations of
hydropower generation scenarios related to possible future climate conditions.

Future works will be dedicated to the model of the uncertainty of the long-
term projections of the daily RoR hydropower generation. The idea is to build
a stochastic model for this uncertainty whose dynamics aim to reproduce the
statistical characteristics of the prediction deviation with respect to its modeled
long-term mean, and so be able to enrich the ML prediction with probabilistic
anomalies indicators aggregated at the scale of countries.
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A Climate projections

Table 3: Difference in the annual average precipitation: historical values in
2016 [mm] and projections [%] for 2030 under RCP 4.5.

Country 2016 [mm] A45 [%] B45 [%] C45 [%] D45 [%] E45 [%] F45 [%] G45 [%] J45 [%] L45 [%] H45 [%] I45 [%]
AT 3.47 -4.32 1.73 -1.44 4.61 13.26 -13.26 6.92 -0.29 5.19 0.00 -10.37
BE 2.67 14.98 -3.75 6.37 -15.73 4.87 -0.75 23.22 25.84 3.75 -3.75 -5.62
BG 2.33 -14.16 5.58 6.44 -3.00 5.58 11.59 16.31 -11.59 1.72 2.58 4.72
CH 4.59 -5.45 -3.92 3.27 -1.09 17.65 3.27 13.73 11.55 0.22 -2.61 -10.68
DE 2.81 6.05 1.42 19.93 -16.01 12.81 -11.03 14.23 23.13 3.56 -2.85 -9.25
ES 1.61 -13.66 -7.45 -1.24 -4.35 1.24 22.98 32.92 -7.45 -18.63 6.83 -3.11
FI 1.80 17.22 11.11 28.33 5.00 11.11 -4.44 -11.67 6.67 2.22 1.11 1.11
FR 2.56 6.64 -7.81 7.81 -10.16 3.91 20.31 37.89 19.92 -2.73 -4.30 3.91
HU 2.22 7.21 5.86 4.50 -1.35 17.12 3.15 13.51 -13.06 4.05 1.35 10.81
IE 2.57 1.56 13.62 19.07 -8.17 -11.28 -17.12 -19.07 0.39 -0.78 -0.78 -8.17
IT 2.68 -15.30 -10.45 -10.07 6.34 8.21 11.94 27.61 -6.72 -4.10 4.48 3.36
LT 2.11 39.34 21.33 3.32 -4.27 9.95 -6.64 -14.22 11.85 -10.90 1.42 -7.58
LV 1.84 29.35 24.46 17.93 -7.07 7.61 -9.78 -23.37 15.22 0.00 8.70 5.98
NO 3.11 0.64 0.32 3.86 -3.54 2.57 -8.68 -9.97 8.04 -6.75 -0.32 -2.25
PL 2.12 29.72 20.28 11.79 5.19 12.74 -7.08 -10.85 2.36 11.79 6.60 -2.83
PT 2.08 3.37 9.13 20.67 2.40 -7.21 -25.00 25.96 -16.83 -9.13 11.54 6.73
RO 2.79 -7.17 4.66 5.02 -8.60 4.66 3.94 26.88 -8.60 11.83 5.73 6.45
SI 2.97 -1.35 1.68 3.37 -8.42 3.03 -2.69 31.99 -5.72 -9.76 -0.67 -1.01
SK 2.24 6.25 9.38 1.79 10.27 8.04 -2.23 4.46 -2.23 2.23 11.16 15.18
UK 2.23 9.87 24.22 17.94 -8.52 -11.21 -15.70 -8.52 10.76 -1.79 -4.48 -2.24

Table 4: Difference in the annual average precipitation: historical values in
2016 [mm] and projections [%] for 2030 under RCP 8.5.

Country 2016 [mm] A85 [%] B85 [%] C85 [%] D85 [%] E85 [%] F85 [%] G85 [%] J85 [%] L85 [%] H85 [%] I85 [%]
AT 3.47 -6.05 8.93 -4.03 -8.65 12.10 19.02 12.39 -2.31 -7.49 -4.32 0.00
BE 2.67 9.36 -11.61 -4.12 11.99 14.23 15.73 -6.74 -13.86 -7.87 2.62 -6.37
BG 2.33 -20.17 -4.72 10.30 4.29 -10.30 2.58 8.15 -1.29 3.86 8.15 -6.44
CH 4.59 -3.92 7.63 12.42 -8.28 22.00 8.28 -7.19 -14.38 -6.75 -10.68 -8.71
DE 2.81 5.69 -2.14 1.42 1.78 23.49 14.95 -4.63 -13.17 -8.90 2.85 4.63
ES 1.61 -22.98 -1.24 0.62 -12.42 -3.73 -25.47 -23.60 -17.39 -6.83 -16.77 -9.32
FI 1.80 6.11 33.33 26.11 15.00 0.00 1.11 -12.78 12.78 -1.67 10.56 4.44
FR 2.56 -3.91 -6.25 1.95 -11.72 17.97 -5.47 -23.44 -11.33 -3.13 -11.33 -18.75
HU 2.22 -17.12 14.86 3.15 1.80 8.56 -8.11 15.32 -11.71 -13.06 -6.76 7.66
IE 2.57 18.29 3.50 -1.17 14.79 0.39 4.28 -2.33 -0.39 12.45 -11.28 -0.78
IT 2.68 -22.01 -2.99 -3.73 -9.70 -5.60 7.09 -1.87 -10.07 6.34 -18.28 -17.91
LT 2.11 10.43 32.70 18.48 5.69 30.81 22.27 7.11 4.27 -1.90 6.16 8.53
LV 1.84 25.54 28.26 33.15 11.41 18.48 20.65 -2.17 8.15 14.13 10.87 17.93
NO 3.11 14.47 11.25 6.43 22.19 1.61 0.64 -5.79 7.72 10.93 4.18 2.25
PL 2.12 -10.38 32.08 -2.83 -8.96 16.98 16.04 19.34 -11.79 -12.74 1.42 1.42
PT 2.08 -40.87 -10.58 -11.06 -21.63 -5.77 -36.54 -28.85 -20.67 -10.10 -27.40 -23.08
RO 2.79 -17.20 6.09 5.02 -1.43 -6.09 10.75 23.30 -6.09 -5.02 -0.72 1.79
SI 2.97 -14.81 8.75 -2.36 -10.10 2.69 8.08 8.75 -6.06 15.82 -11.78 -12.46
SK 2.24 -17.86 12.95 -1.79 -6.70 8.04 2.68 18.75 -0.45 -16.96 -4.02 2.68
UK 2.23 23.77 1.79 1.35 4.93 1.35 5.83 0.90 -4.93 8.07 -8.07 -4.93
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Table 5: Difference in the annual average precipitation: historical values in
2016 [mm] and projections [%] for 2050 under RCP 4.5.

Country 2016 [mm] A45 [%] B45 [%] C45 [%] D45 [%] E45 [%] F45 [%] G45 [%] J45 [%] L45 [%] H45 [%] I45 [%]
AT 3.47 -4.03 3.75 3.46 10.95 -4.90 -10.09 10.09 -1.15 -11.53 -1.15 1.15
BE 2.67 17.98 -6.37 -21.72 -2.25 3.37 1.12 22.10 -7.49 -11.24 25.09 -0.75
BG 2.33 -12.45 6.87 -0.43 9.44 6.87 8.15 10.30 3.00 1.29 -12.45 -3.43
CH 4.59 -2.83 -8.06 -4.79 13.07 -1.74 7.63 15.90 -2.40 -12.20 11.98 -2.18
DE 2.81 7.47 1.78 -18.15 9.61 16.01 -9.61 15.30 -6.05 -12.81 21.71 1.07
ES 1.61 -14.91 -9.94 -6.21 -2.48 -4.97 31.06 34.16 0.00 -10.56 -4.35 -19.88
FI 1.80 20.56 13.33 4.44 11.67 31.11 -5.00 -3.89 5.00 8.89 10.00 10.00
FR 2.56 8.59 -12.89 -14.45 -1.95 1.95 26.17 37.89 -8.20 -0.78 19.53 -3.52
HU 2.22 2.70 8.56 0.90 13.96 0.45 6.76 18.02 -4.95 6.76 -11.26 1.35
IT 2.68 -14.93 -14.18 5.97 7.46 -13.43 15.30 28.73 0.37 0.37 -6.34 -5.60
LT 2.11 36.02 23.70 -5.21 14.69 3.79 -4.27 -10.90 1.42 -8.06 14.69 -8.06
LV 1.84 29.35 27.72 -5.98 9.78 21.20 -6.52 -19.57 13.04 8.70 19.57 4.89
NO 3.11 0.64 2.57 -3.86 1.29 8.04 -6.11 -5.47 3.54 2.25 7.07 -3.86
PL 2.12 30.66 23.11 3.30 14.62 8.02 -5.19 -6.60 0.94 -4.25 5.19 10.85
PT 2.08 2.40 4.81 0.00 -13.46 15.87 38.46 35.10 -3.37 -7.21 -16.83 -9.62
RO 2.79 -5.73 5.73 -6.09 6.09 2.87 2.15 23.66 1.79 3.58 -9.68 9.32
SI 2.97 -2.36 -1.35 -6.40 1.35 -1.68 2.02 37.04 -7.74 -4.71 -3.70 -11.78
SK 2.24 6.70 13.39 8.48 7.59 -2.68 1.79 9.82 2.68 10.27 -1.79 2.23
UK 2.23 10.31 21.08 -13.00 -14.35 15.25 -14.80 -6.73 -8.07 -5.83 9.42 -0.90

Table 6: Difference in the annual average precipitation: historical values in
2016 [mm] and projections [%] for 2050 under RCP 8.5.

Country 2016[mm] A85 [%] B85 [%] C85 [%] D85 [%] E85 [%] F85 [%] G85 [%] J85 [%] L85 [%] H85 [%] I85 [%]
AT 3.47 2.02 8.93 -2.02 16.43 0.00 24.50 12.97 -7.78 -4.90 -1.44 -4.61
BE 2.67 15.36 -10.86 7.12 17.60 -7.49 18.35 -11.24 1.50 -7.12 -10.11 -7.87
BG 2.33 -15.02 -4.29 9.44 -4.29 3.86 -1.29 0.00 7.30 -15.02 -12.02 5.58
CH 4.59 0.65 7.19 -7.19 23.97 15.25 12.42 -11.33 -15.25 -15.47 -11.33 -6.10
DE 2.81 10.32 0.71 0.36 27.76 0.71 17.79 -7.47 2.85 4.27 -11.03 -5.69
ES 1.61 -28.57 -6.21 -14.29 -7.45 -0.62 -27.33 -24.84 -25.47 -20.50 -14.91 -5.59
FI 1.80 9.44 33.89 14.44 -0.56 28.89 13.33 -5.00 17.22 11.11 17.22 7.22
FR 2.56 -3.52 -7.42 -14.45 17.58 0.39 -4.69 -25.78 -17.19 -23.44 -5.86 -2.34
HU 2.22 -9.91 13.06 7.66 13.51 3.60 0.90 17.12 -11.71 1.80 -8.11 -5.41
IT 2.68 -20.90 -3.73 -5.60 -5.60 -1.49 12.69 -2.99 -22.76 -23.88 -6.72 4.85
LT 2.11 18.48 27.01 4.74 33.65 21.33 32.23 7.58 10.43 6.64 7.11 -2.37
LV 1.84 34.78 28.26 7.61 20.65 31.52 32.61 1.09 19.02 19.02 10.87 15.76
NO 3.11 19.61 13.83 25.72 -2.25 8.04 5.47 1.29 9.97 7.07 7.07 8.04
PL 2.12 -5.19 30.66 -6.13 26.89 1.42 23.58 20.28 -1.42 -2.83 -7.55 -6.13
PT 2.08 -46.63 -12.02 -25.00 -11.54 -9.13 -32.69 -24.04 -41.35 -39.90 -12.50 -9.62
RO 2.79 -10.39 2.15 2.51 0.72 2.51 15.05 16.13 -2.87 -5.02 -10.75 -0.72
SI 2.97 -10.10 6.06 -5.05 5.05 -1.35 14.81 10.77 -17.17 -16.50 -4.71 18.52
SK 2.24 -12.05 10.27 -0.89 13.84 0.89 10.27 24.55 -13.39 -4.02 1.34 -10.71
UK 2.23 24.66 0.90 1.79 0.45 0.45 9.42 1.79 -6.28 -7.17 -0.90 8.07

Table 7: Difference in the annual average temperature in Celsius Degrees: his-
torical values in 2016 and projections for 2030 under RCP 4.5.

Country 2016[C] A45 [C] B45 [C] C45 [C] D45 [C] E45 [C] F45 [C] G45 [C] J45 [C] L45 [C] H45 [C] I45 [C]
AT 6.85 0.74 0.17 0.2 0 -0.5 -0.38 -0.17 0.29 -0.1 0.39 0.88
BE 10.08 0.46 0.7 0.25 0.51 -0.26 -0.3 -0.47 -0.17 0.26 0.6 1.24
BG 11.16 0.75 -0.54 -0.07 -0.45 0.24 -0.44 -0.62 0.86 -0.21 1.37 0.71
CH 6.14 0.81 0.54 0.43 0.17 -0.14 -0.18 -0.03 -0.32 0.01 0.31 0.91
DE 9.16 0.62 0.4 0.22 0.55 -0.24 -0.55 -0.5 0.12 0.19 0.49 1.2
ES 14.22 1.26 0.84 0.75 0.48 -0.07 -0.12 -0.09 -0.18 0.48 0.74 0.94
FI 5.14 -0.25 0.54 0.62 0.64 0.74 -0.56 0.09 1.03 -0.4 0.38 1.05
FR 11.01 0.8 0.76 0.27 0.5 -0.22 -0.08 -0.22 -0.37 0.23 0.83 1.2
HU 10.65 0.46 -0.29 -0.25 -0.42 -0.9 -0.74 -0.59 0.83 -0.05 1.13 0.91
IE 9.75 0.31 0.67 0.67 0.51 0 -0.18 -0.12 -0.49 0.36 0.56 0.89
IT 11.86 0.77 0.38 0.32 0.01 -0.37 0.02 0.05 0.07 0.1 0.48 0.63
LT 7.20 0.1 0.04 0.23 0.51 -0.47 -1.47 -0.81 1.37 -0.42 0.22 1.08
LV 6.86 0.05 0.26 0.41 0.53 0.04 -1.11 -0.63 1.3 -0.54 0.14 0.78
NO 3.55 0.05 0.75 0.42 0.62 -0.24 0.05 0.41 0.66 0.41 -0.1 1.02
PL 8.93 0.27 -0.33 -0.34 0.41 -0.94 -1.24 -0.6 1.07 -0.16 0.62 1.24
PT 13.90 1.84 1.35 1.39 1.95 1.61 0.89 0.98 0.91 1.6 1.81 1.76
RO 9.80 0.41 -0.63 -0.08 -0.39 0.04 -0.82 -0.94 0.97 -0.07 1.33 0.63
SI 9.43 0.52 0.08 -0.03 0.09 -0.86 -0.29 -0.41 0.58 0.24 0.64 0.8
SK 8.65 0.34 -0.38 -0.22 -0.18 -0.96 -0.79 -0.4 0.84 0.09 0.85 1.25
UK 9.81 0.32 0.46 0.53 0.57 -0.05 -0.24 -0.16 -0.3 0.32 0.45 0.91
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Table 8: Difference in the annual average temperature in Celsius Degrees: his-
torical values in 2016 and projections for 2030 under RCP 8.5.

Country 2016 [C] A85 [C] B85 [C] C85 [C] D85 [C] E85 [C] F85 [C] G85 [C] J85 [C] L85 [C] H85 [C] I85 [C]
AT 6.85 1.33 0.09 0.64 1.13 1.36 -0.93 -0.11 -0.12 1.13 0.72 0.69
BE 10.08 1.2 0.09 0.35 0.99 1.04 -0.71 -0.03 0.07 0.76 1.58 0.9
BG 11.16 1.06 0.71 0.98 -0.2 1.72 0.13 0.25 -0.95 1.62 0.53 0.67
CH 6.14 1.13 0.36 0.53 1 1.19 -0.83 0.21 0.29 0.9 1.09 0.84
DE 9.16 1.27 0.05 0.41 1.19 1.14 -0.95 -0.34 0.2 0.91 1.31 0.73
ES 14.22 0.74 0.3 0.33 0.84 0.56 0.56 0.82 0.59 0.88 1.32 1.03
FI 5.14 1.4 0.25 0.75 2.81 -1.04 -1.01 -1.33 2.26 1.37 1.22 0.79
FR 11.01 0.86 0.5 0.69 0.92 0.88 -0.63 0.31 0.25 0.93 1.61 1.19
HR 11.42 1.19 0.25 0.6 0.75 1.24 -0.51 0.06 -0.09 1.22 1.02 0.79
HU 10.65 1.42 0.02 0.38 1 1.28 -0.73 -0.36 -0.38 1.57 0.68 0.65
IE 9.75 0.81 0.19 0.11 0.33 1.05 -0.46 -0.13 0.62 0.27 0.4 0.48
IT 11.86 1.13 0.46 0.61 0.58 0.95 -0.25 0.39 0.05 0.88 1.07 0.88
LT 7.20 1.69 -0.02 0.45 1.92 -0.06 -1.18 -1.17 1.72 1.17 0.84 0.66
LV 6.86 1.3 0.12 0.56 2.25 -0.34 -1.09 -1.31 2.05 1.25 1.01 0.58
NO 3.55 1.26 -0.25 0.04 1.57 0.03 -0.51 -0.43 1.5 0.93 0.65 0.66
PL 8.93 1.82 -0.39 0.55 1.4 0.87 -1.13 -0.8 0.38 1.02 0.63 0.57
PT 13.90 1.3 1.24 1.28 2.1 1.17 1.65 1.92 1.96 1.57 2.25 2.25
RO 9.80 1.07 0.34 1.04 0.42 1.65 -0.38 -0.17 -0.59 1.72 0.34 0.67
SI 9.43 1.16 0.24 0.64 0.94 1.28 -0.78 -0.01 -0.17 0.98 1.1 1.23
SK 8.65 1.42 -0.09 0.42 1.17 1.18 -0.94 -0.53 -0.24 1.31 0.51 0.7
UK 9.81 0.97 0.2 0.33 0.74 0.81 -0.56 -0.22 0.53 0.57 0.96 0.8

Table 9: Difference in the annual average temperature in Celsius Degrees: his-
torical values in 2016 and projections for 2050 under RCP 4.5.

Country 2016[C] A45 [C] B45 [C] C45 [C] D45 [C] E45 [C] F45 [C] G45 [C] J45 [C] L45 [C] H45 [C] I45 [C]
AT 6.85 1.17 0.59 0.59 -0.36 0.65 0.08 0.49 1.08 1.42 0.34 0.54
BE 10.08 0.86 1.06 1.17 -0.24 0.58 -0.05 0.03 1.49 1.88 -0.12 0.83
BG 11.16 1.05 -0.16 0.09 0.42 0.33 0.54 0.41 1.74 1.05 1.18 0.44
CH 6.14 1.17 1.08 0.69 0.12 0.9 0.14 0.64 0.95 1.48 -0.2 0.66
DE 9.16 1.08 0.78 1.2 -0.28 0.6 -0.18 0.07 1.35 1.85 0.13 0.71
ES 14.22 1.66 1.32 0.94 0.33 1.22 0.23 0.34 1.27 1.46 0.2 1.14
FI 5.14 0.38 0.99 1.51 0.81 0.99 0.16 0.73 1.5 2 0.96 0.26
FR 11.01 1.17 1.22 1.02 0 0.73 0.23 0.29 1.52 1.79 -0.21 0.87
HU 10.65 1.03 0.04 0.29 -0.72 0.37 -0.04 0.12 1.86 1.39 0.83 0.5
IE 9.75 0.51 0.76 1.06 0.12 0.76 -0.24 -0.15 1.05 1.32 -0.3 0.79
IT 11.86 1.1 0.9 0.5 -0.14 0.79 0.47 0.61 1 1.14 0.26 0.71
LT 7.20 0.58 0.42 1.24 -0.52 0.73 -0.83 -0.16 1.33 1.77 1.23 0.11
LV 6.86 0.57 0.66 1.25 0.02 0.85 -0.5 -0.02 1.23 1.54 1.17 0.05
NO 3.55 0.66 1.11 1.44 -0.11 0.81 0.42 0.9 0.86 1.8 0.82 0.71
PL 8.93 0.73 -0.01 1.12 -1.04 0.23 -0.62 0.09 1.61 1.9 1 0.27
PT 13.90 1.41 0.98 1.26 0.81 0.99 0.1 0.26 1.31 1.39 0.29 1.14
RO 9.80 0.82 -0.24 0.16 0.18 0.44 0.12 0.03 1.92 1.07 1.15 0.5
SI 9.43 1.05 0.61 0.6 -0.73 0.48 0.26 0.24 1.41 1.31 0.64 0.95
SK 8.65 0.87 -0.05 0.59 -0.79 0.39 -0.15 0.27 1.6 1.8 0.81 0.55
UK 9.81 0.63 0.65 1.26 0.06 0.68 -0.12 0.05 1.15 1.52 -0.19 0.79

36



Table 10: Difference in the annual average temperature in Celsius Degrees:
historical values in 2016 and projections for 2050 under RCP 8.5.

Country 2016 [C] A85 [C] B85[C] C85 [C] D85 [C] E85 [C] F85 [C] G85 [C] J85 [C] L85 [C] H85 [C] I85 [C]
AT 6.85 1.96 0.83 1.42 1.58 1.76 -0.32 1.27 1.57 1.66 1.09 1.29
BE 10.08 1.85 0.85 1.56 1.36 1.42 -0.21 1.04 2.39 1.76 0.96 1.14
BG 11.16 1.58 1.35 0 2.36 2 1.3 1.55 1.18 1.55 0.98 2.06
CH 6.14 1.74 1.24 1.42 1.55 1.78 -0.16 1.63 1.98 1.87 1.3 1.25
DE 9.16 2.02 0.75 1.69 1.43 1.41 -0.39 0.8 2.14 1.63 1.14 1.19
ES 14.22 1.5 1.21 1.38 1.01 1.4 1.3 1.79 2.26 1.94 1.41 1.46
FI 5.14 2.45 1.08 4.15 -0.46 1.79 -0.02 -0.13 2.46 2.25 2.77 2.19
FR 11.01 1.49 1.4 1.45 1.28 1.92 -0.07 1.44 2.39 2.03 1.16 1.38
GR 15.80 1.44 1.16 0.36 1.66 1.53 1.45 1.5 1.17 1.53 1.06 1.71
HU 10.65 2.01 0.65 1.12 1.55 1.32 -0.15 0.88 1.48 1.52 1 1.59
IE 9.75 1.21 0.8 0.98 1.42 0.81 -0.34 0.18 0.95 1 0.92 0.81
IT 11.86 1.68 1.3 0.99 1.28 1.64 0.53 1.52 1.9 1.86 1.13 1.25
LT 7.20 2.68 0.59 2.6 0.26 1.18 -0.39 -0.25 2 1.84 2.45 1.6
LV 6.86 2.29 0.75 3.08 0 1.37 -0.25 -0.34 2.2 1.83 2.72 1.81
NO 3.55 1.97 0.66 2.82 0.64 1.15 0.14 0.58 1.72 1.79 1.87 1.45
PT 13.90 1.28 1.14 1.58 0.81 1.33 1.3 1.77 2.2 2.08 1.53 1.31
RO 9.80 1.6 1 0.56 2.11 1.93 0.52 1.13 1.1 1.54 1.1 2.01
SI 9.43 1.77 1.04 1.2 1.46 1.69 -0.14 1.3 1.89 2.2 1.11 1.17
SK 8.65 2.12 0.48 1.47 1.4 1.37 -0.37 0.76 1.39 1.61 1.05 1.4
UK 9.81 1.53 0.94 1.51 1.23 1.24 -0.26 0.34 1.62 1.45 1.03 1.03
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B Performance of the ML algorithms

In Table 11, we show the values of the evaluation measures obtained in the
testing phase by the several ML methods. The column titled MAPEm is the clas-
sical MAPE obtained excluding zeros values (smaller that 10−3). We highlight
in yellow the two ML algorithms with the best performance.

Table 11: Performance evaluation of the ML algorithms for the computation of
the one-year-ahead run-of-river based hydropower capacity factor.

Country ML R R̄2 MAAPE sMAPE MAPEm

AT

RF 0.5695 0.2501 19.1438 18.7301 19.9850
BT 0.5344 0.2070 19.7603 19.8731 20.6018
SVM 0.5215 0.1919 19.5003 19.4096 20.5558
LR 0.7147 0.4570 16.2695 16.4476 16.7212
hyb 0.5497 0.2255 19.3084 19.3332 20.1526

BG

RF 0.8411 0.6693 65.5022 49.2937 96.5644
BT 0.8313 0.6508 60.6650 45.9549 86.3017
SVM 0.8350 0.6576 63.1719 47.7868 88.6060
LR 0.8729 0.7308 65.5586 49.4534 92.7665
hyb 0.8417 0.6703 61.8055 46.7813 87.1631

CH

RF 0.7392 0.4774 29.2819 28.2731 31.7815
BT 0.7114 0.4310 27.2893 27.4345 29.3472
SVM 0.6906 0.3974 29.1345 28.6061 31.6958
LR 0.5620 0.2118 32.7513 31.2775 36.3388
hyb 0.7597 0.5128 27.3926 27.2618 29.4406

DE

RF 0.6995 0.2377 10.7962 10.1582 10.9850
BT 0.6841 0.2060 10.8842 10.6923 11.0267
SVM 0.6299 0.0996 10.7696 10.4423 10.9545
LR 0.6642 0.1659 10.8537 10.8572 10.9956
hyb 0.6970 0.2325 9.9488 9.6865 10.0843

ES

RF 0.8087 0.5806 19.6511 17.9141 20.5422
BT 0.8106 0.5844 17.5314 16.7036 18.2038
SVM 0.7808 0.5269 18.1987 17.1226 18.9106
LR 0.7906 0.5456 19.8148 18.3517 20.6706
hyb 0.8108 0.5848 17.1232 16.2498 17.7346

FI

RF 0.6200 0.3290 29.8506 24.3231 36.3198
BT 0.5735 0.2686 27.7375 22.8330 33.4742
SVM 0.6255 0.3365 31.0392 25.1932 38.0917
LR 0.5443 0.2330 31.8015 25.7889 39.3324
hyb 0.6187 0.3273 28.5706 23.3520 34.6819

FR

RF 0.7738 0.5251 17.1205 15.8591 17.8289
BT 0.7649 0.5089 15.8921 15.2586 16.4596
SVM 0.7486 0.4796 19.3762 18.1085 20.2781
LR 0.7829 0.5419 18.4691 17.1938 19.2378
hyb 0.7719 0.5216 16.5098 15.6148 17.1457

IE

RF 0.5377 0.2598 40.1111 40.3074 53.9424
BT 0.5456 0.2688 40.3111 41.7833 53.1313
SVM 0.5428 0.2656 40.1513 41.2170 51.0510
LR 0.5601 0.2854 38.5761 39.1479 59.9916
hyb 0.5554 0.2800 39.6847 40.8462 51.3717
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Country ML R R̄2 MAAPE sMAPE MAPEm

IT

RF 0.8797 0.7121 15.1892 14.7622 15.6488
BT 0.8676 0.6852 15.7400 15.8513 16.1693
SVM 0.8280 0.5996 17.5177 16.7230 18.3069
LR 0.8577 0.6634 15.6623 15.3684 16.1714
hyb 0.8734 0.6981 15.3097 15.0429 15.8176

LV

RF 0.8557 0.7286 48.9612 38.3661 96.2517
BT 0.8496 0.7180 47.1245 37.2827 89.9710
SVM 0.8763 0.7648 45.5753 35.8758 83.6064
LR 0.8618 0.7392 48.0926 37.6909 96.6762
hyb 0.8729 0.7588 46.4150 36.6295 87.1010

NO

RF 0.7127 0.4996 15.1716 14.4769 15.6007
BT 0.7147 0.5025 14.7759 14.7968 15.0688
SVM 0.7459 0.5489 14.6080 14.0406 14.9400
LR 0.7801 0.6020 13.4537 12.8217 13.7872
hyb 0.7479 0.5519 14.1211 13.8940 14.3901

PL

RF 0.7734 0.5405 24.4593 21.4467 26.6014
BT 0.7614 0.5195 23.5249 20.7941 25.7269
SVM 0.7444 0.4902 26.5439 23.7950 28.5871
LR 0.7909 0.5719 24.4908 21.3049 26.7431
hyb 0.7675 0.5301 24.0971 21.4187 26.0766

PT

RF 0.5415 0.2486 59.4413 46.8780 102.3002
BT 0.5304 0.2359 57.1561 45.7869 94.0100
SVM 0.6024 0.3227 56.0444 44.2971 90.6255
LR 0.5888 0.3054 61.7878 49.9583 100.5018
hyb 0.5730 0.2860 57.0015 45.3249 92.2630

RO

RF 0.6772 0.4264 23.5524 22.0246 24.7506
BT 0.6779 0.4274 21.2217 20.7150 22.1505
SVM 0.7564 0.5467 18.6972 18.4924 19.305
LR 0.8039 0.6252 18.6243 17.7030 19.2287
hyb 0.7285 0.5028 19.7350 19.3855 20.4253

SI

RF 0.5935 0.3185 24.6641 23.2484 26.6546
BT 0.5546 0.2715 24.5130 24.0972 26.3103
SVM 0.6714 0.4221 21.6664 21.2112 22.9135
LR 0.6963 0.4580 26.3027 23.4225 28.9903
hyb 0.6439 0.3841 22.7443 22.2739 24.1593

SI

RF 0.6012 0.3463 21.3937 21.4842 22.3222
BT 0.5436 0.2789 22.2648 23.2707 23.2363
SVM 0.7013 0.4799 19.6059 20.6566 20.319
LR 0.7419 0.5398 20.3166 20.8063 21.0133
hyb 0.6363 0.3908 20.6274 21.6530 21.4219

UK

RF 0.5897 0.4932 31.2177 28.4687 35.3760
BT 0.5589 0.4971 30.1727 28.0854 33.9500
SVM 0.5173 0.3644 32.3600 29.4185 39.1143
LR 0.3668 0.2780 68.3851 69.9931 139.3174
hyb 0.5685 -1.0927 30.4211 28.0844 34.5689
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C Hydropower generation projections

Table 12: Difference in the annual average hydropower generation: comparison
between 2016 [MW] and projections [%] for 2030 under RCP 4.5.

Country 2016[MW] A45[%] B45[%] C45 [%] D45[%] E45[%] F45 [%] G45[%] J45[%] L45[%] H45[%] I45[%]
AT 3213.30 -7.05 -8.18 -9.19 -6.77 -6.86 -8.36 -6.43 -4.13 -3.49 -5.22 -6.65
BE 9.91 -23.25 -26.14 -24.70 -28.70 -27.69 -25.57 -21.29 -22.82 -23.92 -27.34 -26.35
BG 206.07 -2.04 -1.01 -0.87 -1.35 -1.72 -0.53 -0.08 -2.37 -1.44 -2.52 -1.21
CH 67.91 2.55 1.46 2.69 1.33 3.32 2.24 2.59 3.29 4.03 3.85 2.81
DE 1710.65 -2.20 -2.04 -1.93 -2.96 -2.37 -2.81 -2.07 -2.22 -2.67 -2.41 -2.92
ES 1021.11 -4.91 -4.28 -4.45 -4.59 -3.98 -2.18 -0.89 -4.11 -4.82 -3.94 -4.26
FI 1640.83 -4.43 -5.67 -4.63 -4.84 -5.62 -5.18 -5.84 -5.03 -5.28 -6.05 -5.95
FR 4799.32 -7.17 -7.29 -4.40 -7.71 -3.28 -1.42 -3.25 -1.00 -5.80 -7.76 -6.04
HU 11.28 -6.60 -5.88 -5.83 -5.73 -5.36 -5.15 -5.78 -6.52 -5.53 -6.56 -6.50
IE 76.00 -0.06 4.00 4.41 -0.15 -1.67 -2.43 -2.48 -0.27 1.88 1.91 1.29
IT 3536.11 1.53 1.76 2.16 2.88 3.51 2.78 3.32 2.21 2.91 2.82 2.52
LT 41.11 1.74 1.20 0.83 0.93 1.44 1.73 0.54 -0.13 0.08 0.17 -0.30
LV 291.45 21.70 21.73 19.79 20.02 21.48 23.02 21.27 16.72 21.99 20.10 19.26
NO 1285.76 -4.43 -5.94 -3.96 -6.01 -4.66 -5.35 -5.98 -2.98 -6.43 -4.19 -5.25
PL 178.55 -4.40 -5.52 -6.13 -6.52 -6.44 -7.07 -7.57 -6.34 -7.47 -6.47 -7.13
PT 1078.98 -20.20 -19.76 -19.77 -21.66 -24.31 -20.31 -20.20 -23.62 -22.55 -22.39 -22.03
RO 1307.58 -4.62 -2.74 -3.02 -4.05 -2.27 -2.52 -0.19 -4.98 -0.48 -2.87 -2.29
SI 496.22 -6.67 -6.33 -6.53 -7.73 -6.78 -7.16 -4.39 -6.71 -7.28 -7.02 -6.50
SK 458.64 -6.23 -4.99 -7.51 -6.74 -6.07 -5.88 -6.06 -8.20 -6.35 -6.96 -6.23
UK 384.99 4.30 7.42 7.29 4.47 4.95 0.79 1.89 4.82 5.37 4.79 5.69

Table 13: Difference in the annual average hydropower generation: comparison
between 2016 [MW] and projections [%] for 2050 under RCP 4.5.

Country 2016 [MW] A45[%] B45 [%] C45[%] D45[%] E45[%] F45[%] G45[%] J45[%] L45[%] H45[%] I45[%]
AT 3213.30 -7.11 -6.61 -9.09 -6.36 -6.30 -8.17 -5.37 -4.97 -3.64 -5.30 -6.62
BE 9.91 -22.43 -26.49 -25.11 -29.73 -27.82 -24.87 -20.51 -23.19 -24.60 -27.13 -27.06
BG 206.07 -2.28 -1.46 -1.11 -1.98 -2.25 -1.53 -1.07 -2.78 -1.98 -3.15 -1.66
CH 67.91 2.61 1.92 3.33 1.21 3.86 3.24 4.35 3.59 4.89 3.45 2.48
DE 1710.65 -2.32 -2.57 -2.72 -3.25 -2.76 -2.52 -2.18 -2.52 -2.37 -2.91 -3.32
ES 1021.11 -5.67 -4.99 -5.42 -5.94 -5.11 -2.42 -1.40 -4.25 -6.02 -4.66 -4.88
FI 1640.83 -4.24 -5.54 -4.51 -4.74 -5.26 -5.25 -5.43 -4.84 -5.13 -6.26 -5.74
FR 4799.32 -7.30 -8.57 -6.34 -9.41 -4.95 -1.34 -4.42 -2.08 -7.38 -9.83 -8.40
HU 11.28 -7.00 -5.98 -6.59 -6.14 -5.43 -5.99 -5.98 -7.11 -5.85 -6.70 -6.59
IE 76.00 0.42 2.78 2.37 -0.58 -2.26 -2.57 -1.95 -0.70 2.69 2.95 2.37
IT 3536.11 1.10 1.56 1.55 2.52 3.43 2.60 2.86 1.84 2.71 2.72 2.57
LT 41.11 1.21 1.69 0.22 -0.57 0.79 1.14 -0.37 -1.13 0.09 -1.21 -1.33
LV 291.45 20.66 20.47 19.08 17.60 20.49 23.15 21.38 17.46 20.98 18.45 17.34
NO 1285.76 -4.53 -5.55 -3.59 -6.28 -4.55 -4.91 -4.97 -2.56 -5.99 -4.16 -5.15
PL 178.55 -5.20 -5.60 -6.22 -6.64 -6.54 -6.95 -7.22 -5.69 -6.99 -7.10 -7.46
PT 1078.98 -20.75 -20.37 -20.91 -23.58 -27.44 -20.13 -19.97 -24.95 -24.43 -23.75 -23.41
RO 1307.58 -4.40 -3.12 -3.12 -3.52 -1.70 -2.81 -0.40 -5.15 -1.09 -3.45 -3.20
SI 496.22 -6.59 -6.94 -6.65 -6.88 -6.94 -5.99 -3.37 -6.81 -7.27 -7.46 -6.99
SK 458.64 -5.93 -5.65 -7.94 -8.30 -6.70 -6.69 -5.43 -8.29 -6.81 -7.71 -6.87
UK 384.99 5.08 6.61 6.67 4.34 4.47 0.88 2.84 4.67 5.58 5.55 5.66

40



Table 14: Difference in the annual average hydropower generation: comparison
between 2016 [MW] and projections [%] for 2030 under RCP 8.5.

Country 2016[MW] A85[%] B85[%] C85 [%] D85[%] E85[%] F85[%] G85[%] J85[%] L85[%] H85[%] I85 [%]
AT 3213.30 -9.06 -6.06 -9.07 -6.74 -1.97 -5.19 -7.17 -10.66 -7.74 -6.27 -5.21
BE 9.91 -24.34 -27.78 -25.24 -22.69 -23.31 -22.94 -25.31 -29.30 -27.37 -25.27 -26.92
BG 206.07 -2.61 -2.15 -1.84 -1.72 -3.57 -1.24 -1.07 -0.88 -3.04 -1.60 -1.37
CH 67.91 3.35 1.84 1.26 3.30 2.08 3.96 3.84 2.58 4.17 3.83 3.82
DE 1710.65 -2.27 -1.67 -2.35 -2.85 -2.49 -1.69 -2.00 -2.86 -3.17 -2.79 -2.67
ES 1021.11 -4.24 -3.33 -3.88 -4.59 -4.24 -6.35 -5.56 -4.71 -4.31 -6.07 -5.42
FI 1640.83 -5.54 -4.90 -4.57 -4.97 -5.21 -4.97 -6.34 -5.33 -6.44 -5.46 -5.85
FR 4799.32 -7.03 -7.31 -2.65 -7.61 -3.31 -6.34 -7.95 -9.37 -8.74 -9.37 -12.02
HU 11.28 -6.29 -6.08 -5.89 -5.97 -5.95 -5.45 -5.37 -5.67 -6.35 -6.31 -6.42
IE 76.00 4.22 1.45 0.70 4.13 2.23 1.45 0.55 1.78 4.37 -0.65 2.02
IT 3536.11 1.16 2.29 2.52 1.91 1.57 2.61 1.91 2.19 2.56 2.02 1.97
LT 41.11 -0.29 1.83 0.53 -0.75 1.13 2.77 2.10 -1.25 -0.42 0.53 -0.02
LV 291.45 19.13 21.45 19.02 16.01 18.66 23.35 22.19 16.38 17.28 18.30 18.94
NO 1285.76 -5.50 -4.12 -4.10 -2.53 -5.85 -4.12 -6.57 -4.92 -4.03 -4.00 -4.78
PL 178.55 -7.76 -4.47 -7.32 -7.63 -6.76 -4.16 -3.98 -8.12 -7.69 -6.60 -6.52
PT 1078.98 -25.72 -23.00 -23.24 -26.14 -22.63 -27.90 -26.61 -25.44 -23.38 -25.70 -24.97
RO 1307.58 -6.34 -2.74 -2.56 -3.14 -3.47 -1.77 -1.40 -5.14 -3.41 -4.00 -3.50
SI 496.22 -7.27 -5.85 -6.55 -6.78 -6.69 -5.90 -5.27 -7.18 -5.24 -7.64 -7.10
SK 458.64 -7.78 -6.02 -7.88 -8.27 -7.86 -5.89 -4.15 -8.11 -8.76 -7.71 -6.86
UK 384.99 7.59 5.91 5.77 6.79 5.97 4.05 4.56 5.95 5.64 5.20 5.78

Table 15: Difference in the annual average hydropower generation: comparison
between 2016 [MW] and projections [%] for 2050 under RCP 8.5.

Country 2016[MW] A85[%] B85[%] C85[%] D85[%] E85[%] F85[%] G85[%] J85[%] L85[%] H85[%] I85[%]
AT 3213.30 -8.38 -5.83 -8.00 -7.18 -1.15 -5.31 -5.73 -9.55 -7.32 -7.85 -5.44
BE 9.91 -22.50 -27.77 -25.16 -24.35 -22.27 -21.58 -25.55 -27.55 -26.61 -24.90 -26.51
BG 206.07 -2.82 -2.88 -2.68 -1.93 -4.50 -2.30 -2.58 -2.66 -3.48 -2.47 -2.56
CH 67.91 3.49 3.00 3.36 2.62 4.22 4.56 5.02 3.03 4.25 4.65 3.94
DE 1710.65 -2.24 -2.28 -3.35 -3.05 -2.84 -1.91 -2.39 -3.28 -2.70 -3.10 -2.78
ES 1021.11 -6.46 -4.46 -4.91 -5.75 -4.97 -7.56 -6.46 -5.97 -5.24 -7.81 -7.30
FI 1640.83 -5.67 -4.60 -4.31 -5.34 -5.43 -4.58 -5.94 -5.12 -6.40 -5.40 -5.57
FR 4799.32 -7.40 -9.31 -5.01 -9.18 -3.58 -8.08 -10.72 -10.52 -9.68 -11.82 -14.89
HU 11.28 -6.36 -6.00 -6.35 -5.92 -6.78 -6.03 -6.63 -6.74 -6.22 -6.46 -6.58
IE 76.00 5.67 1.75 1.21 3.98 1.18 2.16 1.71 1.72 4.59 0.76 2.62
IT 3536.11 0.77 1.76 1.68 1.33 1.23 1.91 1.29 1.47 2.46 1.49 1.40
LT 41.11 -0.97 0.93 -0.71 -2.39 0.28 1.67 0.88 -3.17 -0.54 -1.38 -1.21
LV 291.45 16.43 20.15 16.91 13.44 20.50 21.89 21.22 13.30 15.65 16.72 17.60
NO 1285.76 -4.95 -4.02 -4.68 -2.07 -5.96 -3.63 -5.80 -4.83 -3.91 -3.55 -4.69
PL 178.55 -7.22 -4.68 -7.12 -8.43 -6.43 -3.69 -4.08 -8.08 -6.98 -7.46 -7.76
PT 1078.98 -29.06 -23.80 -25.70 -27.68 -24.75 -27.52 -25.04 -25.51 -24.05 -28.86 -28.32
RO 1307.58 -5.36 -2.88 -2.18 -2.94 -2.40 -1.48 -1.98 -4.99 -3.17 -4.47 -4.39
SI 496.22 -7.19 -7.01 -6.69 -6.20 -5.89 -5.52 -5.10 -6.87 -4.84 -8.02 -7.16
SK 458.64 -7.56 -6.04 -7.99 -8.85 -7.60 -6.20 -4.12 -8.23 -8.14 -8.47 -7.68
UK 384.99 8.33 5.58 5.80 7.79 6.97 4.42 4.53 6.04 5.82 6.13 6.60
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