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Introduction

Hydropower (HP) is the world's most dominant (86%) source of renewable electrical energy [START_REF]Hydropower status report: sector trends and insights[END_REF]. Installed hydropower capacity continues to grow quickly with the aim at empowering the transition towards climate neutrality. This is in line with the long-term objectives of the European Community strategy, which called for fully decarbonized power generation by 2050. This means that more than 80% of the EU's electricity will be produced by renewable energy sources. During 2018, more than 21.8 GW of renewable hydroelectric capacity was put into operation worldwide (2.2 GW in Europe) [START_REF]Hydropower status report: sector trends and insights[END_REF]. Hydropower is either produced in run-of-river (RoR) plants with low hydraulic heads or from water stored in accumulation lakes with hydraulic heads up to several hundred meters (Res), possibly with recirculation of water between lower and higher level reservoirs in so-called pump-storage systems. Among these existing technologies, we focus on the run-of-river based one, which is the most affected by climate. This exists alongside rivers and does not contain large reservoir to store or regulate the flow of the adjacent river. Typically, it generates electricity according to the water flow. This latter is defined by seasonal patterns of precipitation, evaporation, drainage, and other characteristics, which all depend on the geography and climate peculiarity of locations [START_REF] Stoll | Hydropower modeling challenges[END_REF]. Although the seasonal patterns of wet and dry seasons are relatively predictable, they are not guaranteed and can change from one year to another [START_REF] Hamududu | Assessing climate change impacts on global hydropower[END_REF]. An assessment of climate change impacts on hydroelectric generation in different climate regions requires an in-depth analysis of individual case studies. Given the dominance of local conditions, generalizations are difficult, sometimes even for small regions. Another difficulty is the determination of the temporal relation between the hydropower generation and climate variables. In fact, the impact of the climate variables on the water flow, and on the corresponding power production, may occur with a certain delay, whose determination depends on physically based phenomena. For instance, the melting process of snow at high altitude requires a certain amount of time which depends on the local air temperature. Therefore, the increment of the water flow due to the snow fallen during the winter period may occur only after many months with an increase of the temperature. Due to climate changes, such delay is not easy to be predicted. An overview on the run-of-river HP generation of some European countries for the years 2016 and 2050 is shown in Figure 1. In these figures, we can observe the daily variation of the hydropower capacity factor and its variation along the years. For instance, note a decrease of about 10% in the capacity factor for Spain in the spring period of 2050. Indeed, as our results will show, Western South and central Europe are expected to have a decrease in the annual average RoR hydropower production at the target years 2030 and 2050. It is also worthy to note the quite different shapes of the capacity factors for these four countries. This happens even with the values belonging to Spain and Italy, which are countries with similar climate (Mediterranean climate). More details about the projections of climate data and of hydropower production are provided in the next sections.

By what discussed so far, it is clear that the definition of a common hydrological model for all European countries subject to different climate conditions is not an easy task. In this paper, we use Machine Learning (ML) techniques which have the advantage of catching specific trends and patterns in large volumes of data. The obtained models along with the projection of climate data are then used for the prediction of the daily national HP generation in terms of capacity factor (i.e., fraction of produced power over the installed one) for all European countries.

In the literature, it has been shown that machine learning methods are wellsuited to the domain of wind speed and wind power prediction [START_REF] Treiber | Computational Sustainability[END_REF] and also for solar radiation and solar production [5]. ML techniques have also been applied for the run-off forecast, see [START_REF] Kratzert | Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[END_REF] and references therein, but at the best of our knowledge few attention has been dedicated in the literature to the prediction of run-of-river hydropower generation from climate data. The reason for this lack could be due to the fact that, while the spatial-temporal relation between wind speed-wind power generation (solar radiation-solar power) is local [START_REF] Drobinski | Wind and solar renewable energy potential resources estimation, Encyclopedia of Life Support Systems[END_REF], the one between climate variables, river run-off and hydropower generation is way more complex, as we explained above.

It is also interesting to look at the percentages of hydro, wind and solar power share of the electric power produced in 2018. For instance, in France, we have 12.5%, 5.1%, and 1.9%, respectively (it was 10.1%, 4.5%, and 1.7% in 2017; Source: RTE), in Portugal it is 25.7%, 24.3% and 1.6%, respectively, (it was 12.8%, 20.6%, and 1.7% in 2017; Source: REN ), finally, in Spain we have 13.5%, 19.8% and 4.6% (7.5%, 19%, and 3.2% in 2017; Source: REE). As highlighted by these data, differently from wind and solar production, there exists a high variability of hydropower generation from a year to another. This behavior, which is mainly due to climate impact, makes the prediction very challenging, but decisive for the optimal power planning [START_REF] Gaudard | The future of hydropower in Europe: Interconnting climate, markets and policies[END_REF][START_REF] Schaefli | Projecting hydropower production under future climates: a guide for decision-makers and modelers to interpret and design climate change impact assessments[END_REF].

The recent paper [START_REF] Felice | The impact of the North Atlantic Oscillation on European hydropower generation[END_REF] also applies machine learning for the modeling of hydropower production based on climate data but with a completely different goal. Indeed, the machine learning output is used to create hydropower hindcasts to investigate the relationship between the North Atlantic Oscillation and climate variables. Their analysis is focused on the past period 1979-2017, while in this paper we use the best performing ML models for predicting the hydroelectricity generation for the target years 2030 and 2050.

This work is carried on within the CLIM2POWER project [START_REF]CLIM2POWER web service[END_REF], whose overall goal is to provide improved guidance to power systems' stakeholders by combining high resolution climate variables and enhanced energy system model. The values of hydropower production computed in this paper will be then used as input for stochastic versions of energy system models for assessing the impact of the climate variability on the optimal operation of the EU power system. A first attempt of a fully integrated analysis of climate impact on the European power system is given in [START_REF] Simoes | Climate proofing the renewable electricity deployment in Europe -introducing climate variability in large energy systems models[END_REF]. Some studies on the impact of climate change on hydro-dominated power systems can be found in [START_REF] Guerra | Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization[END_REF]- [START_REF] De Lucena | Least-cost adaptation options for global climate change impacts on the brazilian electric power system[END_REF] for South America, in [START_REF] Liu | Projected impacts of climate change on hydropower potential in china[END_REF] for Asia, in [START_REF] Spalding-Fecher | Climate change and hydropower in the southern african power pool and zambezi river basin: system-wide impacts and policy implications[END_REF] Africa and, finally, in [START_REF] Boehlert | Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation[END_REF] for U.S.

The paper is organized as follows. In Section 3, we present the historical energy and climate data and we describe how the climate projections are provided. Section 3 includes a brief description of the ML algorithms and the evaluation criteria used in this paper. We dedicate Section 4 to the presentation of the main results. Section 5 concludes this paper providing final remarks and future research ideas.

Materials

Historical data

Climate data include the daily time series of precipitation (TP) and air temperature (AT) remapped to the 6 km COSMO-REA grid. Reanalysis climate data covering the period 1995-2019 are provided by one of the Clim2Power partners, that is Deutscher Wetterdienst (DWD) [START_REF]German meteorological service (DWD -deutscher wetterdienst)[END_REF].

Historical data of hydropower production aggregated at country level are from the ENTSO-E Transparency Platform [START_REF]European Network of Transmission System Operator for Electricity[END_REF], where energy demand and generation data are systematically collected at hourly time resolution starting from 1 January 2015 to the current days. Although this period is relatively short, we will show that our models are able to reproduce the climate impact on runof-river hydroelectricity production, although some extreme events are still difficult to be predicted. Nevertheless, we are confident that the validity of our approach still holds and it will improve with the increase of historical data.

Climate projections

In order to obtain climate projections, eleven combinations of Regional Climate Models (RCM) and their driving Global Climate Models (GCMs) were selected (Table 2) from the extensive database provided by the World Climate Research Programme's CORDEX initiative. Datasets are freely available through the Earth System Grid Federation (ESGF) Nodes, and more information on the CORDEX framework can be found in, e.g [START_REF] Giorgi | Addressing climate information needs at the regional level: the cordex framework[END_REF][START_REF] Jacob | Euro-cordex: new high-resolution climate change projections for European impact research[END_REF]. Considering a single RCM-GCM combination would imply analyzing only one of a large range of possible outcomes. Instead, the use of several models guarantees a 'better' estimation, as a high level of uncertainty performed by individual models is expected. Moreover, the accuracy of a scenario is defined by both the RCM and its driving GCM. Averaging climate model outputs is commonly done, yet the average might mask the results and smooth the heterogeneity in climate change regimes.

The simulations cover the European domain (EURO-CORDEX), and the spatial resolution considered for this study was the highest available, i.e., 0.11 (around 12.5 km) (EUR-11). For each climate variable, i.e., precipitation and air temperature, daily time series were provided. Special attention needs to be paid when analyzing the state of the climate system for short time periods. In this context, simulations were provided along the twenty-first century focusing on near-future and mid-century (20 years long centered at 2030 and 2050, respectively). 
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Regarding the main sources of uncertainty of climate projections, apart from the ones already mentioned, such as the uncertainty inherent in the model by itself, and the internal natural variability, the uncertainty of the climate scenarios is also considered. Data comprises future projections under two different Representative Concentration Pathways (RCPs 4.5 and 8.5), which are scenarios that include time series of emissions and concentrations of the full suite of greenhouse gases and aerosols and chemically active gases, as well as land use. The RCP4.5 is an intermediate stabilization pathway in which radiative forcing is stabilized at approximately 4.5 W/m 2 , while for RCP8.5 the radiative forcing reaches greater than 8.5 W/m 2 by 2100 and continues to rise for some amount of time [START_REF]Towards new scenarios for analysis of emissions, climate change, impacts and response strategies[END_REF]. The output of the climate projection models are adjusted with respected to the reanalysis data for the year 2016 [START_REF] Hawkins | Calibration and bias correction of climate projections for crop modelling: An idealised case study over europe[END_REF]. In Figures 2 and3, we show the difference in the annual average temperature when our projections under RCP 8.5 are compared with the values in 2016. The comparison here is taken with respect to 2016 and not with a longer historical period, in order to be coherent with the hydropower generation analysis, which is carried on considering the same reference year. This choice is linked to the lack of historical energy data. In these figures, we only consider the countries with installed capacity bigger than 2 GW. Difference for RCP 4.5 can be found in A. It is important to mention that our climate projections represent different possible future trends regarding climate evolution. For instance, we may have a drier PT with almost less 50% of annual precipitation in scenario A85 or even an increase up to 25% in scenario G45 when compared with 2016. Indeed, despite the updated and detailed information on climate projections estimated from GCMs/RCMs, considerable uncertainties are involved, either resulting from the unknown future evolution of GHG concentrations and other forcing agents of the climate system, as well as climate model simplifications of the chaotic behavior of the climate system [START_REF] Knutti | Robustness and uncertainties in the new cmip5 climate model projections[END_REF][START_REF] Prein | Impacts of uncertainties in European gridded precipitation observations on regional climate analysis[END_REF][START_REF] Stocker | Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF].

Methodology

Machine learning algorithms

Machine learning has been gaining more and more importance in many areas of science, finance and industry [START_REF] Hastie | The Elements of Statistical Learning[END_REF]. Typically it is used to predict an outcome based on a set of features. In the case of the present paper, the outcome is the capacity factor of the run-of-river hydropower generation and the features are the climate variables. The workflow of ML procedure is given in Figure 4. The procedure starts by training a so-called (supervised) learner with a set of data including the observed outcome and feature measurements. This leads to build a model, which enables predicting the unobserved outcome based on a different set of input features. A good learner is one that accurately predicts such an outcome. In the statistical literature, the features are often called the predictors or the inputs, whereas the outcomes are called the responses or the outputs. Along this paper, we will make use of all these terms. Based on an evaluative metric such as the correlation coefficient, the adjusted coefficient of determination, the mean absolute and mean square percentage errors, to be defined in Section 3.3, we will apply and compare five ML algorithms with the aim at determining a model of highest accuracy.

We use five regression methods: Linear Regressor (LR) [START_REF] Hastie | The Elements of Statistical Learning[END_REF], Support Vector Machine (SVM) [START_REF] Smola | A tutorial on support vector regression[END_REF], Boosted Ensemble of Trees (BT) [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF] and Random Forests (RF) [START_REF] Breiman | Random forests[END_REF]. The four regression methods are implemented in the Statistics and Machine Learning Toolbox 11.4 [START_REF]MATLAB and Statistics and Machine Learning Toolbox release 2018b[END_REF]. In the following, we give a few details of the algorithms cited above.

The most simple algorithm is the linear regression, which consists of finding the best-fitting line through the points of input and response variables. The best-fitting line is called a regression line. The most common type of linear regression is obtained by minimizing a loss function which is the squared error between the observed values and the linear combination of the inputs.

In SMV regression, the goal is to find a function that has at most deviation from the target points for all the training data and at the same time is as flat as possible. SVM regression uses a type of loss function called 'insensitive' which was proposed by Vapnik [START_REF] Drucker | Support vector regression machines[END_REF]. This function defines a -tube so that if the predicted value is within the tube the loss is zero, while if the predicted point is outside the tube, the loss function is the magnitude of the difference between the predicted value and the radius of the tube. The optimization problem derived in [START_REF] Drucker | Support vector regression machines[END_REF] is solved by considering its dual formulation. Nonlinearities are then added to the SVM algorithm by mapping the training patterns onto a highdimensional feature space using some fixed nonlinear functions (kernels). It is well known that SVM regression performance (estimation accuracy) depends on a good setting of hyper parameters, which are the regularization constant used in the definition of the objective function, the width of the insensitive zone and the kernel parameters.

The RF algorithm is based on an ensemble of decision trees. Random vectors are used for growing each tree in the ensemble. A tree is grown by considering a random selection of training set. Then each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. In [START_REF] Breiman | Random forests[END_REF], it has been proved that a significant accuracy improvement is gained when randomness is introduced for the parameter selection in ensemble of trees.

The BT algorithm is also based on ensemble of decision trees. The difference is that the predictors are not trained independently but in an iterative manner: every training instance gets a weight assigned that is adapted in every iteration when a new predictor is added to the ensemble. Afterwards the prediction quality of the ensemble is tested on the training set instances.

The tuning of the hyper-parameters for all the algorithms is implemented by using the optimization procedure offered by the Matlab toolboxes along with the trial and error approach.

Recently, it has been shown that the ensemble of machine learning techniques may improve the prediction accuracy [5,[START_REF] Gala | Hybrid machine learning forecasting of solar radiation values[END_REF]. The idea goes as follows: one first uses several ML algorithms to obtain the predicted response, then some combination of the algorithms' outputs is built. In this paper, we simply apply a weighted linear combination of the two best methods for each country. Similarly to [START_REF] Gala | Hybrid machine learning forecasting of solar radiation values[END_REF], we consider the weights derived from each model's mean arctangent percentage error (MAAPE), to be defined in Section 3.3, over the validation set and we consider the output of the hybrid method to be

ŷhyb = w 1 ŷM1 + w 2 ŷM2 , where w i = M AAP E -1 i M AAP E -1 1 +M AAP E -1 2 
, i = 1, 2 and ŷM1 and ŷM2 being the outputs of the two ML algorithms with the best accuracy. This means that ŷhyb is obtained by giving more importance, that is a bigger weight, to the algorithm's output with a smaller error.

Choice of the predictors

The experiments aim at formalizing an ML model of highest accuracy for the prediction of the capacity factor of the run-of-river based hydropower generation at daily level for each EU country.

The first step in the ML workflow is the training phase. Let us indicate with T train = {t 1 , ..., t j , ..., t N } a given daily spaced time interval, where t 1 and t N are respectively the initial and final date in the ISO8601 format 'YYYY-MM-DD' and t j is the j-th day of this interval. We assume that over the training period we collect the data corresponding to • Month, Day in T train • Air temperature, i.e., the time series AT = [AT t1 , ..., AT t N ]

• Precipitation, i.e., the time series T P = [T P t1 , ..., T P t N ]

• Capacity factor of hydropower generation, i.e., the time series y = [y t1 , ..., y t N ].

As we explained above, the effects of the climate data on hydroelectricity generation occur with a certain delay. In order to count that, we enrich the list of inputs by considering that the hydropower generation at a day t i is influenced by

• the air temperature at the preceding k 1 -th day with respect to t i , where k 1 is computed by considering the lag that maximizes the sample Pearson correlation [START_REF] Pearson | Notes on regression and inheritance in the case of two parents[END_REF] between the time series of the hydropower generation y and of the air temperature AT , say ρ(y, AT );

• the precipitation at the preceding k 2 -th day with respect to t i , where k 2 is computed similarly to k 1 by considering ρ(y, T P );

• the sum of precipitation in the last k 2 + 1 days with respect to t i , with k 2 defined above;

• the sum of precipitation in the last k 3 days with respect to t i , where k 3 is the lag which maximizes ρ(y, sumP ), with sumP being the moving sum of the precipitation;

Depending on the country, not all the above listed datasets are relevant for the prediction of the hydropower capacity factor. Then, in order to choose if a certain time series is used as input in the ML algorithms, we compute the correlation ρ between this time series and that of the response over the training period. Then, this dataset is added to the list of predictors if |ρ| is bigger than a certain threshold ρ. This choice was implemented as we observed that adding inputs whose correlation with the response is lower that a chosen threshold does not improve the prediction in terms of the evaluation criteria to be presented below. Moreover, it is well-known that predictors generated as linear combinations of input variables may improve the accuracy of the learner. Then, in this paper, we also add to the input the climate data aggregated considering the national average. A similar list of predictors was used also in [START_REF] Felice | The impact of the North Atlantic Oscillation on European hydropower generation[END_REF]; here we consider that the predictors are aggregated not only at country level but also at regional one.

Once the predictors are selected, these are used for training a learner. The way of learning depends on the ML algorithm selected. We use the ML algorithms presented in Section 3.1, and we generate several models for determining the one which provides the highest accuracy.

Model evaluation

In this section, we introduce the criteria selected for evaluating the prediction accuracy of the ML algorithms.

We are now in the second part of the ML workflow in Figure 4. Once a model has been built, we can use it for the prediction of the response by considering a new dataset of features. These features are of the same type of the inputs described above, but corresponding to the time interval chosen for the prediction. For instance, if the time series of the air temperature over the training period was used for the generation of the model, now the time series of the air temperature over the new time interval will be used for the prediction. We set the lags k i , i = 1, .., 4 to the values computed in the training phase. The main difference here is that the input list does not include the time series of the hydropower generation, which instead will be the final output of this second phase.

As in this section we wish to measure the prediction accuracy of the ML algorithms, we will perform the second phase of the ML workflow over a time interval in which the time series of the response is actually known. We call T test = {τ 1 , ..., τ M } this daily spaced time interval and we indicate with ȳ = [ȳ τ1 , ..., ȳτ M ] the time series of the observed capacity factor over this testing period. From now on, we will use the term 'modeled' instead of 'predicted' output for the results of the ML process, which we indicate as ŷ = [ŷ τ1 , ..., ŷτ M ].

It is important to highlight that the testing period is distinct from T train and that ȳ is not used as input to the model, but it will be used only for reason of comparison.

For the performance evaluation of the regression models used in this report, we consider the following measures:

• Correlation coefficient (R) R = cov(ȳ, ŷ) σ ȳ σ ŷ ,
where cov is the covariance, and σ ȳ and σ ŷ are the standard deviation of ȳ and ŷ, respectively. It is a measure of the strength and direction of the linear relationship between the observed and the modeled variables.

• Adjusted R-squared ( R2 )

R2 = 1 -(1 -R 2 ) M -1 M -m -1 ,
where M is the number of observations, m is the number of predictors and R 2 is the determination coefficient, that is the square of the correlation coefficient. It compares the explanatory power of regression models that contain different numbers of predictors. The adjusted R-squared is a modified version of R 2 that has been adjusted for the number of predictors in the model.

• Mean Arctangent Absolute Percentage Error (MAAPE)

M AAP E = 100 M M i=1 arctan ŷi -ȳi ȳi • Symmetric Mean Absolute Percentage Error (sMAPE) sM AP E = 100 M M i=1 ŷi -ȳi 0.5(ȳ i + ŷ)
Note that we preferred to use MAAPE [START_REF] Kim | A new metric of absolute percetage error for intermittent demand forecasts[END_REF] and sMAPE [START_REF] Makridakis | Accuracy measures: theoretical and practical concerns[END_REF] instead of the classical MAPE as the actual capacity factor may include also zero or close to zero values, then MAPE yields extremely large percentage errors.

Results

In this section, we compare the performance of the machine learning algorithms mentioned above. This will guide us in the choice of the most suitable model to be used for the long-term prediction of the RoR hydropower capacity factor.

Modeling the one-year-ahead hydropower capacity factor

We set the training period T train with t 1 = 2015-01-01 and t N = 2018-12-31, whereas for the testing period T test we set τ 1 = 2019-01-01 and τ M = 2019-10-31. For each ML algorithm, we generate a model which is used for computing the capacity factor over the period T test .

In Figures 5, 6, 7, 8, 9, and 10(a)-(c), we report the comparison of the observed and the modeled time series of the hydropower capacity factor both in the training and the testing phases for some European countries with installed capacity bigger that 2 GW. The modeled capacity factor is the one corresponding to the ML model with the best performance, see Table 11.

Figures 5,6, 7, 8, 9, and 10(b)-(d) show the scatter plot of the output models and the observed capacity factor. We indicate with blue dots the values in the period December-January-February (DJF), with orange circles the values in the period March-April-May (MAM), with red dots for June-July-August (JJA) and, finally, with green circles for September-October-November (SON). We can observe that the modeled response is, in general, quite close to the observed data. In the training phase, the ML models tend to underestimate the capacity factor values when these are greater than 0.6 for all the countries analyzed. This behaviour was also observed in [START_REF] Felice | The impact of the North Atlantic Oscillation on European hydropower generation[END_REF]. As shown in Table 11, for countries with relevant RoR installed capacity (> 10 GW), such as Italy and France, we obtain a correlation coefficient equal to 0.87 and 0.7 and M AAP E = 15.18% and 17.19%, respectively. The worst results in terms of correlation coefficient are for Ireland for which only R = 0.56 and M AAP E = 38.57%. It has to be noted that almost 20% of the values for 2017 and 2018 are missing in the ENTSO-E data for this country. We obtain also a lower performance for Portugal (R = 0.60 and M AAP E = 56.04%). In fact, in Figure 8, we can notice that also in the training phase, the model is not able to reproduce well the observations. A possible explanation for that is the fact that most of the run-of-river hydropower plants in Portugal are located downstream of large water dams. Then operational decisions affect the flow of the rivers and, consequently, the power generation of RoR plants [START_REF]Energias de portugal[END_REF].

The correlation coefficient for the neighboring countries Austria and Germany is about 0.7 with M AAP E = 16% and M AAP E = 10%, respectively. In the case of Austria, the high values of capacity factors are underestimated by the model also in the testing phase.

A lower accuracy is achieved in the MAM period both in Spain and Portugal. In the latter case, in particular, in Figure 8(d), we can observe that the capacity factor in the MAM period (orange circles) was particularly low if compared with the historical data in 8(c). In order to investigate further this discrepancy with the results obtained with our model, we considered the monthly anomalies of temperature and precipitation in 2019. These are computed as difference between the monthly average temperature (or precipitation) in the testing period and the monthly calendar mean computed over the training period (four years) and given in percentage. By looking at Figure 11, we can see that both in Spain and Portugal, the precipitation values are far from the historical values in the MAM period. In particular, February and March were warmer and drier in 2019. This may cause a lower observed capacity factor in April, which increases only in May with an increment of rain fall. Our models were not able to accurately predict that, probably due to the lack of historical data.

Another issue can be found in the prediction of the capacity factor for the last two weeks of October 2019. Both in Spain and Italy, this month was warmer with respect to the historical period (2015-2018), in particular, the monthly temperature anomaly was almost +1C in Spain and about +2C in Italy, see Figures 11 and12. The monthly average precipitation was close to the historical period, but exceptional rain falls happened at specific days of this month (21rst-23rd for Spain and 24th for Italy) yielding a fast increase of HP generation in the second part of this month. Finally, also for the case of France, the ML model presents the largest error in the same period. As we can see in Figure 12, October in France registered an exceptional amount of precipitation if compared with average of the four previous years.

As preliminary conclusions of this testing phase, we find the results quite satisfactory considered the limited quantity of available data. The modeled capacity factor is close to the observed values and the performance evaluation in Table 11 is quite good for almost all countries. Yet some particular event could not be well predicted, but we are confident that the accuracy of ML models will improve with the increase of an historical database to be used in the training phase. 

Variability in the long-term prediction of the run-of-river capacity factor

In this section, we present the results obtained by the ML algorithms with the best performance for the long-term prediction of the RoR HP capacity factor. It is worthy to mention also here that the time series of the climate projections used in this paper cannot be considered as an estimation of the year-to-year or season-to-season climate variables. Instead, they are estimations of average conditions. Hence, for the prediction of HP generation over the years 2030 and 2050, for each climate model, we generate time series of hydroelectricity generation as the average over 20 years centered in 2030 and 2050, respectively. Let us start by considering the difference between the actual annual average RoR HP generation in 2016 and the predicted values for 2030 and 2050. We assume here that the installed capacity remains unchanged and equal to that in 2016. In Figure 13, we show the results obtained for RCP 8.5. Values for other EU countries in both RCP 4.5 and 8.5 are given in the corresponding tables in C. In general, the annual average predicted values are close to the reference year values. In the case of Italy, the increment in HP generation is around +1%. The largest variation in percentage of HP production is forecast for Portugal with a decrease up to -23% for 2030 and -25% for 2050. This is in line with the climate projections of a warmer and dried region for RCP 8.5. Also Spain is expected to have a decrease up to -3% in 2030 and -5% in 2050. The results obtained for Austria and France show a big variability among the possible scenarios. The interval of variation goes from -2% to -12% in 2030 and -3% to -14% in 2050. Yet there are strong limitations of using only these average behaviors for future power generation assessment in Europe. In fact, to give a coherent picture of the future variability in HP generation in each country we need to consider the calendar variability of capacity factors, the variability induced by the different future climate models, and the variability associated to the sliding window of 20 years around each target year.

As an example, we show the time series of the capacity factor and of the precipitation along 20 years centered in 2030 and 2050 for some of the EU countries with large installed hydropower capacity as Austria, France, Portugal and Italy. The results shown in Figures 14,15, 16 and 17 are obtained by considering the climate projection model A85. From this figures, we can see that the largest variability is found in MMA period in Portugal and SON period in France. In particular, in the first case, the capacity factor values are within the interval 0.3-0.7. This is in line with the range of variation found also in the observations for the same period as shown in Figure 8(b). The lowest values are achieved during JJA period, when we also observe a small variability of the precipitation for all the 20 years. Note also that the predicted 20-year average capacity factor is 10% smaller than the one in the reference year 2016. For the case of France, SON is the most uncertain period for precipitation as shown in Figures 15(e)-(f). This yields a larger interval of variation for the capacity factor between 0 to 0.4. The amplitude of the variation interval for Austria and Italy remains almost uniform along the target years. As depicted in Figures 5 and10, these amplitudes are about 0.2 for Austria and 0.08 for Italy.

It is interesting to show how the variability of the hydropower generation reflects that of the climate projections. In order to have a deeper insight of that, let us consider the country that showed to have the largest interval of variations, e.g., Portugal. We select now the climate projection model 'F' and we are interested in showing how the HP capacity evolves from 2030 under RCP 4.5 to 2050 under RCP 8.5 based on the precipitation projections. At this aim, we report in Figure 18, the boxplots built by considering the weekly average of the 20-year window data centered in 2030 (or 2050). The blue dots are the weekly average values in the reference year 2016. The computed values of the capacity factor are presented in Figure 18(a)-(b), while the precipitation values are given in Figure 18(c)-(d). First of all, we can see that both in 2030 F45 and 2050 F85 the maximum values of the predicted capacity factor are smaller than those in 2016 for the period going from May to October. The reason for a bigger decrease of hydropower production in the last scenario could be understood by looking at the values of precipitation. Indeed, the first part of the year 2050 shows a smaller variability in the precipitation with few outliers and 90% of data points distributed below the value of 10 mm. We also observe a smaller variability in the dried season, so as observed for the capacity factor. 

Accessing the worst case scenarios

As we mentioned, the results produced in this paper will be used as input in energy system models for analyzing the climate influence on the optimal operation of power systems. From the point of view of optimal energy planning problem, beside the value of the capacity factor obtained averaging over the twenty-year window centered in 2030 and 2050, it is also interesting to have access to the worst case scenario. In the case of the present paper, this corresponds to the minimum annual average capacity factor computed over the twenty predicted time series. In Figure 19, we depict the worst case capacity factor obtained for each one of the climate models and the values of the observed capacity factor in the reference year. Also from this perspective, we can see that Portugal is expected to be the most impacted by climate changes as the daily time series of the eleven scenarios are all smaller than the observed capacity factor almost for every day of 2050. Yet a high variability among the different scenarios is found in this country in the first five months of the year where the values vary from 0.2 to 0.7. Still staying with the Iberian Peninsula, we can see a decrease of more than 10% of the Spanish capacity factor in the dried period starting in June. For France and Austria, the minimum values of the capacity factors for each models fall below the ones in the reference year in the second part of the year (begin-ning of July to the end of November). This can be also observed in the winter period in Germany (November-December) and Norway (January-March).

Once again we highlight the diverse possible scenarios involving the different countries. Our methodology offers to power systems' stakeholders and energy system modelers the possibility of addressing the variability of the hydropower production under the future climate conditions described in this paper. 

Conclusion

Europe is expected to strongly expand its wind and solar power capacity by 2050 to meet its climate goals. In an interconnected system, balancing these highly intermittent sources by hydropower will also involve a European wide evaluation of the variability of hydropower generation for future climatic conditions.

The methodological framework described in this paper offers the possibility of addressing this issue. The two main ingredients are: the formalization of an accurate model and the long-term climate forecasts.

The models are built to translate time series of climate variables into time series of hydropower capacity factor. At this aim, we investigate the performance of several machine learning (ML) methods. The testing phase showed that ML has a good performance in modeling the hydropower capacity factor for almost all European countries. Some errors observed in this phase are due to the lack of historic hydropower generation data. Although this is an important issue now, it will be naturally fixed with time and the methodology used in this paper will still hold and earn more value.

Climate projections are from EURO-CORDEX and consist of 11 models and two RCP scenarios, .i.e., 4.5 and 8.5. The accurate choice in the selection of the models combination allows expressing the variability of the climate behavior for the target years 2030 and 2050.

The combination of ML models and climate projections provide an overview of the long-term variability of capacity factors at country scale for Europe. The results show, in general, a decrease of hydropower in both RCP 4.5 and 8.5. The strongest impact of the temperature increase on the RoR hydropower production, we found in the Western South Europe. In particular, in the Iberian Peninsula, our result show a reduction up to -25% in Portugal and -5% in Spain for 2050 RCP 8.5. A high variability among the several scenarios is shown by the central western countries such as Austria and France with a decrease up to 14% 2050 under RCP 8.5.

Although there are still limitations in this work, it represents a first attempt to access the variability of the future climate scenarios on the run-of-river hydropower production. Our results should be seen as possible realizations of hydropower generation scenarios related to possible future climate conditions. Future works will be dedicated to the model of the uncertainty of the longterm projections of the daily RoR hydropower generation. The idea is to build a stochastic model for this uncertainty whose dynamics aim to reproduce the statistical characteristics of the prediction deviation with respect to its modeled long-term mean, and so be able to enrich the ML prediction with probabilistic anomalies indicators aggregated at the scale of countries.

A Climate projections

Table 3: Difference in the annual average precipitation: historical values in 2016 [mm] and projections [%] for 2030 under RCP 4.5. Country 2016 Country 2016 Country 2016 

Country 2016 [mm] A45 [%] B45 [%] C45 [%] D45 [%] E45 [%] F45 [%] G45 [%] J45 [%] L45 [%] H45 [%] I45 [%] AT 3.
[mm] A85 [%] B85 [%] C85 [%] D85 [%] E85 [%] F85 [%] G85 [%] J85 [%] L85 [%] H85 [%] I85 [%] AT 3.
[mm] A45 [%] B45 [%] C45 [%] D45 [%] E45 [%] F45 [%] G45 [%] J45 [%] L45 [%] H45 [%] I45 [%] AT 3.
Country 2016[C] A45 [C] B45 [C] C45 [C] D45 [C] E45 [C] F45 [C] G45 [C] J45 [C] L45 [C] H45 [C] I45 [C] AT 6 
[C] A85 [C] B85 [C] C85 [C] D85 [C] E85 [C] F85 [C] G85 [C] J85 [C] L85 [C] H85 [C] I85 [C] AT 6

Country 2016[C] A45

[C] B45 [C] C45 [C] D45 [C] E45 [C] F45 [C] G45 [C] J45 [C] L45 [C] H45 [C] I45 [C] AT 6 
C] A85 [C] B85[C] C85 [C] D85 [C] E85 [C] F85 [C] G85 [C] J85 [C] L85 [C] H85 [C] I85 [C] AT 6 

B Performance of the ML algorithms

In Table 11, we show the values of the evaluation measures obtained in the testing phase by the several ML methods. The column titled MAPEm is the classical MAPE obtained excluding zeros values (smaller that 10 -3 ). We highlight in yellow the two ML algorithms with the best performance. 

Figure 1 :

 1 Figure 1: Capacity factor of the run-of-river hydropower generation over 2016 (Source: ENTSO-E), and simulated values over 2050 under one of the climate scenarios (A85) for four European countries.

Figure 2 :

 2 Figure 2: Difference in the annual average temperature per country: comparison 2016 and projections for 2030 and 2050 under RCP 8.5.

Figure 3 :

 3 Figure 3: Difference in the annual average precipitation per country: comparison 2016 and projections for 2030 and 2050 under RCP 8.5.

Figure 4 :

 4 Figure 4: Machine learning workflow.

Figure 5 :

 5 Figure 5: Country: AT. (a)-(c): Time series of the observed and modeled capacity factor in the training and testing phases, respectively. (b)-(d): Scatter plot of the modeled and observed capacity factor in the training and testing phases, respectively.

Figure 6 :

 6 Figure 6: Country: DE. (a)-(c): Time series of the observed and modeled capacity factor in the training and testing phases, respectively. (b)-(d): Scatter plot of the modeled and observed capacity factor in the training and testing phases, respectively.

Figure 7 :

 7 Figure 7: Country: ES. (a)-(c): time series of the observed and modeled capacity factor in the training and testing phases, respectively. (b)-(d): scatter plot of the modeled and observed capacity factor in the training and testing phases, respectively.

Figure 8 :

 8 Figure 8: Country: PT. (a)-(c): Time series of the observed and modeled capacity factor in the training and testing phases, respectively. (b)-(d): Scatter plot of the modeled and observed capacity factor in the training and testing phases, respectively.

Figure 9 :

 9 Figure 9: Country: FR. (a)-(c): Time series of the observed and modeled capacity factor in the training and testing phases, respectively. (b)-(d): Scatter plot of the modeled and observed capacity factor in the training and testing phases.

Figure 10 :

 10 Figure 10: Country: IT. (a)-(c): Time series of the observed and modeled capacity factor in the training and testing phases, respectively. (b)-(d): Scatter plot of the modeled and observed capacity factor in the training and testing phases. Note that no data are available for the whole 2015, then the training phase is performed only over three years. 18
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  Figure 11: Countries: ES and PT. Monthly anomalies in the temperature and precipitation over 2019. 21

Figure 13 :

 13 Figure 13: Difference in the annual average hydropower generation per country: comparison 2016 and predictions for 2030 and 2050 under RCP 8.5.

Figure 14 :

 14 Figure 14: Country: AT. Variability of the capacity factor and precipitation along 20 years: maximum and minimum envelops (black), calendar mean of the 20year time series centered in 2030 (or 2050) (red), and observed values in 2016 (blue).

Figure 15 :

 15 Figure 15: Country: FR. Variability of the capacity factor and precipitation along 20 years: maximum and minimum envelops (black), calendar mean of the twenty-year time series centered in 2030 (or 2050) (red), and observed values in 2016 (blue).

Figure 16 :

 16 Figure 16: Country: PT. Variabily of the capacity factor and precipitation along 20 years: maximum and minimum envelops (black), calendar mean of the twenty-year time series centered in 2030 (or 2050) (red), and observed values in 2016 (blue).

Figure 17 :

 17 Figure 17: Country: IT. Variability of the capacity factor and precipitation along 20 years: maximum and minimum envelops (black), calendar mean of the twenty-year time series centered in 2030 (or 2050) (red), and observed values in 2016 (blue).

  (a) Capacity factor F45 (2030) (b) Capacity factor F85 (2050)

Figure 18 :

 18 Figure 18: Country: PT. Variability of the capacity factor and precipitation along 20 years corresponding to the climate models F45 for 2030 and F85 for 2050.

Table 1 :

 1 Top five EU countries by installed hydropower capacity (2019) (*excluding pumping storage).

	Country	Total Installed Capacitity(*) (RoR + Res) [MW] Total Generated [TWh]
	Norway	28675 (992 + 27683)	139.51
	Spain	20302 (1156 + 19146)	34.12
	France	19234 (10955 + 8279)	63.10
	Italy	14507 (10650 + 3857)	49.28
	Austria	7998 (5558 + 2440)	16.29

Table 2 :

 2 List of climate models generating the climate projections and scenarios.

	Regional	Driving	Short
	Climate Model (RMC)	Global Climate Model (GCM)	code
	CLMcom-CCLM4-8-17	CNRM-CERFACS-CNRM-CM5	A45 -A85
	CLMcom-CCLM4-8-17	ICHEC-EC-EARTH	B45 -B85
	SMHI-RCA4	ICHEC-EC-EARTH	C45 -C85
	DMI-HIRHAM5	ICHEC-EC-EARTH	D45 -D85
	KNMI		

Table 4 :

 4 Difference in the annual average precipitation: historical values in 2016 [mm] and projections[%] for 2030 under RCP 8.5.

Table 5 :

 5 Difference in the annual average precipitation: historical values in 2016 [mm] and projections[%] for 2050 under RCP 4.5.

		47	-6.05	8.93	-4.03	-8.65	12.10	19.02	12.39	-2.31	-7.49	-4.32	0.00
	BE	2.67	9.36	-11.61	-4.12	11.99	14.23	15.73	-6.74	-13.86	-7.87	2.62	-6.37
	BG	2.33	-20.17	-4.72	10.30	4.29	-10.30	2.58	8.15	-1.29	3.86	8.15	-6.44
	CH	4.59	-3.92	7.63	12.42	-8.28	22.00	8.28	-7.19	-14.38	-6.75	-10.68	-8.71
	DE	2.81	5.69	-2.14	1.42	1.78	23.49	14.95	-4.63	-13.17	-8.90	2.85	4.63
	ES	1.61	-22.98	-1.24	0.62	-12.42	-3.73	-25.47	-23.60	-17.39	-6.83	-16.77	-9.32
	FI	1.80	6.11	33.33	26.11	15.00	0.00	1.11	-12.78	12.78	-1.67	10.56	4.44
	FR	2.56	-3.91	-6.25	1.95	-11.72	17.97	-5.47	-23.44	-11.33	-3.13	-11.33	-18.75
	HU	2.22	-17.12	14.86	3.15	1.80	8.56	-8.11	15.32	-11.71	-13.06	-6.76	7.66
	IE	2.57	18.29	3.50	-1.17	14.79	0.39	4.28	-2.33	-0.39	12.45	-11.28	-0.78
	IT	2.68	-22.01	-2.99	-3.73	-9.70	-5.60	7.09	-1.87	-10.07	6.34	-18.28	-17.91
	LT	2.11	10.43	32.70	18.48	5.69	30.81	22.27	7.11	4.27	-1.90	6.16	8.53
	LV	1.84	25.54	28.26	33.15	11.41	18.48	20.65	-2.17	8.15	14.13	10.87	17.93
	NO	3.11	14.47	11.25	6.43	22.19	1.61	0.64	-5.79	7.72	10.93	4.18	2.25
	PL	2.12	-10.38	32.08	-2.83	-8.96	16.98	16.04	19.34	-11.79	-12.74	1.42	1.42
	PT	2.08	-40.87	-10.58	-11.06	-21.63	-5.77	-36.54	-28.85	-20.67	-10.10	-27.40	-23.08
	RO	2.79	-17.20	6.09	5.02	-1.43	-6.09	10.75	23.30	-6.09	-5.02	-0.72	1.79
	SI	2.97	-14.81	8.75	-2.36	-10.10	2.69	8.08	8.75	-6.06	15.82	-11.78	-12.46
	SK	2.24	-17.86	12.95	-1.79	-6.70	8.04	2.68	18.75	-0.45	-16.96	-4.02	2.68
	UK	2.23	23.77	1.79	1.35	4.93	1.35	5.83	0.90	-4.93	8.07	-8.07	-4.93

Table 6 :

 6 Difference in the annual average precipitation: historical values in 2016 [mm] and projections[%] for 2050 under RCP 8.5.

		47	-4.03	3.75	3.46	10.95	-4.90	-10.09	10.09	-1.15	-11.53	-1.15	1.15
	BE	2.67	17.98	-6.37	-21.72	-2.25	3.37	1.12	22.10	-7.49	-11.24	25.09	-0.75
	BG	2.33	-12.45	6.87	-0.43	9.44	6.87	8.15	10.30	3.00	1.29	-12.45	-3.43
	CH	4.59	-2.83	-8.06	-4.79	13.07	-1.74	7.63	15.90	-2.40	-12.20	11.98	-2.18
	DE	2.81	7.47	1.78	-18.15	9.61	16.01	-9.61	15.30	-6.05	-12.81	21.71	1.07
	ES	1.61	-14.91	-9.94	-6.21	-2.48	-4.97	31.06	34.16	0.00	-10.56	-4.35	-19.88
	FI	1.80	20.56	13.33	4.44	11.67	31.11	-5.00	-3.89	5.00	8.89	10.00	10.00
	FR	2.56	8.59	-12.89	-14.45	-1.95	1.95	26.17	37.89	-8.20	-0.78	19.53	-3.52
	HU	2.22	2.70	8.56	0.90	13.96	0.45	6.76	18.02	-4.95	6.76	-11.26	1.35
	IT	2.68	-14.93	-14.18	5.97	7.46	-13.43	15.30	28.73	0.37	0.37	-6.34	-5.60
	LT	2.11	36.02	23.70	-5.21	14.69	3.79	-4.27	-10.90	1.42	-8.06	14.69	-8.06
	LV	1.84	29.35	27.72	-5.98	9.78	21.20	-6.52	-19.57	13.04	8.70	19.57	4.89
	NO	3.11	0.64	2.57	-3.86	1.29	8.04	-6.11	-5.47	3.54	2.25	7.07	-3.86
	PL	2.12	30.66	23.11	3.30	14.62	8.02	-5.19	-6.60	0.94	-4.25	5.19	10.85
	PT	2.08	2.40	4.81	0.00	-13.46	15.87	38.46	35.10	-3.37	-7.21	-16.83	-9.62
	RO	2.79	-5.73	5.73	-6.09	6.09	2.87	2.15	23.66	1.79	3.58	-9.68	9.32
	SI	2.97	-2.36	-1.35	-6.40	1.35	-1.68	2.02	37.04	-7.74	-4.71	-3.70	-11.78
	SK	2.24	6.70	13.39	8.48	7.59	-2.68	1.79	9.82	2.68	10.27	-1.79	2.23
	UK	2.23	10.31	21.08	-13.00	-14.35	15.25	-14.80	-6.73	-8.07	-5.83	9.42	-0.90
	Country 2016[mm] A85 [%] B85 [%] C85 [%] D85 [%] E85 [%] F85 [%] G85 [%] J85 [%] L85 [%] H85 [%] I85 [%]
	AT	3.47	2.02	8.93	-2.02	16.43	0.00	24.50	12.97	-7.78	-4.90	-1.44	-4.61
	BE	2.67	15.36	-10.86	7.12	17.60	-7.49	18.35	-11.24	1.50	-7.12	-10.11	-7.87
	BG	2.33	-15.02	-4.29	9.44	-4.29	3.86	-1.29	0.00	7.30	-15.02	-12.02	5.58
	CH	4.59	0.65	7.19	-7.19	23.97	15.25	12.42	-11.33	-15.25	-15.47	-11.33	-6.10
	DE	2.81	10.32	0.71	0.36	27.76	0.71	17.79	-7.47	2.85	4.27	-11.03	-5.69
	ES	1.61	-28.57	-6.21	-14.29	-7.45	-0.62	-27.33	-24.84	-25.47	-20.50	-14.91	-5.59
	FI	1.80	9.44	33.89	14.44	-0.56	28.89	13.33	-5.00	17.22	11.11	17.22	7.22
	FR	2.56	-3.52	-7.42	-14.45	17.58	0.39	-4.69	-25.78	-17.19	-23.44	-5.86	-2.34
	HU	2.22	-9.91	13.06	7.66	13.51	3.60	0.90	17.12	-11.71	1.80	-8.11	-5.41
	IT	2.68	-20.90	-3.73	-5.60	-5.60	-1.49	12.69	-2.99	-22.76	-23.88	-6.72	4.85
	LT	2.11	18.48	27.01	4.74	33.65	21.33	32.23	7.58	10.43	6.64	7.11	-2.37
	LV	1.84	34.78	28.26	7.61	20.65	31.52	32.61	1.09	19.02	19.02	10.87	15.76
	NO	3.11	19.61	13.83	25.72	-2.25	8.04	5.47	1.29	9.97	7.07	7.07	8.04
	PL	2.12	-5.19	30.66	-6.13	26.89	1.42	23.58	20.28	-1.42	-2.83	-7.55	-6.13
	PT	2.08	-46.63	-12.02	-25.00	-11.54	-9.13	-32.69	-24.04	-41.35	-39.90	-12.50	-9.62
	RO	2.79	-10.39	2.15	2.51	0.72	2.51	15.05	16.13	-2.87	-5.02	-10.75	-0.72
	SI	2.97	-10.10	6.06	-5.05	5.05	-1.35	14.81	10.77	-17.17	-16.50	-4.71	18.52
	SK	2.24	-12.05	10.27	-0.89	13.84	0.89	10.27	24.55	-13.39	-4.02	1.34	-10.71
	UK	2.23	24.66	0.90	1.79	0.45	0.45	9.42	1.79	-6.28	-7.17	-0.90	8.07

Table 7 :

 7 Difference in the annual average temperature in Celsius Degrees: historical values in 2016 and projections for 2030 under RCP 4.5.

Table 8 :

 8 Difference in the annual average temperature in Celsius Degrees: historical values in 2016 and projections for 2030 under RCP 8.5.

Table 9 :

 9 Difference in the annual average temperature in Celsius Degrees: historical values in 2016 and projections for 2050 under RCP 4.5.

		.85	1.33	0.09	0.64	1.13	1.36	-0.93	-0.11	-0.12	1.13	0.72	0.69
	BE	10.08	1.2	0.09	0.35	0.99	1.04	-0.71	-0.03	0.07	0.76	1.58	0.9
	BG	11.16	1.06	0.71	0.98	-0.2	1.72	0.13	0.25	-0.95	1.62	0.53	0.67
	CH	6.14	1.13	0.36	0.53	1	1.19	-0.83	0.21	0.29	0.9	1.09	0.84
	DE	9.16	1.27	0.05	0.41	1.19	1.14	-0.95	-0.34	0.2	0.91	1.31	0.73
	ES	14.22	0.74	0.3	0.33	0.84	0.56	0.56	0.82	0.59	0.88	1.32	1.03
	FI	5.14	1.4	0.25	0.75	2.81	-1.04	-1.01	-1.33	2.26	1.37	1.22	0.79
	FR	11.01	0.86	0.5	0.69	0.92	0.88	-0.63	0.31	0.25	0.93	1.61	1.19
	HR	11.42	1.19	0.25	0.6	0.75	1.24	-0.51	0.06	-0.09	1.22	1.02	0.79
	HU	10.65	1.42	0.02	0.38	1	1.28	-0.73	-0.36	-0.38	1.57	0.68	0.65
	IE	9.75	0.81	0.19	0.11	0.33	1.05	-0.46	-0.13	0.62	0.27	0.4	0.48
	IT	11.86	1.13	0.46	0.61	0.58	0.95	-0.25	0.39	0.05	0.88	1.07	0.88
	LT	7.20	1.69	-0.02	0.45	1.92	-0.06	-1.18	-1.17	1.72	1.17	0.84	0.66
	LV	6.86	1.3	0.12	0.56	2.25	-0.34	-1.09	-1.31	2.05	1.25	1.01	0.58
	NO	3.55	1.26	-0.25	0.04	1.57	0.03	-0.51	-0.43	1.5	0.93	0.65	0.66
	PL	8.93	1.82	-0.39	0.55	1.4	0.87	-1.13	-0.8	0.38	1.02	0.63	0.57
	PT	13.90	1.3	1.24	1.28	2.1	1.17	1.65	1.92	1.96	1.57	2.25	2.25
	RO	9.80	1.07	0.34	1.04	0.42	1.65	-0.38	-0.17	-0.59	1.72	0.34	0.67
	SI	9.43	1.16	0.24	0.64	0.94	1.28	-0.78	-0.01	-0.17	0.98	1.1	1.23
	SK	8.65	1.42	-0.09	0.42	1.17	1.18	-0.94	-0.53	-0.24	1.31	0.51	0.7
	UK	9.81	0.97	0.2	0.33	0.74	0.81	-0.56	-0.22	0.53	0.57	0.96	0.8

Table 10 :

 10 Difference in the annual average temperature in Celsius Degrees: historical values in 2016 and projections for 2050 under RCP 8.5.

		.85	1.17	0.59	0.59	-0.36	0.65	0.08	0.49	1.08	1.42	0.34	0.54
	BE	10.08	0.86	1.06	1.17	-0.24	0.58	-0.05	0.03	1.49	1.88	-0.12	0.83
	BG	11.16	1.05	-0.16	0.09	0.42	0.33	0.54	0.41	1.74	1.05	1.18	0.44
	CH	6.14	1.17	1.08	0.69	0.12	0.9	0.14	0.64	0.95	1.48	-0.2	0.66
	DE	9.16	1.08	0.78	1.2	-0.28	0.6	-0.18	0.07	1.35	1.85	0.13	0.71
	ES	14.22	1.66	1.32	0.94	0.33	1.22	0.23	0.34	1.27	1.46	0.2	1.14
	FI	5.14	0.38	0.99	1.51	0.81	0.99	0.16	0.73	1.5	2	0.96	0.26
	FR	11.01	1.17	1.22	1.02	0	0.73	0.23	0.29	1.52	1.79	-0.21	0.87
	HU	10.65	1.03	0.04	0.29	-0.72	0.37	-0.04	0.12	1.86	1.39	0.83	0.5
	IE	9.75	0.51	0.76	1.06	0.12	0.76	-0.24	-0.15	1.05	1.32	-0.3	0.79
	IT	11.86	1.1	0.9	0.5	-0.14	0.79	0.47	0.61	1	1.14	0.26	0.71
	LT	7.20	0.58	0.42	1.24	-0.52	0.73	-0.83	-0.16	1.33	1.77	1.23	0.11
	LV	6.86	0.57	0.66	1.25	0.02	0.85	-0.5	-0.02	1.23	1.54	1.17	0.05
	NO	3.55	0.66	1.11	1.44	-0.11	0.81	0.42	0.9	0.86	1.8	0.82	0.71
	PL	8.93	0.73	-0.01	1.12	-1.04	0.23	-0.62	0.09	1.61	1.9	1	0.27
	PT	13.90	1.41	0.98	1.26	0.81	0.99	0.1	0.26	1.31	1.39	0.29	1.14
	RO	9.80	0.82	-0.24	0.16	0.18	0.44	0.12	0.03	1.92	1.07	1.15	0.5
	SI	9.43	1.05	0.61	0.6	-0.73	0.48	0.26	0.24	1.41	1.31	0.64	0.95
	SK	8.65	0.87	-0.05	0.59	-0.79	0.39	-0.15	0.27	1.6	1.8	0.81	0.55
	UK	9.81	0.63	0.65	1.26	0.06	0.68	-0.12	0.05	1.15	1.52	-0.19	0.79

Table 11 :

 11 Performance evaluation of the ML algorithms for the computation of the one-year-ahead run-of-river based hydropower capacity factor.

	Country ML	R	R2	MAAPE	sMAPE	MAPEm
		RF	0.5695 0.2501 19.1438 18.7301 19.9850
		BT	0.5344 0.2070 19.7603 19.8731 20.6018
	AT	SVM 0.5215 0.1919 19.5003 19.4096 20.5558 LR 0.7147 0.4570 16.2695 16.4476 16.7212
		hyb	0.5497 0.2255 19.3084 19.3332 20.1526
		RF	0.8411 0.6693 65.5022 49.2937 96.5644
		BT	0.8313 0.6508 60.6650 45.9549 86.3017
	BG	SVM 0.8350 0.6576 63.1719 47.7868 88.6060 LR 0.8729 0.7308 65.5586 49.4534 92.7665
		hyb	0.8417 0.6703 61.8055 46.7813 87.1631
		RF	0.7392 0.4774 29.2819 28.2731 31.7815
		BT	0.7114 0.4310 27.2893 27.4345 29.3472
	CH	SVM 0.6906 0.3974 29.1345 28.6061 31.6958 LR 0.5620 0.2118 32.7513 31.2775 36.3388
		hyb	0.7597 0.5128 27.3926 27.2618 29.4406
		RF	0.6995 0.2377 10.7962 10.1582 10.9850
		BT	0.6841 0.2060 10.8842 10.6923 11.0267
	DE	SVM 0.6299 0.0996 10.7696 10.4423 10.9545 LR 0.6642 0.1659 10.8537 10.8572 10.9956
		hyb	0.6970 0.2325	9.9488	9.6865	10.0843
		RF	0.8087 0.5806 19.6511 17.9141 20.5422
		BT	0.8106 0.5844 17.5314 16.7036 18.2038
	ES	SVM 0.7808 0.5269 18.1987 17.1226 18.9106 LR 0.7906 0.5456 19.8148 18.3517 20.6706
		hyb	0.8108 0.5848 17.1232 16.2498 17.7346
		RF	0.6200 0.3290 29.8506 24.3231 36.3198
		BT	0.5735 0.2686 27.7375 22.8330 33.4742
	FI	SVM 0.6255 0.3365 31.0392 25.1932 38.0917 LR 0.5443 0.2330 31.8015 25.7889 39.3324
		hyb	0.6187 0.3273 28.5706 23.3520 34.6819
		RF	0.7738 0.5251 17.1205 15.8591 17.8289
		BT	0.7649 0.5089 15.8921 15.2586 16.4596
	FR	SVM 0.7486 0.4796 19.3762 18.1085 20.2781 LR 0.7829 0.5419 18.4691 17.1938 19.2378
		hyb	0.7719 0.5216 16.5098 15.6148 17.1457
		RF	0.5377 0.2598 40.1111 40.3074 53.9424
		BT	0.5456 0.2688 40.3111 41.7833 53.1313
	IE	SVM 0.5428 0.2656 40.1513 41.2170 51.0510 LR 0.5601 0.2854 38.5761 39.1479 59.9916
		hyb	0.5554 0.2800 39.6847 40.8462 51.3717

Table 14 :

 14 Difference in the annual average hydropower generation: comparison between 2016 [MW] and projections[%] for 2030 under RCP 8.5.

	Country 2016[MW] A85[%] B85[%] C85 [%] D85[%] E85[%] F85[%] G85[%] J85[%] L85[%] H85[%] I85 [%]
	AT	3213.30	-9.06	-6.06	-9.07	-6.74	-1.97	-5.19	-7.17	-10.66	-7.74	-6.27	-5.21
	BE	9.91	-24.34	-27.78	-25.24	-22.69	-23.31	-22.94	-25.31	-29.30 -27.37	-25.27	-26.92

Table 15 :

 15 Difference in the annual average hydropower generation: comparison between 2016 [MW] and projections[%] for 2050 under RCP 8.5.

	AT	3213.30	-8.38	-5.83	-8.00	-7.18	-1.15	-5.31	-5.73	-9.55	-7.32	-7.85	-5.44
	BE	9.91	-22.50	-27.77	-25.16	-24.35	-22.27	-21.58	-25.55	-27.55 -26.61	-24.90 -26.51
	BG	206.07	-2.82	-2.88	-2.68	-1.93	-4.50	-2.30	-2.58	-2.66	-3.48	-2.47	-2.56
	CH	67.91	3.49	3.00	3.36	2.62	4.22	4.56	5.02	3.03	4.25	4.65	3.94
	DE	1710.65	-2.24	-2.28	-3.35	-3.05	-2.84	-1.91	-2.39	-3.28	-2.70	-3.10	-2.78
	ES	1021.11	-6.46	-4.46	-4.91	-5.75	-4.97	-7.56	-6.46	-5.97	-5.24	-7.81	-7.30
	FI	1640.83	-5.67	-4.60	-4.31	-5.34	-5.43	-4.58	-5.94	-5.12	-6.40	-5.40	-5.57
	FR	4799.32	-7.40	-9.31	-5.01	-9.18	-3.58	-8.08	-10.72	-10.52	-9.68	-11.82 -14.89
	HU	11.28	-6.36	-6.00	-6.35	-5.92	-6.78	-6.03	-6.63	-6.74	-6.22	-6.46	-6.58
	IE	76.00	5.67	1.75	1.21	3.98	1.18	2.16	1.71	1.72	4.59	0.76	2.62
	IT	3536.11	0.77	1.76	1.68	1.33	1.23	1.91	1.29	1.47	2.46	1.49	1.40
	LT	41.11	-0.97	0.93	-0.71	-2.39	0.28	1.67	0.88	-3.17	-0.54	-1.38	-1.21
	LV	291.45	16.43	20.15	16.91	13.44	20.50	21.89	21.22	13.30	15.65	16.72	17.60
	NO	1285.76	-4.95	-4.02	-4.68	-2.07	-5.96	-3.63	-5.80	-4.83	-3.91	-3.55	-4.69
	PL	178.55	-7.22	-4.68	-7.12	-8.43	-6.43	-3.69	-4.08	-8.08	-6.98	-7.46	-7.76
	PT	1078.98	-29.06	-23.80	-25.70	-27.68	-24.75	-27.52	-25.04	-25.51 -24.05	-28.86 -28.32
	RO	1307.58	-5.36	-2.88	-2.18	-2.94	-2.40	-1.48	-1.98	-4.99	-3.17	-4.47	-4.39
	SI	496.22	-7.19	-7.01	-6.69	-6.20	-5.89	-5.52	-5.10	-6.87	-4.84	-8.02	-7.16
	SK	458.64	-7.56	-6.04	-7.99	-8.85	-7.60	-6.20	-4.12	-8.23	-8.14	-8.47	-7.68
	UK	384.99	8.33	5.58	5.80	7.79	6.97	4.42	4.53	6.04	5.82	6.13	6.60

Country 2016[MW] A85[%] B85[%] C85[%] D85[%] E85[%] F85[%] G85[%] J85[%] L85[%] H85[%] I85[%]
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