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Transient modelling of influx for estimation while drilling

Naveen Velmurugan and Florent Di Meglio

Abstract— In this paper, we present a model of reservoir
pressure dynamics in view of estimating influx during drilling.
The distributed nature of the model is shown to have an
important impact on the transient behaviour of pressure and
flow rate when a liquid influx is present. Then, two observers,
designed using a backstepping approach, are used to estimate
the distributed reservoir pressure as well as wellbore states.
The relevance of the approach is illustrated in simulations.

I. INTRODUCTION

As automation of the drilling process is becoming an
increasingly important research and development focus,
real-time measurements are becoming increasingly available
and reliable. These enable feedback control, e.g. in Managed
Pressure Drilling (MPD) operations [10], as well as improved
monitoring. In this paper, we present a distributed model
of reservoir dynamics in view of estimating influx during
drilling.

The drilling of an oil well consists in creating a borehole
several kilometers deep in the ground. While doing so, a
drilling fluid is circulated to pressurize the well and remove
rock cuttings, among other purposes. The pressure at the
bottom of the well, referred to as Bottom Hole Circulating
Pressure (BHCP), needs to be accurately controlled to remain
inside of uncertain constraints: below the so-called fracture
pressure and, in most operations, above the so-called pore
(or reservoir) pressure, which is the containment pressure of
the fluids in the reservoir. When the BHCP goes below the
pore pressure, an influx of fluid flows from the reservoir into
the wellbore.

Whether the influx is wanted, as in Under-Balanced
Operations (UBO), or accidental, as in most conventional and
MPD operations, it is important to estimate its magnitude.
Overestimating the severity of a kick produces unnecessary
Non-Productive Time, while underestimating it can have
disastrous consequences [4].

Influx estimation is an important topic in the literature.
In [9], a Kalman filter is applied to a distributed two-phase
flow model of the wellbore with a simplified influx model
to estimate reservoir characteristics and unmeasured states.
In [8], a Lyapunov observer is applied to a finite-dimensional
model of the pressure dynamics inside the wellbore with
a static reservoir model, to estimate influx and reservoir
parameters such as Productivity Index (PI). In [5], the
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authors rely on downhole flow and pressure measurements
to estimate permeability and PI, again, based on a simplified
influx model.

In these contributions, the distributed nature of the
pressure dynamics, either in the wellbore or the reservoir
is often discarded or approximated. The relation between
BHCP and influx is either assumed static [8] or formulated as
a scalar ODE [9]. These models take their source in produc-
tion engineering [3], where distributed reservoir dynamics
are approximated based on assumptions that are valid in the
context of production, usually that either the influx or the
pore pressure has reached a quasi-equilibrium.

In this paper, we argue that, in the context of drilling,
one should take into account the distributed and transient
nature of the near-wellbore reservoir pressure dynamics to
estimate the influx. Our approach is as follows. We focus on
a reservoir containing only liquid, for which these effects are
already important. We present simulations on a model that
couples these with distributed pressure dynamics in the drill
string and annulus, to illustrate this point. This is the main
contribution of the paper.

Then, we recall a backstepping model-based observer
design similar to [6] that enables estimation of the
distributed reservoir pressure and influx based on two pres-
sure measurements at the wellbore boundaries. Backstep-
ping is a systematic control and observer design method
that enables boundary estimation of parabolic [7], [11] and
hyperbolic [2], [1] Partial Differential Equations (PDEs),
among others. In our case, the system takes the form of
a diffusion equation, coupled at its boundary with a system
of two counter-convecting hyperbolic PDEs. We use existing
results from the literature to derive separate observers for the
two systems.

The paper is organized as follows. In Section II, we
present the complete model coupling drill string, annulus
and reservoir dynamics. In Section III, we recall the observer
design. Section IV contains simulations.

II. PROBLEM STATEMENT AND MODELLING

We consider the hydraulic part of a MPD drilling system
composed of a drill string and an annulus through which
flows a liquid, typically oil- or water-based mud. The open
part of the annulus is in contact with a reservoir of uncer-
tain pore pressure, permeability and porosity. This setup is
schematically depicted on Figure 1. The liquid is injected
at a known, variable flow rate using the mud pump at the
surface and it is considered that the corresponding flow rate
at the bit, qbit(t) is known. The topside part of the annulus



Fig. 1. Schematic of flow paths. For simplicity, the drill string and annulus
are represented as a u-tube whereas, in reality, they are concentric.

is assumed to be sealed, which is the main feature of MPD
operations, and the outflow is controlled via a choke valve.
The main purpose of MPD is to improve the control of the
BHCP compared to conventional drilling. Among the factors
influencing the BHCP are regular operational transients, e.g.
when the mud pump flow rate is decreased to zero during
a connection, and unwanted incidents, e.g. when the choke
is suddenly plugged, or when an unpredicted influx enters
the wellbore from the reservoir. Here, we consider the case
where a liquid influx is present, due to a reservoir pressure
higher than anticipated. To accurately estimate the size of
this influx, we model now the coupling between wellbore
and reservoir dynamics.

A. Wellbore Model

We make the following simplifying assumptions: the flow
is one dimensional, single-phase (liquid), temperature is
constant. We denote ρ the liquid density and vl its velocity.
The liquid is assumed to follow the following Equation of
State

p(t,x) = p0 +(ρ(t,x)−ρ0)C2
l (1)

where Cl is the sound velocity in the liquid, t > 0 the
time variable and x ∈ [0,L] the spatial variable, where L
is the total length of the pipe. The constants p0, ρ0 are
assumed to be perfectly known in drilling conditions. Writing
mass and momentum conservation laws and assuming that

vl ≪Cl yields the following set of Partial Differential Equa-
tions (PDE) known as Euler’s equations,

qt +Aqx = S (2)

where, A =

!
0 1

C2
l 0

"
and S =

!
0

−F(q)−G(q)

"
, F(q) rep-

resenting frictional pressure losses while G(q) accounts for
gravity effects1. In what follows we denote

!
q1(t,x)
q2(t,x)

"
=

!
ρ(t,x)

ρ(t,x)v(t,x)

"
(3)

B. Boundary conditions

At the inlet of the drill string, the flow rate is imposed by
the pump. At the inlet of the annulus, the volumetric flow
rate is given by

q2(t,0) = ρ0
qbit(t)+qres(t)

A
(4)

where A is the annulus area, qbit is the flow of drilling
fluid through the drill bit, given by a one-way-valve-like
equation, and qres is the flow from the reservoir, which will
be discussed in the next section. The outflow is governed by
a valve equation

Aq2(t,L) = KcZc(t)

#
2

q1(t,L)
(p(q1(t,L),L)− pdc) (5)

where the downstream choke pressure pdc is assumed to be
constant and Kc is the choke constant and the flow area
through the choke depends on the choke opening Zc which
is the control input.

In the next section, we detail the model of the reservoir
that enables computation of qres. We also give reduced
models typically used for reservoir characterization.

C. Reservoir Model

We now derive the equations describing the pressure
dynamics in the near-wellbore region of the reservoir. These
correspond to the diffusion of hydrocarbons within porous
rock. We then recall simplified models typically used in the
literature for influx estimation, before making the case for
the need to keep the distributed pressure dynamics.

1) Distributed model: We assume that the reservoir sec-
tion is homogeneous and contains a single type of fluid,
with no vertical diffusion. We then obtain the model from
the linearized conservation of mass along with Darcy’s law
relating flow rate to pressure [3]. We denote ϕ(r, t) as the
pressure within the reservoir at a radial location r. The
schematic of a radial section of the reservoir is given in
Figure 2. The equations inside the radial domain of the
reservoir r ∈ [rw,re] read

ϕt(r, t) =
a
r
(rϕr(r, t))r (6)

1Notice that, although we do not consider the drill string here, this model
is valid there as well, the sign of gravity changing appropriately



Fig. 2. Schematic of a radial section of the reservoir

where a = κ/(µctφ) is the diffusivity constant. The influx
into the wellbore (or loss) is obtained using, again, Darcy’s
law and reads

qres(t) = ξ ϕr(rw, t) (7)

where, ξ = 2πκrwh/µ . Notice that the influx depends on
the pressure gradient at the boundary of the reservoir that
coincides with the wellbore extent. Besides, the pressure in
the reservoir at this boundary is assumed to coincide with
the BHCP, which yields

ϕ(rw, t) = p(t,0) (8)

Equations (4),(7) and (8) are key as they summarize the
coupling between the wellbore and reservoir. We now briefly
review existing simplified reservoir models from the litera-
ture and compare them with the full distributed model.

2) Simplified models: In [3] , the solution to equation (6)
with various boundary conditions corresponding to situations
arising in oil production is approximated. These lead to the
so-called quasi-steady-state solution and constant terminal
rate solution.

a) Quasi-steady-state solution: A first approximate so-
lution can be obtained by assuming

• that the flux at the radial extent of the reservoir is null,
i.e.

ϕr(re, t) = 0 (9)

• that the outflow from the reservoir is constant,
i.e. q̇res = 0.

Denoting qqss
res the corresponding reservoir flow, this leads to

the following relation between the value of the pressure at
the wellbore boundary, at the radial extent and the flow

qqss
res =−2πκh

µ
(ϕ(rw, t)− pe)

(ln(re/rw)−1/2)
(10)

Although valid only for stabilized flow conditions, this
relation, referred to as the PI relation, is sometimes used
in a transient setting [8] or averaged over time [12].
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Fig. 3. Comparison of the three reservoir models

b) Constant terminal rate solution: Another approxi-
mate solution is obtained by assuming

• that the radial extent of the reservoir is infinitely far
away, i.e. re = ∞ and pressure is constant there, giving
the condition

lim
r→+∞

ϕ(r, t) = pe (11)

• that the flow rate qres is suddenly changed from zero to
a constant value

This yields the following relation between flow rate and
pressure

qctr(t) =− 4πκh(ϕ(rw, t)− pe)

µ
$

2Sk + ln 4κt
γφ µct r2

w

% (12)

This relation is the most widely used for reservoir charac-
terization [9], [13].

c) Comparison of reservoir models: Figure 3 depicts
the influx flow rate resulting from these models and a
comparison with the full distributed reservoir model (6)
along with boundary conditions (8),(9). The scenario cor-
responds to the liquid influx resulting from a reduction in
BHCP caused by opening the choke. Table I summarizes the
parameter values used for the simulation. The simulation
shows that the influx is largely overestimated by the approx-
imate models, because the conditions under which they are
derived (constant flow rate or near-equilibria) are not satisfied
in this transient situation. In the case of the quasi-steady-state
solution, this is due to the fact that the distributed reservoir
pressure reaches the quasi-steady-state only when the well
has been producing for several weeks. This is the time needed
for the pressure transient to reach the radial extent of the
reservoir as described in [3].

Similarly, the constant terminal rate solution relies on a
constant flow rate qres, which is a condition only satisfied
several weeks after the start of the production as mentioned
in [3]. This type of solution is considered as a basic tool for
wellbore pressure analysis that are helpful for the production
engineers where the variation in flow rates are obtained



TABLE I
RESERVOIR PARAMETERS

Parameter Definition Value Unit
ϕ(rw, t) Pressure at rw – Pa

pe Pressure at re 1.7e+07 Pa
rw Wellbore radius 0.1143 m
re Radial extent of reservoir 100 m
µ Viscosity 5e-03 Pa.s
φ Porosity 20 %
k Permeability 5e-12 m−1

h Reservoir thickness 2 m
Sk Skin factor 0 [−]
γ Constant 1.781 [−]

ct Total compressibility 2.32e-09 Pa−1

by superposition of numerous constant terminal rate solu-
tions [3]. In the interest of estimating influx flow rates while
drilling, we are interested in the time period of at-most a few
hours during which the transient behavior of the reservoir
dominates.

In the next section, we derive an observer to estimate the
distributed reservoir pressure relying on the measurement of
BHCP and an observer to estimate the wellbore states relying
on the measurement of surface choke pressure.

III. OBSERVER DESIGN

In this section, we highlight the structure of the coupling
between the wellbore and the reservoir in view of influx
estimation. We then present slight modifications of two ex-
isting observer designs for the wellbore [2] and reservoir [6],
respectively and show their potential for estimation through
simulations.

A. Coupling boundary conditions
To highlight the structure of the coupling between reser-

voir and wellbore, we rewrite the wellbore PDE (2) and the
linearized form of the boundary conditions (4)–(8) in the
Riemann coordinates (u,v)⊤given by

!
u(t,x)
v(t,x)

"
=

1
2

!
Clq1(t,x)+q2(t,x)
−Clq1(t,x)+q2(t,x)

"
(13)

This yields a set of linear hyperbolic PDEs of the following
form

ut(t,x)+Clux(t,x) = σ++(x)u(t,x)+σ+−(x)v(t,x) (14)
vt(t,x)−Clvx(t,x) = σ−+(x)u(t,x)+σ−−(x)v(t,x) (15)

where the σ ·,· depend on the operating point around which
the equations are linearized. Simiarly, the choke equation (5)
takes the following form

v(t,L) = ku(t,L)+ kU Zc(t) (16)

where k, kU depend, again, on the equilibirum around which
we linearize. At the reservoir boundary, Equations (4),(7)
and (8) rewrite as

u(t,0) =
1
Cl

ϕ(rw, t)+ v(t,0) (17)

ϕr(rw, t) =
A
ξ

!
1

ρ0Cl
ϕ(rw, t)+

2
ρ0

v(t,0)− qbit(t)
A

"
(18)

Under the form (17),(18), the boundary conditions give the
structure of the coupling: the downward traveling pressure
wave v influences the flux out of the reservoir and reflects
into the upward traveling pressure wave. In turn, the reservoir
pressure affects the upward traveling wave. This intercon-
nection has a feedback structure that potentially generates
instability. It is the case, e.g., when the pressure in the
wellbore is significantly decreased by an influx of gas from
the reservoir, since a larger pressure differential increases
the flux. However, in the case considered here of a liquid
influx, instability is unlikely as the density of the oil from
the reservoir is very close to that of the drilling fluid. Thus,
we assume in what follows that the interconnection is stable
and design

• an observer for (14)–(17), assuming ϕ(rw, t) is known,
and relying on a topside choke pressure measure-
ment pc;

• an observer for (6), assuming that v(t,0) is known,
relying on a BHCP measurement.

Fig. 4. Schematic of the combined observer design

This yields the observer structure depicted on Figure 4. We
now detail the two designs.

B. Reservoir Observer

Considering BHCP as a measurement, y = ϕ(rw, t), and
assuming that the wellbore state v(t,0) is known, we consider
the following standard Luenberger-like observer

ϕ̂t(r, t) =
a
r
(rϕ̂r(r, t))r + l(r)(y− ϕ̂(rw, t)) (19)

ϕ̂r(re, t) = 0 (20)

ϕ̂r(rw, t) =
A
ξ

!
1

ρ0Cl
ϕ̂(rw, t)+

2
ρ0

v(t,0)− qbit(t)
A

"

+ l1 (y− ϕ̂(rw, t)) (21)

where the observer gains l1 and l(r) are obtained using the
standard backstepping method [6] that provides

l1 =
A

ξ ρ0Cl
+L(rw,rw)−K (22)

l(r) = aLy(r,rw)− (aK +λ (rw))L(r,rw) (23)



which are obtained by solving the PDE of gain kernel L(r,y)
given by,

λ (y)Ly(r,y)+(C+λ ′(y))L(r,y)+aLrr(r,y)

−aLyy(r,y)+λ (r)Lr(r,y) = 0 (24)

where, λ (r) = a/r. The exponential convergence of the
resulting error system is proved by mapping it to an exponen-
tially stable target error system using a Volterra coordinate
transform as described in [6]. The design parameters C > 0
and K > 0 in the target system are degrees of freedom and
can be used to achieve a trade-off between convergence
speed, robustness and sensitivity to noise. This point is
highlighted in Section IV

C. Wellbore Observer

Here, we slightly modify the design from [2], [1] to
account for realistic measurements. Indeed, these designs as-
sume that the boundary value of the Riemann invariant u(t,L)
can be measured, which is not the case in practice. Rather,
pressure sensors are typically available. Here, we generically
assume that the measurement rewrites as a linear combina-
tion of the Riemann invariants at the topside boundary, which
yields

y = c1u(t,L)+ c2v(t,L) (25)

In the case of the pressure measurement, one has
c1 = −c2 = Cl . We then design, similarly to [2], [1], a
Luenberger-like observer as a copy of the plant plus linear
output error injection which writes

ût(t,x)+Cl ûx(t,x) = σ++û(t,x)+σ+−v̂(t,x)

−P+(x)(c1û(t,L)+ c2v̂(t,L)− y) (26)

v̂t(t,x)−Cl v̂x(t,x) = σ−+û(t,x)+σ−−v̂(t,x)

−P−(x)(c2û(t,L)+ c2v̂(t,L)− y) (27)

with the following boundary condition.

v̂(t,L) = kû(t,L)+ εy− ε(c1û(t,L)+ c2v̂(t,L)− y) (28)

û(t,0) =
1
Cl

ϕ(rw, t)+ v̂(t,0) (29)

where we assume that the reservoir boundary value ϕ(rw, t) is
known. Using the standard backstepping approach, the error
system (û−u, v̂−v) is mapped to the following target system

αt(t,x)+Clαx(t,x) = 0 (30)
βt(t,x)−Clβx(t,x) = 0 (31)

with boundary conditions

β (t,L) =
!

k− εc1

1+ εc2

"
α(t,L) (32)

α(t,0) = β (t,0) (33)
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Fig. 5. Mapping of effective reflection coefficient as a function of the
output error injection gain at the boundary, for different values of the choke
opening.

provided the gains P+(x) and P−(x) satisfy

P+(x) =
Cl(k− εc1)Puv(x,L)−Cl(1+ εc2)Puu(x,L)

c1(1+ εc2)+ c2(k− εc1)
(34)

P−(x) =
Cl(k− εc1)Pvv(x,L)−Cl(1+ εc2)Pvu(x,L)

c1(1+ εc2)+ c2(k− εc1)
(35)

where Puu, Puv, Pvu, Pvv are the backstepping kernels
from [2]. Similarly to [1], the parameter ε is a degree of
freedom. More precisely, we denote

k̄ =
!

k− εc1

1+ εc2

"
(36)

the effective reflection coefficient in the target system, which
can be freely assigned using the design parameter ε . Im-
posing k̄ close to zero yields a rapidly convergent observer.
However, as indicated by (28), large values of ε tend to
amplify measurement noise. Importantly, a necessary and
sufficient condition for the stability of (30)–(33) is that k̄
satisfy

−1 < k̄ < 1 (37)

Notice that the value of k, that comes from the linearization
of the choke equation (5), varies according to the equilibrium
that, itself, depends on the choke opening. It is possible to
change the value of ε according to the choke opening to
maintain a constant effective reflection coefficient k̄ through-
out the operation, but a time-dependent coefficient induces
additional dynamics that may lead to instability. Rather, it
is possible to map the value of k̄ throughout the operating
range and chose a constant epsilon that ensures that (37) is
satisfied for all values of Zc. This is the point illustrated on
Figure 5.

IV. SIMULATIONS

In this section, we study the coupled observer designed
according to the structure depicted on Figure 4. In practice,
the estimate v̂(t,0) from the wellbore observer is inserted



TABLE II
WELLBORE PARAMETERS

Parameter Definition Value Unit
qbit Flow rate at bit 0.03 m3s−1

L Length of the wellbore 2000 m
Kc Choke constant 2.85e-03 [−]
Z̄c Steady state choke opening 0.95 [−]

Cl Velocity of sound 940.30 m.s−1

p0 Reference pressure 1e+05 Pa
ρ0 Reference density 780 kg.m−3

in (21) and the estimate ϕ̂(rw, t) from the reservoir observer
is inserted in (18) for the reservoir and wellbore observers
respectively. We consider various industry relevant scenarios
to study the performance and robustness of this combined
observer design. Table II summarizes the simulation param-
eters.

A. Drilling into a high pressure pocket

During drilling, it is common to encounter pockets of
hydrocarbons with higher pressure than anticipated. Drilling
into such zones will lead to an influx. We present here
a case where a section with known reservoir pressure is
drilled using MPD and a high pressure pocket is encountered
at 5s. The pressure within the pocket is considered to be
50% higher than that of the anticipated. As depicted on
Figure 6, the observer successfully estimates the influx,
while no influx is detected in the absence of an observer
(i.e. in open loop). The near wellbore reservoir pressure
distribution is also estimated by the observer as shown
on Figure 7. Interestingly, the reservoir pressure is poorly
estimated away from the wellbore but this does not affect
the influx estimation.
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Fig. 6. Influx estimation by the observer in comparison to the plant
measurement and in the absence of an observer for case–A.

B. In presence of transients

During MPD operation, there are instances when the choke
opening is varied rapidly in order to maintain the required
BHCP. We present the case here with an over estimation

0 10 20 30 40 50 60 70 80 90 100
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5 107

Fig. 7. Time snapshots of distributed pressure profile within the reservoir
obtained from plant in comparison to that of the estimation by the observer
for case–A.

of the reservoir and wellbore parameters to emulate the
uncertainty of these parameters in practice, inclusive of tran-
sients introduced by the choke variations. The perturbation
of wellbore states from the steady state profile, reservoir
pressure and permeability are assumed to be overestimated
by 10% each and Zc varied from 0.8 to 0.4 in 1s. Despite
the uncertainty in the reservoir and wellbore parameters, the
observer successfully estimates the influx and the near well-
bore reservoir pressure distribution as depicted in Figures 8
and 9 respectively.
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Fig. 8. Influx estimation by the observer in comparison to the plant
measurement for case–B.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a reservoir model capturing the dis-
tributed properties of the pressure dynamics in view of
influx estimation. Applying existing observer designs for
the wellbore and reservoir dynamics enables estimation of
the influx flow rate despite uncertainty on the reservoir
characteristics. This first step opens a large perspective of
future works.
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Fig. 9. Time snapshots of distributed pressure profile within the reservoir
obtained from plant in comparison to that of the estimation by the observer
for case–B.

First, a coupled parabolic–hyperbolic observer could be
designed, which would be a novel result in control and
estimation of PDEs. Modifying the backstepping transforma-
tions such that the entire wellbore-reservoir state is mapped
to a stable target system induces nonlinear, nonlocal relations
between the backstepping kernels, which severely compli-
cates the proof of their well-posedness.

Most importantly, influxes of fluids with densities varying
from the drilling fluid need to be considered and modeled.
This drastically modifies the wellbore dynamics, in particular
if gas is present. This is a key direction for future work.
Another important modelling aspect is to deal with the
potential longitudinal heterogeneity of the reservoir in the
open section of the well.
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