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Chapter 8
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Summary
This paper discusses the issues involved in the development of a
fully three–dimensional, massively parallel, finite element based
simulation framework (GEOS) for addressing the fully coupled,
hydro–mechanical behavior of jointed and fractured unconven-
tional reservoirs to hydraulic stimulation. The framework is ca-
pable of describing the problems on large scale by implementing
models for multi–scale treatment of geomaterials. Besides, the
framework is able to explicitly representing fracture nucleation
and propagation by using the technique of evolving mesh topol-
ogy for both the fluid and solid meshes. It is also worthwhile
to mention that the GEOS framework is designed to combine
continuum and discontinuum approaches.

8.1 Introduction
Hydraulic fracturing consists of injecting a viscous fluid into a
well under high pressure to initiate and propagate a fracture. The
design of a treatment relies on the ability to predict the opening
and the size of the fracture as well as the pressure of the frac-
turing fluid, as a function of the properties of the rock and the
fluid. In that respect, the availability of numerical approaches to
solve hydraulic stimulation problems is especially valuable. The
construction of such approaches is the topic of this paper.

The paper describes verification of a fully three–
dimensional, massively parallel, finite element based simulation
framework (GEOS) for addressing the fully coupled, hydro–
mechanical behavior of jointed and fractured unconventional

reservoirs to hydraulic stimulation. Unlike many common en-
gineering tools to describe hydraulic stimulation the GEOS has
the following characteristics:

• the framework is appropriate to a wide range of prob-
lems. It does not rely on simplifying assumptions con-
cerning fracture geometry, density or material behavior;

• the massively parallel nature of the calculations allows
the code to address problems up to reservoir scale on
large–scale computer clusters;

• the general nature of the framework allows it to provide a
way of not only capturing more of the detail of the phys-
ical problem, but can also be used to assess the sensitiv-
ity of other tools to the assumptions of their methods,
including the role of material properties, fracture me-
chanics models, fluid properties, and the presence and
representation of pre–existing and induced fractures.

The first objective of the paper is to describe the framework
of GEOS. The second objective seeks to demonstrate the code’s
numerical implementation by comparing with known analytical
solution of Savitski and Detournay (2002) for both viscosity and
toughness dominated radial fracture propagation.

8.2 Methodology of the GEOS
code

Realistic simulations of hydraulic fracturing require that several
phenomena to be taken into consideration. Such phenomena in-

79



AbuAisha, Eaton, Priest and Wong Microseismic Industry Consortium Vol. 5 – Chapter 8

clude:

1. fracture interaction in the presence of three–dimensional
heterogeneous properties;

2. providing competing paths for the flow paths;
3. the effect of the change of stress field, resulting from

the development of fluid pressure field, on fracture
propagation and on the stress state of far field hetero-
geneities/fractures;

4. multi–scale treatment of geomaterials – dual scale
paradigm;

5. explicit representation of fracture nucleation and propa-
gation, and;

6. representation of damage.

To account for such phenomena, the GEOS code provides a fully
coupled system consisting of the standard equations of motion
to model the rock matrix, and a parallel plate flow simplifica-
tion (i.e. lubrication theory) to model the flow in the fracture.
The evolution of a fracture proceeds along element interfaces,
and fluid elements are inserted at the newly formed crack faces.
Thus, as the fracture grows, the mesh topology for both the fluid
and solid meshes evolves.

8.2.1 Finite element: Solid mechanics

To provide a mean to couple changes in fluid pressure in a given
crack with the stress state throughout the problem domain, the
FEM is applied to the equation of motion. The application of
the FEM to the equation of motion on a solid body Ω, with Γt
being the boundary where external tractions are applied, and Γc
the boundary where crack exists, gives,

∇j σij + pf ni + ρs bi = ρ vi, (8.1)

∫
Γt

Φa ti dA−
∫

Ω

∂Φa
∂xj

σij dV +

∫
Γc

Φa pf ni dA

+

∫
Ω

Φa ρs (bi − vi) dV = 0,

(8.2)
with Φa are the shape functions at node a, ti = σij nj is the sur-
face traction on the boundary Γt, σij is the Cauchy stress tensor,
n is the outward normal vector, pf is the fluid pressure inside
the fracture1, ρs is the solid density, bi is the body force per unit
mass, and vi is the acceleration. The same shape functions are
used to interpolate the primary unknowns of displacement field
ui and the pore fluid pressure pf . The approach is the conven-
tional Galerkin of the FEM.

8.2.2 Finite volume: Fluid mechanics

To model the flow in the fractures, the parallel plate flow (lubri-
cation theory) is used. The parallel plate solution for the Navier–
Stokes equation leads to the commonly used “cubic law”. The
flow q between two parallel plates with aperturesw and pressure
difference ∆p is given by,

q =
w3

12µ
∆p,

assuming 1–dimensional flow
(8.3)

with µ being the dynamic viscosity of the fluid.

w

Wellbore

Q0

Fracture tip

Rock

1 2

r1

r2

Δp

Figure 1: Flow in the fractures, the parallel plate flow (lubrica-
tion theory).

The non–linear differential equation for the aperture profile
of a radial fracture can be derived from the lubrication theory,

∂w

∂t
=

1

12µ

1

r

∂

∂r

(
rw3 ∂p

∂r

)
. (8.4)

Following eq. (8.3) and eq. (8.4), the rate of mass flowm12

from an edge 1 to a face 2 is expressed as,

dm12

dt
=

w3 r2

12µ r1
ρf (p2 − p1). (8.5)

where ρf is the fluid density, r1 is the length of the edge over
which the flow is taking place, and r2 is the distance from the
edge to the face center, see Fig. (1).

8.2.3 Fracturing criterion

A rupture criterion2 is first specified and evaluated on every in-
ternal face. Upon completion of a closed path of surfaces where
either the rupture criterion is satisfied, or the surface is external
to the body, a new set of nodes, edges, and faces are generated,
and the mesh topology is updated. To account for geologic mate-
rials high non–linearities, the stress intensity factor is calculated
at the crack tip for Mode I and Mode II of fracture propagation.
The energy release rate is estimated by multiplying the field of
displacement by the nodal forces at the crack tip. The energy
release rate is then converted to the stress intensity factor.

1It is conceivable, from eq. (8.1), that the pressure gradients due to fluid diffusion in the rock matrix/outside the fractures are
neglected.

2A fracturing criterion may net be needed if the fracturing regime is viscosity dominated; this will be discussed later in this
paper.
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8.2.4 Fracturing failure mechanisms in
GEOS

For the case of a propagating fracture due to hydraulic frac-
ture stimulation, micro-seismic data collected from a number of
projects indicate bulk fracture propagation of O(101) m/s �
O(103) for the Rayleigh wave speed in most geologic materials.
This is counterintuitive when considering fracture mechanics,
where fractures in tension (Mode I) generally propagate near the
Rayleigh wave speed. This remains true at the microscale; how-
ever, fracture propagation is constantly mediated by fluid forc-
ing, which is dependent on maintaining a pressure front near the
tip of the fracture.

The time constant associated with this pressure front de-
velopment is much larger than that associated with the Rayleigh
wave speed. If we resort to theoretical consideration of fluid–
driven fractures in an elastic medium, the anecdotally observed
propagation velocity is recovered, Johnson et al. (2013),

v̄p = 4µK2
f vfσ

−3
0 , (8.6)

where µ is the viscosity, vf is the mean fluid velocity into the
fracture, Kf is the bulk modulus of the fluid, and σ0 is the con-
fining pressure. For typical rock properties at confining pres-
sures of 10–100 MPa, the tip velocity is O(1− 10) m/s.

In general, this suggests stress equilibrium in the far field
for bulk fracture propagation3, such that there exists a temporal
scale separation between the resolution of stress in the local re-
gion of a fracture and that at larger scales. This region, referred
to in the literature as the “process zone”, can often be decou-
pled from the solution of the mechanics in the rest of the domain
(referred to as the “far field”).

Failure, however, in a realistic geological material can be
much more complex than the isotropic, homogeneous, elasto–
brittle materials classically addressed in the linear elastic frac-
ture mechanics (LEFM) literature, especially given the bed-
ded, anisotropic, and discontinuous nature of geologic mate-
rial. When focusing only on the mechanisms involved at the
process zone of a propagating hydraulic fracture, the complexi-
ties of crack coalescence, fluid interaction, complex stress field
anisotropy, and grain boundary effects can be readily seen, but
complexities exist across length scales. Careful field studies and
analyses have, for instance, observed that discontinuities exhibit
a smooth length scale distribution across scales from millime-
ters to kilometers and are widely believed to be due to growth
processes that do not have characteristic length scales, Johnson
et al. (2013).

In this study, the developers of the GEOS focus on how
to resolve this problematic situation via a sequential, hierar-
chical multiscale method, which, at its base, relies on a dual–
scale representation of inhomogeneity and damage. By over-
lapping the spatial scales at which successively coarser simu-
lations are performed, effective upscaling can be managed and

scale–dependent relations with appropriate contributions from
finer scales can be developed. For failures along pre–existing
surfaces, the developers use a numerical framework amended to
accommodate arbitrarily large strains through an advection–free
scheme; the amendments are described next for completeness,
(Johnson et al. (2013); Settgast et al. (2004)).

8.2.5 Failure along interfaces: Large
strains in the FEM

For the case of failures either along the developed fracture net-
work or in regions where the stress field has been rotated enough
to affect failure in pre–existing fractures, the failures are often
Mode II (strike-slip) events, as they are predominantly for labo-
ratory hydraulic fracture experiments.

One problem that has yet to be addressed is the ability to
capture arbitrarily large shear strains at the interfaces of moving
joints in a tractable numerical framework, where the behavior at
the interface is represented by phenomenological joint models.
Johnson et al. (2013) have addressed an improved approach of
the advection–free scheme based on the common plane method
often used in the DEM. In this approach the elements are brought
into contact normally, then sheared while conserving energy.
The algorithm also assures linear and angular momentum con-
servation by evaluating the shape function derivatives of the fi-
nite elements on the external faces and applying the resultant
forces from the phenomenological joint models to the nodes,
accordingly. The result of this procedure is an advection–free
method of representing large strains across interfaces.

8.2.6 Multi–scale treatment of geomateri-
als

Geomaterials exhibit two main attributes that make them natural
candidates for a multi–scale treatment: 1- the phenomenology
of interest possesses no similarity relations across scales and,
2- the size distribution of discontinuities is smooth across sev-
eral orders of magnitude, making it impossible to rigorously de-
fine a Representative Elementary Volume (REV) for the general
case (though, specific systems may exhibit natural scale decou-
pling). The former means that models will likely need to be
scale–dependent, while the latter means that material behavior
cannot be characterized locally and, therefore, effective contin-
uum representations will always have some error associated with
the locality assumption. The situation is not hopeless: there are
many field cases where the assumptions of an effective contin-
uum do hold or at least do not introduce significant error; ana-
lysts can often identify natural scale decoupling due to the spe-
cific geology (e.g., local features limit the size distribution of
the discontinuities), or the phenomenology of interest is not af-
fected by the discontinuities (e.g., long period wave propaga-

3Since at far field vf → 0 and σ0 is no longer a function of the propagation velocity.
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tion). Here, the authors are concerned with the cases where the
system does not permit such simplifications which requires con-
sideration of many scales.

8.2.6.1 The dual scale paradigm

An approach to multi-scale modeling is developed through the
assumption that for any arbitrary length scale, discontinuities
can be represented at two scales: 1- either the response of each
discontinuity is represented directly (explicitly) and material re-
sponse is defined through the aggregate of individual disconti-
nuities (i.e., discontinuous modeling); or 2- through homoge-
nization of the behavior of a REV of such features (i.e., effec-
tive continuum). The approach in GEOS seeks to represent both
scales at any particular arbitrary length scale, where discontinu-
ities near the length scale of interest are represented explicitly
while features smaller than a threshold are represented via an ef-
fective continuum, where the constitutive model used is neces-
sarily scale–dependent and derived from finer scale simulations
when the scale of the REV is above the percolation limit.

8.2.6.2 Fracture nucleation and propagation

Linear Elastic Fracture Mechanics (LEFM) allows the predic-
tion of the propagation of a single, flat crack (or fracture) em-
bedded in a homogeneous, isotropic, elastic solid body. The
analytical solutions are derived from Griffith theory and can be
obtained by computing Stress Intensity Factors (SIFs) in modes
I, II and III. As a consequence, most of the existing models of
hydraulic fracturing consider the rock mass as an elastic, imper-
meable solid. This approach is suitable to distinguish between
toughness–dominated and viscosity–dominated fracture propa-
gation regimes. Yet, it is constrained by restrictive assumptions
and does not allow coupling fracture propagation to the fab-
ric changes undergone by the rock mass. Besides, neglecting
micro–cracking ahead of the fracture tip leads to over–estimated
fracture front velocity. Moreover, according to the theory of
elasticity, the presence of cracks around the fracture tip induces
stress perturbations, and thus impact SIFs. Some work has been
proposed to address this issue. However, this remains an open
research issue for fully three-dimensional solids.

One method of capturing the damage zone in finite ele-
ment models of hydraulic fracturing is to define an inelastic zone
where plastic deformation localizes. The numerical solution is
highly mesh–dependent, however, the localized zone narrows
with mesh–refinement.

The GEOS approach overcomes all the aforementioned
obstacles by the techniques of remeshing and the dual scale
paradigm to account for heterogeneities.

8.2.6.3 Effective continuum representation:
Representation of damage

There are a number of approaches to represent the effective hy-
drological and mechanical response of geomaterials to progres-
sive damage. These can be categorized into micro–scale derived
models, purely phenomenological models, micro–scale enriched
methods (with varying levels of fidelity), and hybrids of the
aforementioned. There are also special considerations for cal-
culating the effects on permeability through the use of homoge-
nization techniques.

Here, the developers of GEOS are using a hybrid model of
damage nucleation and accumulation at the effective continuum
scale, where the micro–scale degrees–of–freedom are explicitly
captured using finite, rectilinear failure surfaces. The developers
are currently using small damage assumptions, as well, where
micro–scale damage does not evolve mechanical changes at the
macro-scale. This is a strong assumption that will be remediated
in further work4.

8.2.7 Time marching scheme

Though not totally appropriate5, an explicit method is chosen to
run the time integration scheme. A standard Newmark method
is applied to the finite element equations in (8.1) and (8.2), while
a standard forward Euler method is applied to the finite volume
equation in (8.3), Settgast et al. (2004).

8.3 Propagation of a penny–
shaped fluid–driven fracture

In order to understand the mechanism of fluid–driven fracturing
as well as to validate the GEOS code, this paper presents an anal-
ysis of the propagation of a penny–shaped hydraulic fracture in
an impermeable elastic rock. The fracture is driven by an incom-
pressible Newtonian fluid injected from a source at the center of
the fracture. The fluid flow is modeled according to lubrication
theory, while the elastic response is governed by a singular inte-
gral equation relating the crack opening and the fluid pressure.
It is shown that the scaled equations contain only one param-
eter, a dimensionless toughness, which controls the regimes of
fracture propagation. Asymptotic solutions for zero and large
dimensionless toughness are constructed.

The first objective of this section is to construct rigorous so-
lutions for the problem of a penny–shaped fluid–driven fracture,
with a clear statement of their range of applicability. The other
objective arises from a long–standing debate on the relevance of
the rock toughness. This question is of fundamental importance

4This could be related to the approaches the developers are adopting to ensure small strains and hence applying the laws of
energy and momentum conservation.

5Fully implicit time integration schemes are deemed appropriate for hydraulic fracture simulations due the large time scales
associated with such simulations.
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for numerical modeling. If toughness is relevant, the shape of
the fracture must be determined by tracking the fracture tip; if
not, the fracture shape can be identified by the fluid front, which
is much easier to follow than the fracture edge.

An entirely different approach to the issue of toughness in-
vokes an argument based on the ratio of the energy dissipated
in the rock to create new fracture surfaces to the energy dissi-
pated in the fluid by viscous flow. According to this argument,
the influence of toughness can be neglected if this energy ra-
tio is small. For a hydraulic fracture in plane strain, this cri-
terion yields a critical value for a dimensionless toughness be-
low which toughness is negligible. Interestingly, this criterion
does not depend on the confining stress6. The energy argument
suggests that there must be three regimes of the propagation:
viscosity–dominated (in which the toughness may be neglected),
toughness–dominated (in which the viscosity may be neglected),
and transient (in which both parameters are important), see Sav-
itski and Detournay (2002).

8.3.1 Problem formulation

Consider an axisymmetric hydraulic fracture propagating in an
infinite impermeable elastic medium characterized by Young’s
modulus E, Poisson’s ratio ν, and toughness KIc (Fig. 2). An
incompressible Newtonian fluid with viscosity µ is injected at
the center of the fracture at constant volumetric rate Q0. We
seek to determine the crack aperture w(r, t) as a function of the
radial coordinate r and time t, the net pressure p(r, t) (the differ-
ence between the fluid pressure pf and the far–field compressive
stress σ0 perpendicular to the fracture plane), and the fracture ra-
dius R(t).

Q0

Fracture tip

Rock

σ 0

σ 0

Figure 2: A penny–shaped hydraulic fracture: radial propaga-
tion, modified after Savitski and Detournay (2002).

Several assumptions are introduced to simplify this prob-
lem:

1. the fluid is injected from a point source (i.e. the wellbore
radius is negligible compared to the fracture radius);

2. the fluid reaches the tip of the crack (i.e. the lag between
the fracture tip and the fluid front is very small compared
to the fracture radius)7; and,

3. the fracture propagates continuously in mobile equilib-
rium;

4. lubrication theory is applicable.
The legitimacy of Assumption 2 is based on an analysis of

the near tip region of a fluid–driven fracture8, which indicates
that the lag λ reaches a maximum value λ0 ∼ µ v̄pE

2 σ−3
0

with v̄p denoting the tip velocity when KIc = 0. For typical
values of the parameters, λ0 is of the order of 10−1 m and thus
generally very small compared to the fracture radius, which can
reach dimension of order of 102 m. Furthermore, the actual
lag λ could be very small compared to λ0, if KIc > 0. By
neglecting the lag, the solution does not depend on the far–field
stress σ0, which enters the formulation only as a reference stress.

The complete formulation of this problem relies on equa-
tions from elasticity and lubrication theory, on a fracture prop-
agation criterion from linear elastic fracture mechanics, and on
boundary conditions at the inlet and at the tip of the fracture. The
two coupled equations involving the fracture opening w(r, t)

and net pressure p(r, t) consist of a non–local integral relation
from elasticity9, by Atkinson (1991),

w =
8R

πE′

∫ 1

r/R

ξ√
ξ2 − (r/R)2

∫ 1

0

xp(xξR, t)√
1− x2

dxdξ,

(8.7)
and a non–linear differential equation from lubrication theory,
by Lamb (1945),

∂w

∂t
=

1

12µ

1

r

∂

∂r

(
rw3 ∂p

∂r

)
. (8.8)

In the above, E
′

is the plane strain modulus, which can be
expressed in terms of E and ν as E

′
= E/(1 − ν2). Accord-

ing to linear elastic fracture mechanics, the fracture propagation
criterion takes the form,

KI = KIc, (8.9)

where KI denotes the mode I stress intensity factor and KIc the
material toughness. For a penny–shaped crack, KI can be ex-
pressed as in Atkinson (1991),

KI =
2√
πr

∫ R

0

p(r, t)√
R2 − r2

r dr. (8.10)

6This conclusion will be discussed later in this paper.
7The assumption that the fluid front coincides with the crack tip results in a pressure singularity at the tip.
8See Savitski and Detournay (2002) for details.
9The equation is written in a Fourier’s transform.
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The fracture tip is characterized by zero fracture opening,

w = 0, r = R, (8.11)

and a no–flow condition q = 0, which can be expressed in terms
of opening and pressure by means of Poiseuille law,

q = 0 = − w3

12µ

∂p

∂r
=⇒ w3 ∂p

∂r
= 0, r = R. (8.12)

Injection of fluid from the borehole is idealized by a source
at the center of the fracture. Based on mass balance considera-
tions, the source condition can be expressed as,

2π lim
r→0

rq = Q0, (8.13)

It follows from (8.13) that q ∼ 1/r near the source. According
to Poiseuille law (8.12), the fluid pressure is thus logarithmically
singular at the source, p ∼ − ln r. The source can alternatively
be taken into account by the global mass balance,

Q0t = 2π

∫ R

0

wr dr. (8.14)

The set consisting of the elasticity eq. (8.7), Reynolds
equation (8.8), the propagation criterion (8.9), the inlet condition
(8.13) or (8.14) and the tip conditions (8.11) or (8.12) forms a
complete system for determining w(r, t), p(r, t), and R(t) with
0 ≤ r ≤ R(t), t ≥ t0.

8.3.2 Analytical solution
The objective of this part is to find an analytical solution for
the problem defined previously. The analytical solution is to be
employed to understand the mechanism of fluid–driven fractur-
ing which is of enormous importance to our research. To get
the solution, first it is convenient to define a viscosity µ

′
and a

toughness K
′
, respectively proportional to µ and KIc, to avoid

carrying numerical factors in the equations,

µ
′

= 12µ, K
′

= 4

(
2

π

)2

KIc. (8.15)

It is also natural to introduce the dimensionless toughness
K as expressed in Savitski and Detournay (2002),

K = K
′
(

t2

µ′5Q3
0E
′13

)1/18

, (8.16)

a dimensionless viscosityM is logically defined as in Savitski
and Detournay (2002) as well,

M = µ
′
(
Q3

0E
′13

K′18t2

)1/5

, (8.17)

the dimensionless viscosityM and toughness K are simply re-
lated by,

M = K−18/5. (8.18)

The analytical solution, in a toughness scaling, is obtained
by scaling the set of equations and boundaries described previ-
ously. Scaling of the problem hinges in defining dimensionless
crack opening Ω, net pressure Π and fracture radius γ, see Sav-
itski and Detournay (2002) for details,

w(r, t) = ε(t)L(t) Ω(ρ, h̃(t));

p(r, t) = ε(t)E
′
Π(ρ, h̃(t));

R(r, t) = L(t) γ(h̃(t)),

(8.19)

in which, ρ = r/R(t) (0 ≤ ρ ≤ 1) is the dimensionless co-
ordinate, ε(t) is a small number, L(t) is a length scale of the
same order of magnitude as the fracture radius R(t), and h̃(t) is
a dimensionless parameter that depends monotonically on time
t.

we now seek a solution of the form F = {Ω, Π, γ} to
order ofM in the form of regular asymptotic expansion,

F(M) = F0 +MF1 +O(M2), (8.20)

where F0 = {Ω0, Π0, γ0} and F1 = {Ω1, Π1, γ1}. The fol-
lowing sets of equations for the zero– and first–order terms are
obtained:

• the zero–order solution, F0, corresponds to an inviscid
fluid (M = 0) and is given in a closed form by Savitski
and Detournay (2002),

Π0 =
π

8

( π
12

)1/5

≈ 0.3004;

Ω0 =

(
3

8π

)1/5

(1− ρ2)1/2;

γ0 =

(
3

π
√

2

)2/5

≈ 0.8546,

(8.21)

• the first–order, F1, solution can also be expressed as in
Savitski and Detournay (2002),

Π1 = Π∗1 −A
[

1

3
ln ρ− 1

5
ln(1− ρ2)

]
;

Ω1 = B(1− ρ2)1/2 − 8

3π
Aγ0

[(
ln 2− 4

5

)
×

(1− ρ2)1/2 + ρ cos−1 ρ− 6

5
I∗(ρ)

]
;

γ1 = − 544

75π2
≈ −0.7349,

(8.22)

where the constants Π∗1 ≈ 0.6380, A ≈ 1.709, and B ≈
0.8264. The function, I∗(ρ), defined as,

I∗(ρ) =

∫ 1

ρ

√
1− ξ2

ξ2 − ρ2
cos−1 ξ dξ (8.23)

has to be evaluated numerically.
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Figure 3: The development of the dimensionless toughness and viscosity over an hour injection test according to the rock properties
and operating conditions described in Johnson et al. (2013): a) toughness dominated fracturing K ≥ 3.5, b) viscosity dominated
fracturing K ≤ 1. The regimes of fracture propagation will be further discussed in Sect. (8.3.4)
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Figure 4: Dimensionless a) crack aperture profile, b) crack net pressure profile for the analytical solution of eq. (8.20) and for
different values of the dimensionless viscosityM.

8.3.3 Parametric studies

For the rock properties and operating conditions described in
Johnson et al. (2013); elastic modulus E = 30 MPa, Pois-
son’s ration ν = 0.25, fluid dynamic viscosity µ = 0.001

Pa.s, injection rate Q0 = 0.04 m3/s, and material toughness
KIc = 0.75 or 5.77 MPa/m0.5, the time course of the dimen-
sionless toughness, K, and dimensionless viscosity M can be
plotted (Fig. 3).

The aforementioned analytical analysis indicates that, for
the two limit cases K = 0 and K → ∞ (M = 0), the solution
is self–similar and thus does not depend on initial conditions.
For any other value of K, the solution is not self–similar and is
a function of K. In fact, since K is a monotonically increas-
ing function of time, the solution necessarily evolves from the

viscosity–dominated regime (K � 0) towards the toughness–
dominated regime (K � 1), see (Fig. 4). If K is the controlling
parameter, the zero–toughness solution (K = 0) provides the
initial conditions from which the solution will evolve.

The fracture radius in a viscosity scaling, γm, can be ob-
tained as a function of the dimensionless toughness if the ana-
lytical solution is derived in a viscosity scaling regime, Savitski
and Detournay (2002),

γm = γ0K−2/5 + γ1K−4, for K ≥ 1. (8.24)

8.3.4 Regimes of fracture propagation
The solution for a penny–shaped hydraulic fracture depends
only on one parameter, which is selected to be the toughness
K. In principle, three regimes of propagation can be defined:
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• viscosity–dominated regime (K < Km), where the so-
lution can be approximated by the zero–toughness solu-
tion;

• mixed-regime (Km < K < Kk), where the solution de-
pends on both the viscosity and the toughness;

• toughness-dominated regime (K > Kk), where the solu-
tion can be approximated by the zero-viscosity solution).

Strictly speaking, the viscosity–and toughness–dominated
regimes of propagation correspond to K � 1 and K � 1, re-
spectively. It is possible, however, to identify the bounds Km

and Kk, such that K < Km corresponds for all practical pur-
poses to the viscosity–dominated regime, and K > Kk to the
toughness–dominated regime. Pragmatically, these bounds can
be assessed by considering the dependence of the fracture radius
γm onK, with γm being the dimensionless fracture radius in the
viscosity scaling, eq. (8.24).

The boundaries of the regimes of propagation are best de-
termined from (Fig. 5) showing the dependence of the fracture
radius in the viscosity scaling, γm , on the toughness K. The
numerical results suggest that Km ≈ 1 and Kk ≈ 3.5 (which
is consistent with the estimate based on comparing the zero–
and the first–order solution for large toughness). The transition
regime appears to correspond to a remarkably small interval of
K.
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Figure 5: Dependence of the dimensionless fracture radius in
the viscosity scaling γm on the dimensionless toughness K. The
dots correspond to the zero-order solutions and the dashed line
corresponds to the first–order solution, concluded from Savitski
and Detournay (2002).

The curve γm(K), plotted in (Fig. 5), is in principle trav-
elled from left to right with increasing time. Although this result
could be interpreted to mean that a radial fracture starts in the
viscosity–dominated regime, it should be reminded that none of
the solutions discussed in Savitski and Detournay (2002) are ap-
plicable to the “early time” of fracture initiation. Indeed, the
well radius has been assumed negligible compared to the frac-
ture dimension. In fact, a radial fracture starts its existence
in the toughness-dominated regime, matures in the viscosity–

dominated regime, and ages back in the toughness–dominated
regime.

The regime of fracture propagation, whether toughness or
viscosity dominated, needs to be determined a priori based on
the initial operating conditions and rock properties by calculat-
ing the time course of K, as in (Fig. 3). The question is of fun-
damental importance for numerical modeling. If toughness is
relevant, the shape of the fracture must be determined by track-
ing the fracture tip, i.e. a fracturing criterion is need. If not, the
fracture shape can be identified by the fluid front, which is much
easier to follow than the fracture edge.

Table 1: The typical values of the parameters to control the
mechanism of fracture propagation, Savitski and Detournay
(2002).

Quantity Range (Min–Max) Unit
Injection rate, Q0 0.03–0.08 m2/s
Elastic modulus, E 7–40 GPa
Poisson’s ratio, ν 0.15–0.4 -
Dynamic fluid viscosity, µ 0.1–0.5 Pa.s
Fracture toughness, KIc 0.5–2 MPa

√
m

It is of interest to estimate the times at which transitions be-
tween regimes of propagation occur, given realistic values of the
parameters defining K. Consider Table (1) listing typical ranges
of values of those parameters. According to this table, the frac-
ture would remain in the viscosity–dominated regime for many
years if all the parameters assume average values. Although the
viscosity–dominated regime would be over if all the parame-
ters are set to extreme values in favor of toughness, it would
still take several years before the toughness–dominated regime
is reached, see (Fig. 6). This analysis shows that radial hydraulic
fractures in impermeable rocks generally propagate in the vis-
cosity regime, and that the toughness regime is relevant only in
exceptional circumstances. This observation has profound con-
sequences for the implementation of a propagation criterion in
numerical simulators of hydraulic fractures.
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Figure 6: The development of the dimensionless toughness over
a typical HF stimulation test of one hour for the rock properties
and operating conditions defined in Table (1).
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8.4 Examples: GEOS verification
The GEOS approach has been verified against the analytical so-
lution for the viscosity and toughness dominated regimes for ra-
dial fracture propagation, Sect. (8.3). The GEOS has been also
verified for the viscosity dominated regime for lateral fracture
propagation. The ability of fractures to influence each other,
which is one of several natural advantages of using such an ap-
proach, is confirmed by an example of competing parallel frac-
tures, Settgast et al. (2004).

8.5 The GEOS simulation frame-
work: Requirements

The previously described numerical approaches to explicitly
capturing both fine and coarse scale fracture initiation and prop-
agation as well as the effective continuum method for capturing
the same at sub–REV scales must be implemented within a nu-
merical framework if the developments are to be applicable to
problems of practical interest.

This framework, at a minimum, must include the appropri-
ate facilities for:

• large–scale (i.e., high performance computing) calcula-
tion and communication;

• appropriate solvers for the numerical approaches;

• facilities to provide dynamic topological changes in par-
allel for unstructured meshes;

• data structures optimized for the communication and cal-
culation requirements;

• appropriate material modeling framework with the abil-
ity for users to easily add new models, and;

• massively parallel input and output.

As part of a multi–year effort to address energy security is-
sues in the geosciences, LLNL has funded the Computational
Geosciences group to design and implement the GEOS frame-
work, which satisfies these requirements. Specifically, GEOS
provides a general HPC simulation platform for Lagrangian
computational geosciences applications with linear scaling at
job sizes greater than 32 processes.

Currently, a number of numerical techniques that lever-
age the massively parallel code infrastructure have been imple-
mented within the GEOS framework, including finite element,
finite volume, discrete element, and boundary element meth-
ods. Both implicit and explicit solvers are available, including
a fully–coupled, implicit solver for hydro–mechanical problems
with mesh topology changes. Though it is built to be a versatile
platform, the specific focus of GEOS development is targeted
at better characterizing reservoir response to fluid–induced per-
turbations, including different stimulation and fracture control
techniques and enhanced geothermal systems (EGS).

Besides hydraulic fracture stimulation and flow through
fracture networks, the GEOS framework has also been applied
to:

• detailed Hydro–Chemo–Mechanical (HCM) simulations
of reactive flow and transport of CO2 through fractures,
and;

• evaluation of short– and long–term seismicity changes
due to pore pressure perturbations along the fault (i.e.,
risk assessment for induced seismicity).

8.6 Conclusion
A fully coupled Finite Element/Finite Volume approach to mod-
eling the evolution of hydraulic fractures using the GEOS code
framework is presented. The capabilities of the GEOS code
to account for multiple fluid–driven fractures evolution, as well
as interaction with pre–existing heterogeneities through multi–
scale treatment is discussed. The analysis of the propagation of a
penny–shaped hydraulic fracture in an impermeable elastic rock
is reproduced from the work of Savitski and Detournay (2002).
The analytical solution of the penny–shaped hydraulic fracture
has proven that radial hydraulic fractures in impermeable rocks
generally propagate in the viscosity regime, and that the tough-
ness regime is relevant only in exceptional circumstances.
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