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Chapter 7
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Summary

This paper discusses the issues involved in the development of
combined finite–discrete element methods (FDEM), from a fun-
damental theoretical point of view and some related algorithmic
considerations essential for the efficient numerical solution of
large scale industrial problems.

Starting from a continuum representation by finite elements
of the solid region in question, progressive fracturing is allowed
to take place according to some fracturing criterion, thereby
forming discrete elements, which may be composed of one or
more deformable finite elements. Subsequent motion of these
discrete elements and further fracturing of both remaining con-
tinuum and previously created discrete elements is then mod-
elled. This evolution process is continued until either the system
comes to rest.

Y–Geo is a new numerical code for geomechanical appli-
cations based on the combined continuum/discontinuum model-
ing. Several algorithmic developments have been implemented
in Y–Geo to specifically address a broad range of rock mechan-
ics problems. These features include (1) a quasi–static friction
law, (2) the Mohr–Coulomb failure criterion, (3) a rock joint
shear strength criterion, (4) a dissipative impact model, (5) an
in situ stress initialization routine, (6) a material mapping func-
tion (for an exact representation of heterogeneous models), and
(7) a tool to incorporate material heterogeneity and transverse
isotropy.

7.1 Introduction

This paper deals with hydraulic fracturing, a technique mainly
used in the petroleum industry to enhance the recovery of oil
and gas from underground hydrocarbon reservoirs. Other appli-
cations include (but are not limited to) underground disposal of
liquid toxic waste, determination of in situ stresses in rock, and
creation of geothermal energy reservoirs, AbuAisha (2014).

Hydraulic fracturing consists of injecting a viscous fluid
into a well under high pressure to initiate and propagate a frac-
ture. The design of a treatment relies on the ability to predict
the opening and the size of the fracture as well as the pressure
of the fracturing fluid, as a function of the properties of the rock
and the fluid. In that respect, the availability of numerical ap-
proaches to solve hydraulic stimulation problems is especially
valuable. The construction of such approaches, for the partic-
ular method of continuum/discontinuum modelling, is the topic
of this paper.

Geomaterials are made of small–structural elements and
fracture occurs through alteration, damage, yielding or failure
of these elements. The alteration of stress and strain fields due
to the presence of such small–structures must be taken into ac-
count in order to describe this complex material dependent phe-
nomenon of fracturing. In linear elasticity this can be repre-
sented by the singularity of the stress field at the crack tip.
However, the assumption of continuum media is only valid
for sufficiently large volumes, i.e. on the scale much larger
than the representative volume. The combination of contin-
uum/discontinuum modelling through the Finite–Discrete Ele-

65



AbuAisha, Eaton, Priest and Wong Microseismic Industry Consortium Vol. 5 – Chapter 7

ment Method (FDEM) has proven to be a valuable tool to de-
scribe fracturing in geomaterials, Munjiza et al. (1995).

The combined finite–discrete element method involves ex-
tensive fracture and fragmentation (in applications such as rock
blasting) resulting in a large number of individual solid frag-
ments, i.e. it is characterized by systems comprising a large
number of separate (distinct) deformable bodies (called discrete
elements), which move in space and time interacting with each
other with each individual body discretized into finite elements.
In the context of the combined finite-discrete element method
robustness, accuracy, simplicity and CPU requirements of the
fracture algorithm implemented are therefore of major impor-
tance, Mahabadi et al. (2012).

To describe fracture evolution in FDEM, the local ap-
proaches based on a single crack model are used. The model
is a relatively simple non–linear for a crack with a plastic zone
at its tips (FPZ), where the zone of plastically strained material is
replaced by a zone of weakened bonds between the crack walls
(Fig. 1). As the crack walls separate the bond stress reaches
maximum ft. At the point when the separation reaches critical
value δ = δc the bonding stress drops to zero, Lu and Chow
(1990).

y

x

Tensile

Strength, ft

Bonding

stress

Intact material

Inelastic (FPZ) ElasticStress-free

δc

Figure 1: Conceptual model of a tensile crack in a heterogeneous
rock material – Dugdale crack model, Lu and Chow (1990).

To present fracturing of brittle materials, the aforemen-
tioned model is implemented using experimental stress–strain
curves for concrete in tension, Hillerborg mode – Hillerborg et
al. (1976). The standard finite element formulation for the hard-
ening part of the constitutive low is combined with the single–
crack model for the softening part of the stress–strain curve. Fi-
nite elements are used to model the behavior of the material up
to the ultimate tensile strength while a discrete crack model is
implemented through crack opening and separation along edges
of finite elements. The major advantages of the proposed model
are its ability to model both crack propagation and crack initia-
tion of multiple cracks allowing creation of large numbers of dis-
tinct interacting fragments without considerable additional CPU
requirements, i.e. remeshing.

The first objective of this research is to illustrate the con-
ception of the fracturing model to be used in the FDEM and
then coded in the Y–Geo. Such illustration is to include; 1-

the constitutive behavior of the model and the crack elements
in a single and smeared fracturing approaches, 2- the governing
equations and their matrix formulation, 3- the numerical integra-
tion scheme, 4- the spatial discretization, and finally the imple-
mentation of fluid pressure/hydraulic stimulation in the fractur-
ing model. The second objective is to scrutinize the limitations
and concerns of the FDEM approach implemented in the Y-Geo
code.

7.2 Combined single and smeared
fracturing

The model introduced in this work is aimed at crack initiation
and crack propagation in geomaterials in the context of the com-
bined finite–discrete element method FDEM. The model is able
to track the evolution of a single–crack as well as of a group
of possibly interacting cracks – smeared fracturing. The model
is based on actual approximation of experimental stress–strain
curves for concrete in direct tension, Evans and Marthe (1968).
The area under the stress–strain curve, (Fig. 2), is divided into
two parts. Part ‘A’ is implemented in the finite element method
in a standard way through the constitutive law. Part ‘B’ rep-
resents strain softening, where stress decreases with increasing
strain. It is modelled through the FDEM. For the sake of simplic-
ity, the cracks are assumed to coincide with the element edges.
Separation of these edges induces a bonding stresses Lisjak et al.
(2013), which is taken to be a function of the size of separation
δ or slip s (Fig. 1). Thus, separation of adjacent finite element
edges implies crack opening δ and slip s.

In theory the separation δ = δp = 0 and slip s = sp = 0

coincide with bonding stresses being equal to the tensile strength
ft and shear strength fs respectively, i.e. no separation or slip-
ping occur before the tensile or shear strengths are reached.

In this study, a modified version of the crack element
constitutive response proposed by Munjiza et al. (1999) was
adopted, Lisjak et al. (2013). The bonding stresses, σ and τ ,
transferred by the material are decreasing functions of the dis-
placement discontinuity across the crack elements,[

σ
τ

]
= f(D)

[
ft
fs

]
, (7.1)

f(D) is a heuristic scaling function representing an approxima-
tion of the experimental cohesive laws proposed by Evans and
Marthe (1968),

f(D) =

[
1− a+ b− 1

a+ b
exp

(
D

a+ cb

(a+ b)(1− a− b)

)]
×
[
a(1−D) + b(1−D)c

]
,

(7.2)
where a, b, c, are parameters chosen to fit a particular exper-

imental curve for concrete in tension, and D is a damage fac-
tor varying between 0 and 1. The dimensionless damage factor
D describes the displacement jump across the cohesive surface.
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Figure 2: Constitutive behavior of the crack elements. (a) FPZ model for mode I. (b) Slip–weakening model for mode II. The
specific fracture energy values, GIc and GIIc, correspond to the area under the bonding stress–softening curves. The shape of the
curves is based upon experimental complete stress–strain curves obtained for concrete in direct tension Evans and Marthe (1968).
(c) Elliptical coupling relationship between crack opening δ and crack slip s for mixed–mode fracturing, eq. (7.7).

Also, f(D) is such that f(D = 0) = 1 (i.e. intact crack ele-
ment) and f(D = 1) = 0 (i.e. broken crack element). The ac-
tual fitting for one the experimental curves presented by Evans
and Marthe (1968) is presented by setting a = 0.63, b = 1.8

and c = 6.0 (Fig. 3).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized crack opening, D = f (δ/δ c)

N
o
r
m

a
li
z
e
d

b
o
n
d
in

g
s
t
r
e
s
s
σ
/
f
t

 

 

Experimental data for
concrete in tension

Fitting curve, a=0.63,
b=1.8, and c=6.0

Figure 3: Paramterization of eq. 7.2 to fit the experimental be-
havior of concrete in tension as presented by Evans and Marthe
(1968).

Depending on the local stress and deformation fields, frac-
tures can nucleate and grow in mode I (i.e. opening mode), mode
II (i.e. sliding mode) or in mixed mode I–II. Similar to the co-
hesive model originally proposed for concrete by Hillerborg et
al. (1976), a mode I crack initiates when the crack tip opening,
δ, reaches a critical value, δp, which is related to the cohesive
tensile strength of the rock, ft (Fig. 2(a)). As the fracture prop-
agates and the crack tip opening increases, the normal bonding
stress, σ, is assumed to decrease until a residual opening value,
δc, is reached and a traction–free surface is created. In this case,
the damage factor is therefore defined as,

D =
δ − δp
δc − δp

. (7.3)

Mode II of fracturing is simulated by a slip–weakening

model. A tangential/shear bonding stress, τ , exists between the
two fracture walls, which is a function of the amount of slip, s,
and the normal stress on the fracture, σn (Fig. 2(b)). The critical
slip, sp, corresponds to the cohesive shear strength of the rock,
fs, defined as,

fs = c+ σn tan(φi), (7.4)

where c is the internal cohesion, φi is the material internal fric-
tion angle. Upon undergoing the critical slip, sp, the tangential
bonding stress is gradually reduced to a residual value, fr , which
corresponds to a purely frictional resistance,

fr = σn tan(φf ), (7.5)

where φf is the fracture friction angle and σn is the normal stress
acting across the fracture surfaces by the element pair interac-
tion algorithm even after the breakage of the embedded crack
element, see Mahabadi et al. (2012). In this case, the damage
parameter is defined as,

D =
s− sp
sr − sp

. (7.6)

For mixed mode I–II of fracturing (Fig. 2(c)), the coupling
between crack opening and slip is defined by an elliptical rela-
tionship,

D =

√(
δ − δp
δc − δp

)2

+

(
s− sp
sr − sp

)2

. (7.7)

As illustrated in (Fig. 4(b)), the effect of the crack bonding
stress is implemented in FDEM using equivalent crack nodal
forces, fc.

In actual implementation, the separation of adjacent ele-
ment edges is assumed in advance through the topology of ad-
jacent elements being described by different nodes. Thus no
two elements share any nodes – the continuity between elements
is enforced through the penalty function method, i.e. normal
springs as shown in (Fig. 5).
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Figure 4: Material failure modelling in FDEM (a) Conceptual model of a tensile crack in a heterogeneous rock material. (b)
Theoretical FPZ model of Hillerborg et al. (1976).
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Figure 5: Penalty method to ensure the connectivity between the generic elements of the FEM (a) Normal springs. (b) Shear
springs.

Since the elastic deformation before the onset of fracturing
takes place in the bulk material, no deformation should in the-
ory occur in the crack elements before the cohesive strength is
exceeded. However, a finite stiffness is required for the crack
elements by the time–explicit formulation of FDEM. Such an
artificial stiffness is represented by the normal, tangential and
fracture penalty values, pn , pt and pf , for compressive, shear
and tensile loading conditions, respectively. For instance, for the
normal separation δ, δp is defined as,

δp =
2h ft
pf

, (7.8)

and the slip sp by,

sp =
2h fs
pt

. (7.9)

In the limits,

lim
pf,t→∞

δp, sp = 0, (7.10)

i.e. no separation or sliding between adjacent edges occurs be-
fore the tensile strength ft of the material is reached. Thus,
for practical purposes, the cohesive contribution to the overall
model compliance can be largely limited by adopting very high
(i.e. dummy) penalty values.

7.3 Governing equations

In FDEM, each solid is discretized as a mesh consisting of
nodes and triangular elements. An explicit second–order finite–
difference time integration scheme is applied to solve the equa-
tions of motion for the discretized system and to update the nodal
coordinates at each simulation time step, Munjiza et al. (1995).
In general, the governing equations for a FDEM system can be
expressed as,

MẌ + CẊ = R(X), (7.11)

where M and C are the lumped mass and damping diagonal ma-
trices of the system, X is the vector of nodal displacements and R
is the nodal force vector which includes the contributions from
the external loads fl, the interaction forces acting across dis-
crete bodies fi, the deformation forces fe and the crack bonding
forces fc.

Numerical damping is introduced in the governing equa-
tion to account for energy dissipation due to non-linear material
behaviour or to model quasi–static phenomena by dynamic re-
laxation, Lisjak et al. (2013). The matrix C is equal to,

C = µI, (7.12)

where µ and I are the damping coefficient and the identity ma-
trix, respectively.
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Interaction forces fi, are calculated either between con-
tacting separated bodies or along internal discontinuities (i.e.
pre–existing and newly created fractures). In the normal direc-
tion, body impenetrability is enforced using a penalty method
Munjiza and Andrews (2000), while in the tangential direction,
discontinuity frictional behavior is simulated by a Coulomb–
type friction law, Mahabadi et al. (2012). Deformation forces
fe, are computed on an element–by–element basis under the as-
sumption of isotropic linear elasticity. Crack bonding forces fc,
are used to simulate material failure as shown in (Fig. 4).

The failure of the material progresses based solely on the
strength degradation of crack elements, which are inserted be-
tween each pair of triangular element edges at the beginning
of the simulation. Crack elements occur where crack localiza-
tion and growth take place. Since no adaptive remeshing is per-
formed, potential fracture trajectories are restricted by the initial
mesh topology. Therefore, to minimize the bias induced to the
model response, fine and randomly discretized meshes should
be used in place of structured grids. Following this approach,
the macroscopic material failure emerges as a result of the col-
lective crack–element damage without employing any additional
macroscopic constitutive law. The key processes in FDEM in-
clude: elastic deformation of finite elements, rigid motion of dis-
crete bodies, contact detection and interaction between discrete
elements (including friction), and fracturing.

7.4 Numerical integration scheme
The integration scheme adopted in the Y–Geo code is an explicit
second–order finite difference integration scheme. At each sim-
ulation time step, eq. (7.11) is integrated to update the nodal
coordinates. For each node, the velocity at time t + ∆t (where
∆t is the integration time step) is obtained as,

Ẋt+∆t = Ẋt +
f

m
∆t, (7.13)

where m is the nodal mass, and f is the vectorial sum of all
forces applied to the node. Then, the updated nodal position is
calculated as,

Xt+∆t = Xt + Ẋt+∆t ∆t. (7.14)

Since an explicit time integration scheme is adopted, the solver
is conditionally stable. However, the time step size, ∆t, must be
smaller than a critical value, which is proportional to the small-
est element size in the model divided by the P–wave velocity of
the elastic medium, Lisjak et al. (2013).

7.5 Spatial discretization
In order for the bonding stress to have an effect on the stress field
close to the crack tip, the size of the finite element h should be

smaller than the estimated size of the plastic zone, ∆, given by
eq. (7.15) and eq. (7.16)1.

∆ =
E

4ft
δc, short crack, (7.15)

and,

∆ =
πEδc
32ft

, short crack. (7.16)

h

Crack

Δ

σ

σ

Figure 6: The maximum size of the finite element to capture the
effect of bonding stress at the crack tip.

If the size of the finite elements, h, close to the crack tip
is not small enough, the finite element mesh cannot accurately
represent the stress field in the close proximity of the crack tip
(Fig. 6). Consequently, the stress field at the crack tip will be
influenced by the local mesh topology. Therefore,

h� ∆. (7.17)

For instance if the material is defined by ft = 3.15 MPa,
E = 26 GPa and δc = 0.238 × 10−3 m, the rough estimate of
the size of plastic zone, Delta, for a short crack in an infinite
disc is given by eq. (7.15),

∆ =
E δc
4ft

=
26× 103 × 0.238× 10−3

4× 3.15
= 0.491 m, (7.18)

while the rough estimate of the size of the plastic zone for a long
crack in an infinite disc is given by eq. (7.16),

∆ =
π E δc
32ft

=
π × 26× 103 × 0.238× 10−3

32× 3.15
= 0.193 m.

(7.19)
Such a fine mesh results in the de–bonding process being

driven by a smooth stress field averaged over several elements.
In the case of a coarse mesh the de–bonding process may be de-
fined by a stress state at just one element, (as explained earlier).
This may result in a fracture pattern being dependent on the fi-
nite element mesh employed, i.e. the results obtained may differ
significantly for different meshes.

1See Munjiza et al. (1999) for details.
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7.6 Implementing hydraulic fractur-
ing in the FDEM

The purpose of this section is to assess the use of an alternative
hybrid finite–discrete element (FDEM) code, enhanced with hy-
draulic fracturing capabilities, to model pressure–driven fractur-
ing in jointed rock masses. Numerical simulations will be car-
ried out using this hybrid finite–discrete element (FDEM) code
enhanced with hydraulic fracture (HF) capabilities. The simula-
tion tool consists of three main computational modules exchang-
ing information at every time step (Fig 7):

1. the geomechanics solver, based on the combined finite–
discrete element method Munjiza (2004) and Mahabadi
et al. (2012), captures the mechanical response of the
rock mass (i.e. deformation and fracturing);

2. the cavity volume calculator dynamically tracks the evo-
lution of wet fractures within the model and computes
variations in cavity volume due to rock elastic deforma-
tion and fracturing as well as fluid compressibility;

3. the pump model computes the fluid pressure based on
the injection flow rate and cavity volume.
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Elastic deformation 

Rock fractures

Rock joints

Cavity volume calculator
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Fracture topology

Fluid compressibility
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Cavity volume, V
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Figure 7: Hydro–mechanical coupling in the FDEM using the
hydrostatic model, modified after Lisjak et al. (2014).

7.6.1 Geomechanics solver

In the geomechanics solver the solid rock is discretized as a
mesh consisting of nodes and triangular elements (Fig. 4). An
explicit second–order finite–difference integration scheme is ap-
plied to solve the equations of motion for the discretized system
and to update the nodal coordinates at each simulation time step,
Sect. (7.4).
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Figure 8: Constitutive behaviour at the contact between bonded
triangular element pairs defined in terms of normal and tangen-
tial bonding stress, σ and τ , versus crack relative displacement,
δ and s (i.e., opening and sliding).

7.6.1.1 Elastic deformation

The elastic deformation of the solid rock is modelled according
to the continuum theory of linear elasticity using constant-strain
triangular elements Munjiza (2004).

7.6.1.2 Rock fracture model

Rock fracturing is modelled using a cohesive–zone approach.
With this technique, crack nucleation and growth is captured by
dedicated four–noded interface elements (referred herein to as
crack elements), that are interspersed across the edges of all tri-
angular element pairs (Fig. 4). Since no adaptive remeshing
is performed as the simulation progresses, potential fracture tra-
jectories are restricted to the initial mesh topology. Therefore, to
minimize the bias induced on the model response, randomly dis-
cretized meshes should be used in place of structured grids. In
the crack element model, the bonding stresses transferred by the
material are functions of the displacement discontinuity across
the crack elements according to the cohesive laws illustrated in
(Fig. 8).

7.6.1.3 Rock joint model

Rock discontinuities (i.e., either pre–existing or newly created
fractures) are treated by a rock joint model, computing the con-
tact forces between all pairs of triangular elements that over-
lap in space. Two types of forces are applied to the elements
of each contacting pair: (i) repulsive forces and (ii) frictional
forces. The repulsive forces are calculated using a penalty func-
tion. Contacting pairs tend to penetrate into each other, gen-
erating distributed contact forces, which depend on the shape
and size of the overlap between the two bodies and the value
of a stiffness parameter, namely the normal penalty coefficient,
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Figure 9: FDEM modelling of strength anisotropy. (a) Linear variation of cohesive strength parameters with the angle between
crack element and bedding. (b) Example of mesh combining a Delaunay triangulation for the intra–layer material with edges
preferentially aligned along the bedding plane direction, modified after Lisjak et al. (2014).

pn. In the tangential direction, the frictional forces between con-
tacting couples are calculated using Coulomb’s law of friction.
Rock joints can be directly incorporated into the geomechanics
solver by aligning the mesh topology to pre–existing cracks at
the time of mesh generation (Fig 9). In this study, rock joints are
modelled as purely frictional surfaces. If at any time during the
simulation a joint intersects a fluid–driven fracture, the resulting
fluid percolation is accounted for by having the fluid pressure
applied to the entire newly–connected discontinuity.

Following (Fig. 9), strength anisotropy is captured at the
crack element level by assuming that the strength of each crack
element is a function of its relative orientation with respect to
the bedding orientation. That is to say, the macroscopically ob-
served strength anisotropy is induced by a similar anisotropy at
the crack element level. In this work, the cohesive strength pa-
rameters and the fracture energy release rates are assumed to
vary linearly between a minimum value for orientations parallel
to the bedding planes (i.e. ft;min, cmin, GIc;min, GIIc;min) to a
maximum value for an orientation perpendicular to the bedding
planes (i.e. ft;max, cmax, GIc;max, GIIc;max).

7.6.2 Fluid injection and pressure driven
fracturing

Fluid injection and pressure–driven fracture propagation are
captured by a simplified approach based on the principle of mass
conservation for a compressible fluid injected into a deformable
solid. The model is hydro–mechanically coupled exclusively in
the sense that variations in cavity volume, due to either rock
elastic deformation or fracturing, affect the pressure of the com-
pressible fluid, which, in turn, affects rock deformation and fail-
ure (Fig. 7). On the other hand, the actual fluid flow, induced by
hydraulic head gradients, in the fracture network and, depending
on the permeability, in the rock matrix is neglected.

Prior to the start of the HF simulation, the boundary of the
initial pressurized surface (typically coincident with the bore-
hole perimeter) is specified by labelling the element edges adja-
cent to the fluid (Fig. 10). At each subsequent time step, a ded-
icated routine computes the cavity volume based on the fracture
topology and inter–connectivity updated by the geomechanics
solver.

Specifically, the volume is calculated according to Green’s
theorem by evaluating the following integral over the wet bound-
ary,

V =
1

2

∮
x dy − y dx. (7.20)

Numerically, this integration is calculated as,

V =
1

2

∑
i

xi yi+1 − yi xi+1, (7.21)

with i indexing over the nodes of the wet boundary with coordi-
nates (xi, yi). As the simulation progresses and the nucleation
of new fractures is simulated, new wet edges are dynamically
tracked based on their connectivity with the initial pressurized
surface. The cavity volume calculated at each time step is fed
into the pump model.

7.6.3 Fluid compressibility model/Pump
model

The fluid compressibility model is used to determine the fluid
pressure, p, to be applied to all edges marked as wet. In gen-
eral, the fluid pressure depends on the input flow rate, Q, and
responds to variations in cavity volume, V . At every time step,
the mass, m, of the fluid is integrated from the flow rate (spec-
ified as a time–varying boundary condition/pumping boundary
condition),

Kf = −V dp
dρ
, (7.22)
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Figure 10: Conceptual diagram of the hydraulic fracture propagation process in a FDEM–HF model. For illustration purposes, only
selected triangular elements are shown, modified after Lisjak et al. (2014).

with Kf being fluid bulk modulus. The pressure is therefore
calculated as,

p = p0 +Kf log

(
m

V ρ0

)
, (7.23)

where p0 and ρ0 are the reference fluid pressure and density re-
spectively.

Based on the length and orientation of each wet element
edge, the fluid pressure is converted into equivalent nodal forces
flf , which are then added to eq. (7.11). Specifically, the fluid-
pressure forces acting on two edge nodes, 0 and 1, are equal to,

flf = −p
2

[
y1 − y0

x1 − x0

]
. (7.24)

7.7 Concerns and limitations of the
FDEM–HF model

In this section a brief discussion is presented about the lim-
itations or concerns that can be encountered while using the
FDEM–HF model to present hydraulic stimulation by the Y-Geo
code.

7.7.1 Thermal strains
The injection of cold fluid into hot rocks laying deep in the
earth’s crust is expected to cause considerable thermal changes.
Thermal changes lead to thermal strains that must be accounted
for when calculating the effective stresses (McTigue (1986);
AbuAisha and Loret (2014a); AbuAisha and Loret (2014b)).

The mechanical behavior of a saturated porous medium sub-
jected to a temperature change θ is expressed in a compact form
as,

σσσ + κ p I = E : (εεε− εθεθεθ), (7.25)

where σσσ is the total stress tensor, κ is the Biot’s effective stress
coefficient, E is the elasticity tensor, and εθεθεθ is the thermal strain
tensor defined as εθij = (αs/3) θ δij , with αs being the rock cu-
bical thermal expansion coefficient. For typical sandstone val-
ues (E = 5 GPa, ν = 0.3, αs = 4.5 × 10−5 1/◦C) and from
the correspondence between thermoelasticity and poroelasticity,
one writes:

κ (1− 2ν) ∆p⇐⇒ −E αs θ
3

. (7.26)

For a typical injection test the change of temperature θ is up
to -80 ◦C (cooling) which is equivalent to fluid pressure change
of 15 MPa (κ = 1 for effective stresses at the fracture tip)2. This
indicates that the cooling effects taking place at the beginning of
an injection test can be equivalent to large pressurizing values.
If the injection process is going to be implemented with small
fluid volumes and at quite short periods, the effect of heat shock
is to be analyzed as well. The numerical stabilization of heat
convection at early injection times is presented in the work of
(AbuAisha (2014), ch. 6).

The equation of balance of momentum, also called the equi-
librium equation of elasticity, is derived based on Newton’s law
of motion which states that: in an initial frame of reference, the
material rate of change of the linear momentum of a body is
equal to the resultant applied forces. Consequently, to account
for the balance of a porous medium subjected to external me-

2Refer to (AbuAisha (2014), p. 124) to understand the derivation of the relation (7.26).
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chanical loads and thermal exchanges eq. (7.25) is employed,

∇∇∇.σσσ + b = ρv̇, (7.27)

where b is the body forces, ρ is the density of the current config-
uration and v̇ is the acceleration.

7.7.2 Fluid diffusion in a porous medium
The approach adopted in developing the Y–Geo code to simulate
fluid–driven–fractures does not account for fluid diffusivity in
the porous medium, nor does it consider fluid leak–off from the
fracture walls, Sect. (7.6). The constitutive equation of Darcy
(7.28) relates the apparent flux of fluid to pressure gradient and
is used to describe the diffusion of fluid in the porous medium.

qf = φ0(vf − vs) = −k

µ
.(∇∇∇p− ρf g), (7.28)

where qf is the apparent volumetric flux of the fluid relative to
the solid skeleton, vf is the fluid velocity, vs is the solid veloc-
ity, k is the permeability tensor of the mixture, µ is the dynamic
fluid viscosity, ρf is the intrinsic fluid density, and g = g e3, g
is the gravitational acceleration and e3 is the descending vertical
direction.

To account for the amount of fluid entering or leaving the
fractures. The linearized fluid mass balance equation according
McTigue (1986) is used,

∂ζ

∂t
+∇.qf = 0, (7.29)

where ζ is the change in the fluid content. According to McTigue
(1986) the change in mixture fluid content constitutive equation
can be expressed as,

ζ =
1

3

(
1

K
− 1

K′s

)
(σkk +

3

B
p), (7.30)

with K being the drained bulk modulus of the porous medium,
K
′
s is the first solid constituent bulk modulus, and B is the pore

pressure (Skempton’s) coefficient given by,

1

B
= 1 + φ0

K(1−Kf/K
′′
s )

Kf (1−K/K′s)
, (7.31)

K
′′
s is the second solid constituent bulk modulus and φ0 is the

reference porosity of the mixture.
Assuming that K

′
s = K

′′
s = Ks leads to the definition of

Biot’s modulus M ,

1

M
=
κ− φ0

Ks
+
φ0

Kf
. (7.32)

Thus eq. (7.30) takes the form Abousleiman and Ekbote
(2005),

ζ =
p

M
+ κ εkk. (7.33)

The effective stress (Biot’s) coefficient κ is expressed in
terms of bulk moduli as,

κ =
K
′
s −K
K′s

, (7.34)

the difference between the bulk moduli K
′
s and K

′′
s is usually

ascribed to the presence of unconnected porosity.

7.7.2.1 Time scale associated with fluid diffu-
sion in porous media

The time scale associated with diffusive flow of the pore fluid is
given by tp = L2/Cc, Cc is the consolidation coefficient (m2/s)
and is defined as Cc = k (λ + 2G)/µ, k is the permeability of
the medium (m2), µ is the dynamic viscosity of the pore fluid
(N.s/m2), λ&G are Lamé’s elastic constants (N/m2), and L is a
typical length of the Boundary Value Problem (BVP) considered
(m).

For typical granitic rocks, the drained Young’s modulus E
is around 40 GPa, the drained Poisson’s ratio ν is around 0.2,
and the permeability k is in the order of 10−14 m2. The Lamé’s
coefficients are now calculated as,

G =
E

2(1 + ν)
=

40

2(1 + 0.2)
= 16.67 GPa, and, (7.35)

λ =
Eν

(1 + ν)(1− 2ν)
=

40× 0.2

(1 + 0.2)(1− 2× 0.2)

= 11.11 GPa.
(7.36)

Knowing that the dynamic viscosity of water at temper-
ature of 30 ◦C is around 8.0 × 10−4 Pa.s, the consolidation
coefficient,Cc, can be calculated,

Cc =
k (λ+ 2G)

µ

=
5× 10−14 × (16.67 + 11.11)× 109

8.0× 10−4
= 1.74 m2/s

(7.37)

The hydraulic fracturing process may last up to 50 minutes
on average. Consequently, the region affected by the diffusion
of fluid can reach up to:

L =
√
Cc tp =

√
1.74× 50× 60 ≈ 72 m. (7.38)

Following the result of eq. (7.38), the diffusivity of pore
fluid in the porous medium will depend on the dimensions of
the BVP simulated by the Y-Geo code. Based on the authors’
experience (AbuAisha and Loret (2014a); AbuAisha and Loret
(2014b)), the area affected by the fluid diffusion can extend up to
L×3/2 = 108 m in 50 minutes. Even though the fluid diffusiv-
ity in the porous medium is questionable depending on the time
of stimulation, the leakage of fluid from the fracture surfaces is
quite possible even at small stimulation periods.
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7.7.2.2 Fluid leak–off from the fracture sur-
faces

Let us assume that we have a vertical borehole where pressur-
ized fluid is injected into a horizontal reservoir to the threshold
of HF. The plane strain approximation is used to treat a horizon-
tal section of a vertical fracture as shown in (Fig. 11). The fluid
leak–off is assumed one–dimensional occurring perpendicular to
the fracture walls.

Intact rock

x

y

Injected flow

Q

Fluid leak-off

qL

Fracture
w(x)

L

p(x,0,t)

p(x,y,t)

T(x,y,t): for possible temperature change

T(x,0,t)

Figure 11: Horizontal section of a vertical fracture in a stimula-
tion test. Fluid leak-off is assumed one–dimensional occurring
perpendicular to the fracture walls. T refers to the fluid and solid
rock temperatures, it is included in the graph in case that thermal
strains are to be considered due to considerable thermal changes.

Assuming that the fracture aperture is small and varies
slowly in space and time and that the flow in the fracture is lami-
nar, the lubrication flow theory applies (Lamb (1945); Ghassemi
et al. (2008)). Momentum balance for these assumed conditions
indicate that the flow rate is proportional to the pressure gradi-
ent, i.e.,

∂p(x, 0, t)

∂x
= − 12µ

w3(x, t)
q(x, t), (7.39)

where p is the fluid pressure increase in the fracture caused by
injection (p = p(x, 0, t)−p0) with p0 being the initial reservoir
pressure,w is the fracture aperture, and q is the flow rate per unit
height of a vertical fracture: q(x, t) = w(x, t) vf (x, t), where
vf is the average fluid speed in the fracture.

Assuming the fluid to be incompressible with leak–off from
the fracture wall into the formation, the fluid continuity equation
reads,

∂q(x, t)

∂x
= −2qL(x, t), (7.40)

where qL(x) is the leak–off speed (positive for loss into the for-
mation). The coefficient 2 is due to the fact that both fracture
walls are considered. Combining Eqs. (7.39) and (7.40), and
neglecting ∂w/∂x, the following second–order partial differen-
tial equation is obtained for fluid pressure in the fracture,

∂2p(x, 0, t)

∂x2
=

24µ

w3(x, t)
qL(x, t). (7.41)

The amount of the fluid leakage, as well as possible fluid
diffusion in the porous medium should be considered during the

simulation of HF test.

Eqs. (7.27) and (7.29) can be solved analytically for a
mathematical model based on an idealized geometry. Let us
assume a horizontal reservoir of constant thickness, confined
at the top and the bottom by rigid, impermeable and thermally
insulated formations; the reservoir can be of finite or infinite
extent. The fracture is modelled as a vertical plane of uniform
width that intersects the entire reservoir thickness, see (Fig. 12)
for details. Plane strain and one–dimensional fluid leakage as-
sumptions are also adopted as mentioned above in our approach.

To be able to obtain the analytical solution of the BVP, we
shall assume, in our simplified approach, the rock displacement
to be zero in the x-direction (parallel to the fracture). Further-
more, the influence of rock matrix deformation on pore pressure
is not to be included as its impact is not major in the our con-
text. The following initial boundary conditions are employed
to describe fluid diffusion in the fracture as well as in the rock
matrix:

1. Initial reservoir pressure is equal to zero, i.e.
p(x, y, 0) = 0 MPa,

2. the pore fluid pressure at the extraction well is equal to
zero, i.e. p(L, 0, t) = 0, and,

3. the initial fluid pressure at the injection well for an injec-
tion rate of q0 = 1.0 × 10−4 m/s, is equal to p0 = 1.2

MPa.
Solving analytically the poroelastic equations for the BVP

described above, the following expressions for the development
of the fracture aperture,

w(x, t) =
2ηKD

1

√
cD t

G
√
π

(L2 − x2) + w0, (7.42)

fracture and reservoir pressure for constant aperture w = w0,

p(x, y, t) = (x− L)(KD
1 (x+ L)−KD

2 ) erfc
(

y

2
√
cDt

)
,

(7.43)
and fluid pressure change in the fracture due to varying aperture
w,

p(x, 0, t) = −12q0µ

∫ x

0

1

w3(x, t)
, (7.44)

are obtained. q0 is the injection flow rate per unit height of
the fracture, cD is the hydraulic diffusivity, and w0 is the ini-
tial fracture aperture. The coefficient KD

1 is related to the fluid
leak–off by the relation: KD

1 = 12µ qL0/w
3
0 , meanwhile the

coefficient KD
2 is related to the injection flow by the relation:

KD
2 = 12µ q0/w

3
0 . Fluid leak–off can be calculated using the

following expression: qL0 = mq0/2L with m being the coef-
ficient of leak–off and L being the length of the fracture. The
parameter η is related to Biot’s effective stress coefficient using
Poisson’s ratio as: η = κ(1− 2ν)/2(1− ν).

For typical reservoir operating conditions, the following
data set, Table (1) is used in the BVP described above:
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Figure 12: Side (a) and top (b) view of the system being modeled Ghassemi et al. (2008). The reservoir is assumed to extend from
the top to the bottom of the system. The vertical fracture intersects the entire reservoir and extends between the injection well on
the left and the production well on the right.

0 0.5 1 1.5 2

0.85

0.9

0.95

1

1.05

Time (year)

N
o
rm

a
li
z
e
d
in
d
u
c
e
d
a
p
e
rt
u
re

w
/
w

0

 

 

m=0

m=0.25

m=0.5

96

92.5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.92

0.94

0.96

0.98

1

1.02

x/L

N
o
r
m
a
li
z
e
d
in
d
u
c
e
d
a
p
e
r
t
u
r
e
w
/
w

0

 

 

m=0

m=0.25

m=0.5

6 months

(b)

Figure 13: Normalized poroelastic-induced fracture aperture: (a) at the injection point for different fluid loss/injection rate ratios
m and times; (b) along the fracture for different fluid loss/injection rate ratios m after 6 months of injection.

Table 1: Rock and fluid properties for a fracture fluid circulation
test of the BVP defined above.

Parameter Value Unit
Injection rate, q0 1.0× 10−4 m2/s
Initial aperture, w0 0.001 m
Poisson’s ratio, ν 0.185 -
Dynamic fluid viscosity, µ 0.001 Pa.s
Fracture length, L 1000 m
Leak–off rate, qL0 mq0/2L m/s
Hydraulic diffusivity, cD 2.2× 10−5 m2/s
Shear modulus, G 27.5 GPa

(Fig. 13(a)) shows that the fracture aperture is reduced
more with increasing fluid loss (m > 0). The reduction in frac-
ture aperture resulting from poroelastic deformation associated

with fluid leak–off is plotted in (Fig. 13(b)) along the fracture
for different values of m, and a time of 6 months. The contrac-
tion of the fracture opening is small in magnitude and evolves
slowly in this case. The maximum reduction of aperture occurs
at the injection point where the induced pressure p(x, 0, t) has
its maximum.

(Fig. 14) shows the pressure distribution in the fracture cor-
responding to the case illustrated in (Fig. 13(b)); the pressure is
normalized with respect to the isothermal impermeable initial
fracture pressure of 1.2 MPa.

Leak–off alone lowers the pressure in the fracture, but
the pressure profiles for the poroelastic case (varying w) are
higher than for the elastic case (constant w = w0) with leak-off
because of the poroelastic aperture contraction. As the poroelas-
tic aperture changes become negligible near the extraction point
(Fig. 13(b)), the poroelastic and elastic pressure profiles become
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nearly identical. Fluid loss alone tends to decrease the fluid pres-
sure in the fracture; as the amount of fluid loss increases, the
pressure in fracture decreases, and the profile becomes more
parabolic. It should be noted that although leak–off might not
greatly change fracture aperture, it can lead to significant pore
pressure changes and cause slip on fractures in the vicinity of
the main hydraulic fracture system (i.e., operationally induced
microseismicity).
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Figure 14: Normalized pressure profile along the fracture for
different fluid loss/injection rate ratios m after 6 months of in-
jection. Solid lines: elastic case (constant w = w0); dashed
lines: poroelastic case (varying w).

A typical time scale for a HF treatment stage is 50 min-
utes. Following (Fig. 13(a)), the reduction in fracture aperture
due to leak–off is not going to be significant (around ∼ 8% in 6
months). However, and as stated above, this insignificant reduc-
tion can lead to significant pore pressure increase, i.e. diffusion
in the rock matrix.3.

7.8 Conclusion

The Finite/Discrete Element Method (FDEM) has been pre-
sented in the framework of describing hydraulic fracturing in
petroleum industry. General overview about the method is first
presented. The limitations and concerns for applying the method
to describe microseismicity are also discussed. If the method is
to be applied to our future research, a special model to describe
fluid diffusion in the porous skeleton must be accounted for.
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