G. R. Martin, A method for determining the relative permeability of concrete using gas, vol.38, pp.90-94, 1986.

P. J. Dewaele, E. J. Reardon, and R. Dayal, Permeability and porosity changes associated with cement grout carbonation, Cement and concrete research, vol.21, issue.4, pp.441-454, 1991.

P. A. Claisse, H. I. El-sayad, and I. G. Shaaban, Permeability and pore volume of carbonated concrete, Materials Journal, vol.96, issue.3, pp.378-381, 1999.

V. T. Ngala and C. L. Page, Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes, Cement and Concrete Research, vol.27, issue.7, pp.995-1007, 1997.

G. G. Litvan and A. Meyer, Carbonation of granulated blast furnace slag cement concrete during twenty years of field exposure, Special Publication, vol.91, pp.1445-1462, 1986.

G. Verbeck, Carbonation of hydrated Portland cement. In Cement and Concrete, 1958.

Y. F. Houst, Carbonation shrinkage of hydrated cement paste, Proc. 4th CANMET/ACI International Conference on Durability of Concrete (No. LTP-CONF-1997-005, pp.481-491, 1997.

Y. F. Houst and F. H. Wittmann, Depth profiles of carbonates formed during natural carbonation, Cement and concrete research, vol.32, issue.12, pp.1923-1930, 2002.

P. H. Borges, J. O. Costa, N. B. Milestone, C. J. Lynsdale, and R. E. Streatfield, Carbonation of CH and CSH in composite cement pastes containing high amounts of BFS, Cement and Concrete Research, vol.40, issue.2, pp.284-292, 2010.

B. G. Kutchko, B. R. Strazisar, D. A. Dzombak, G. V. Lowry, and N. Thaulow, Degradation of well cement by CO2 under geologic sequestration conditions. Environmental science and technology, vol.41, pp.4787-4792, 2007.

K. Kamimura, P. J. Sereda, and E. G. Swenson, Changes in weight and dimensions in the drying and carbonation of Portland cement mortars, vol.17, pp.5-14, 1965.

F. Georget, J. H. Prevost, and B. Huet, Impact of the microstructure model on coupled simulation of drying and accelerated carbonation, Cement and concrete research, vol.104, pp.1-12, 2018.

B. Bary and A. Sellier, Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete, vol.34, pp.1859-1872, 2004.

X. Zha, M. Yu, J. Ye, and G. Feng, Numerical modeling of supercritical carbonatoin process in cement-based materials, Cement and Concrete Research, vol.72, pp.10-20, 2015.

B. Wu and G. Ye, Development of porosity of cement paste blended with supplementary cementitious materials after carbonation. Construction and Building Materials, 145, pp.52-61, 2017.

Q. Zhang, Mathematical modeling and numerical study of carbonation in porous concrete materials, Applied Mathematics and Computation, vol.281, pp.16-27, 2016.

F. P. Glasser, Long-term leaching mechanisms of Portland cement-stabilized municipal solid waste fly ash in carbonated water, Cement and Concrete Research, vol.29, issue.2, pp.179-186, 1999.

A. Duguid and G. W. Scherer, Degradation of oilwell cement due to exposure to carbonated brine, International Journal of Greenhouse Gas Control, vol.4, issue.3, pp.546-560, 2010.

N. Seigneur, A. Dauzères, M. Voutilainen, V. Detilleux, P. E. Labeau et al., Numerical representative elementary volume generation of a simplified cement paste and estimation of its diffusivity and comparison with dedicated experiments, Journal of Porous Media, issue.1, p.20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02456247

A. Morandeau, M. Thiery, and P. Dangla, Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure, changes and moisture properties, Cement and Concrete Research, vol.56, pp.153-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

N. Jacquemet, J. Pironon, V. Lagneau, and J. Saint-marc, Armouring of well cement in H2SCO2 saturated brine by calcite coatingExperiments and numerical modelling, Applied geochemistry, vol.27, issue.3, pp.782-795, 2012.

B. ?avija and M. Lukovi?, Carbonation of cement paste: understanding, challenges, and opportunities, Construction and Building Materials, vol.117, pp.285-301, 2016.

O. Bildstein, C. Kervévan, V. Lagneau, P. Delaplace, A. Crédoz et al., Integrative modeling of caprock integrity in the context of CO2 storage: evolution of transport and geochemical properties and impact on performance and safety assessment. Oil and Gas Science and TechnologyRevue de lInstitut Français du Pétrole, vol.65, pp.485-502, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505305

N. Jacquemet, Durabilité des matériaux de puits pétroliers dans le cadre d'une séquestration géologique de dioxyde de carbone et d'hydrogène sulfuré (Doctoral dissertation, 2006.

S. Emmanuel and B. Berkowitz, Effects of poresize controlled solubility on reactive transport in heterogeneous rock, Geophysical Research Letters, issue.6, p.34, 2007.

F. Osselin, T. Fen-chong, A. Fabbri, A. Lassin, J. M. Pereira et al., Dependence on injection temperature and on aquifers petrophysical properties of the local stress applying on the pore wall of a crystallized pore in the context of CO2 storage in deep saline aquifers, The European Physical Journal Applied Physics, vol.64, issue.2, p.21101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905978

F. Osselin, A. Fabbri, T. Fen-chong, P. Dangla, J. M. Pereira et al., Stress from NaCl crystallisation by carbon dioxide injection in aquifers, Environmental Geotechnics, vol.2, issue.5, pp.280-291, 2014.

A. Dauzères, Etude expérimentale et modélisation des mécanismes physico-chimiques des interactions béton-argile dans le contexte du stockage géologique des déchets radioactifs (Doctoral dissertation, 2010.

B. Wu, Y. , and G. , Development of porosity of cement paste blended with supplementary cementitious materials after carbonation, Construction and Building Materials, vol.145, pp.52-61, 2017.

N. Seigneur, V. Lagneau, J. Corvisier, and A. Dauzères, Recoupling flow and chemistry in variably saturated reactive transport modelling-An algorithm to accurately couple the feedback of chemistry on water consumption, variable porosity and flow, Advances in Water Resources, vol.122, pp.355-366, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909167

K. Namoulniara, P. Turcry, and A. Ait-mokhtar, Measurement of CO2 effective diffusion coefficient of cementitious materials, European Journal of Environmental and Civil Engineering, vol.20, issue.10, pp.1183-1196, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02316906

G. W. Groves, D. I. Rodway, and I. G. Richardson, The carbonation of hardened cement pastes, Advances in Cement research, vol.3, issue.11, pp.117-125, 1990.

G. W. Groves, A. Brough, I. G. Richardson, and C. M. Dobson, Progressive changes in the structure of hardened C3S cement pastes due to carbonation, Journal of the American Ceramic Society, vol.74, issue.11, p.2896, 1991.

H. Cui, W. Tang, W. Liu, Z. Dong, and F. Xing, Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms, Construction and Building Materials, vol.93, pp.522-527, 2015.

M. Castellote, L. Fernandez, C. Andrade, and C. Alonso, Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations, Materials and Structures, vol.42, issue.4, pp.515-525, 2009.

A. Leemann and F. Moro, Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity, Materials and Structures, vol.50, issue.1, p.30, 2017.

A. Leemann, P. Nygaard, J. Kaufmann, and R. Loser, Relation between carbonation resistance, mix design and exposure of mortar and concrete. Cement and Concrete Composites, vol.62, pp.33-43, 2015.

M. Auroy, S. Poyet, P. Le-bescop, J. M. Torrenti, T. Charpentier et al., Comparison between natural and accelerated carbonation (3% CO 2): Impact on mineralogy, microstructure, water retention and cracking, vol.109, pp.64-80, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01771687

W. F. Cole and B. Kroone, Carbonate minerals in hydrated portland cement, Nature, vol.184, issue.4688, p.57, 1959.

M. Auroy, S. Poyet, P. Le-bescop, J. M. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cement and Concrete Research, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157455

M. Auroy, Impact de la carbonatation sur les propriétés de transport d'eau des matériaux cimentaires, 2014.

I. Sin, V. Lagneau, and J. Corvisier, Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator, Advances in Water Resources, vol.100, pp.1339-1351, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01408528

G. D. Marsily, Hydrologie quantitative, 1981.

V. Lagneau and J. Van-der-lee, HYTEC results of the MoMas reactive transport benchmark. (2010) Computational Goesciences, vol.14, pp.435-449
URL : https://hal.archives-ouvertes.fr/hal-00505360

D. Planel, Les effets couplés de la précipitation d'espèces secondaires sur le comportement mécanique et la dégradation chimique des bétons (Doctoral dissertation, 2002.

V. Lagneau and J. Van-der-lee, Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement, J. Contam. Hydrol, vol.112, issue.1, pp.118-129, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505026

J. Van-der-lee, L. De-windt, V. Lagneau, and P. Goblet, Module-oriented modelling of reactive transport with HYTEC, Computational Geosciences, vol.29, issue.3, pp.265-275, 2003.

J. Van-der-lee, L. De-windt, V. Lagneau, and P. Goblet, Presentation and application of the reactive transport code HYTEC, Developments in Water Science, vol.47, pp.599-606, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00596580

P. Lichtner, Continuum formulation of multicomponent-multiphase reactive transport, Reactive Transport in Porous Media, vol.34, pp.1-81, 1996.

R. Millington and J. Quirk, Permeability of porous solids, Trans. Faraday Soc, vol.57, pp.1200-1207, 1961.

K. Pitzer, Ion interaction approach: theroy and data correlation, Activity Coeff. Electrolyte Solut, vol.2, pp.75-153, 1991.

G. E. Archie, The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, vol.146, pp.54-62, 1942.

O. Regnault, V. Lagneau, and H. Schneider, Experimental measurement of portlandite carbonation kinetics with supercritical CO2, Chemical Geology, vol.265, issue.1-2, pp.113-121, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00557997

I. Monteiro, F. A. Branco, J. De-brito, and R. Neves, Statistical analysis of the carbonation coefficient in open air concrete structures, Construction and Building Materials, vol.29, pp.263-269, 2012.

A. Silva, R. Neves, D. Brito, and J. , Statistical modelling of carbonation in reinforced concrete, vol.50, pp.73-81, 2014.

F. Morel and J. Hering, Principles and applications of Aquatic chemistry, 1993.

L. De-windt and P. Devillers, Modeling the degradation of Portland cement pastes by biogenic organic acids, Cement and Concrete Research, vol.40, pp.1165-1174, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00557835

J. Corvisier, A. Bonvalot, and V. Lagneau, Impact of co-injected gases on CO2 storage sites: Geochemical modeling of experimental results, Energy Procedia, vol.37, pp.3699-3710, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00762623

G. W. Groves, A. Brough, I. G. Richardson, and C. M. Dobson, Progressive changes in the structure of hardened C3S cement pastes due to carbonation, Journal of the American Ceramic Society, vol.74, issue.11, pp.2891-2896, 1991.

P. Thouvenot, O. Bildstein, I. Munier, B. Cochepin, S. Poyet et al., Modeling of concrete carbonation in deep geological disposal of intermediate level waste, EPJ Web of Conferences, vol.56, p.5004, 2013.

I. Sin, Numerical simulation of compressible two-phase flow and reactive transport in porous media-Applications to the study of CO2 storage and natural gas reservoir, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01306860

D. B. Kumarappa, S. Peethamparan, and M. Ngami, Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods, Cement and Concrete Research, vol.109, pp.1-9, 2018.

K. Wan, Q. Xu, Y. Wang, and G. Pan, 3D spatial distribution of the calcium carbonate caused by carbonation of cement paste. Cement and Concrete Composites, vol.45, pp.255-263, 2014.

M. T. Van-genuchten and D. R. Nielsen, On describing and predicting the hydraulic properties, In Annales Geophysicae, vol.3, issue.5, pp.615-628, 1985.

J. Carrayrou, J. Hoffmann, P. Knabner, S. Krutle, C. De-dieuleveult et al., Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems -the MoMaS benchmark case, Computational Geosciences, vol.14, issue.3, pp.483-502, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505371

N. Seigneur, A. Dauzères, J. Sammaljärvi, M. Voutilainen, P. E. Labeau et al., Transport properties evolution of cement model system under degradation-Incorporation of a pore-scale approach into reactive transport modelling, Physics and Chemistry of the Earth, vol.99, pp.95-109, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02456232

N. Seigneur, K. U. Mayer, and C. I. Steefel, Reactive Transport in Evolving Porous Media, Reviews in Mineralogy and Geochemistry, vol.85, pp.197-238, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02456225

H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb, American journal of science, vol.281, issue.10, pp.1249-1516, 1981.

H. C. Helgeson, Thermodynamics of hydrothermal systems at elevated temperatures and pressures, American journal of science, vol.267, issue.7, pp.729-804, 1969.

E. Kangni-foli, S. Poyet, P. Le-bescop, A. Dauzères, E. L'hôpital et al., Designing a model system for Low-pH cement, Proceedings of Symposium NUWCEM, 2018.

E. Kangni-foli, S. Poyet, P. Le-bescop, A. Dauzères, E. L'hôpital et al., Designing a model system for Low-pH cement, Proceedings of SMSS conference, 2019.

G. Rimmelé, V. Barlet-gouédard, O. Porcherie, B. Goffé, and F. Brunet, Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids, Cement and Concrete Research, vol.38, issue.8-9, pp.1038-1048, 2008.

Y. F. Houst and F. H. Wittmann, Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste, Cement and Concrete Research, vol.24, issue.6, pp.1165-1176, 1994.

P. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet et al., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, vol.27, issue.10, pp.2107-2116, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00846739

E. Kangni-foli, S. Poyet, P. Le-bescop, T. Charpentier, F. Bernarchy-barbé et al., Designing a model system for cementitious materials with variable calcium to silica ratio

S. W. Jeen, K. U. Mayer, R. W. Gillham, and D. W. Blowes, Reactive transport modeling of trichloroethene treatment with declining reactivity of iron, Environmental science and technology, vol.41, issue.4, pp.1432-1438, 2007.

D. Daval, I. Martinez, J. Corvisier, N. Findling, B. Goff et al., Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling, Chemical Geology, vol.265, issue.1-2, pp.63-78, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00583749

A. L. Harrison, G. M. Dipple, I. M. Power, and K. U. Mayer, The impact of evolving mineralwatergas interfacial areas on mineralfluid reaction rates in unsaturated porous media, Chemical Geology, vol.421, pp.65-80, 2016.