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A B S T R A C T

A reliable quantification of the potential effects of chemicals on freshwater ecosystems requires ecotoxicological
response data for a large set of species which is typically not available in practice. In this study, we propose a
method to estimate hazardous concentrations (HCs) of chemicals on freshwater ecosystems by combining two in
silico approaches: quantitative structure activity relationships (QSARs) and interspecies correlation estimation
(ICE) models. We illustrate the principle of our QSAR-ICE method by quantifying the HCs of 51 chemicals at
which 50% and 5% of all species are exposed above the concentration causing acute effects. We assessed the bias
of the HCs, defined as the ratio of the HC based on measured ecotoxicity data and the HC based on in silico data,
as well as the statistical uncertainty, defined as the ratio of the 95th and 5th percentile of the HC. Our QSAR-ICE
method resulted in a bias that was comparable to the use of measured data for three species, as commonly used
in effect assessments: the average bias of the QSAR-ICE HC50 was 1.2 and of the HC5 2.3 compared to 1.2 when
measured data for three species were used for both HCs. We also found that extreme statistical uncertainties
(> 105) are commonly avoided in the HCs derived with the QSAR-ICE method compared to the use of three
measurements with statistical uncertainties up to 1012. We demonstrated the applicability of our QSAR-ICE
approach by deriving HC50s for 1,223 out of the 3,077 organic chemicals of the USEtox database. We conclude
that our QSAR-ICE method can be used to determine HCs without the need for additional in vivo testing to help
prioritise which chemicals with no or few ecotoxicity data require more thorough assessment.

1. Introduction

The number of chemicals present on the market grows continuously.
The Toxic Substances Control Act (TSCA) inventory of the United States
has, for example, seen an increase in the listed substances from 62,000
in 1982 to around 85,000 in 2019 (U. S. Environmental Protection
Agency, 2019). Many of these chemicals ultimately enter the environ-
ment, be it during manufacturing, use, or disposal. It is thus essential to
know their potential effect on the receiving ecosystem.

For freshwater ecosystems, the potential effect of a chemical is ex-
pressed with a hazardous concentration (HC), i.e., the chemical con-
centration affecting a certain percentage of freshwater species. HCs may
be derived from species sensitivity distributions (SSDs), a statistical
description of the variation in sensitivity of multiple species to a che-
mical (Posthuma et al., 2002). SSDs rely primarily on species-specific

experiments which measure the relationship between chemical ex-
posure concentrations and effects. Experimentally-derived ecotoxicity
data for a chemical are often limited to a small number of species, ty-
pically three, covering different species groups, namely fish, daphnia,
and algae (ECHA, 2008). This number of species is considered in-
sufficient to adequately represent the ecosystem exposed to the che-
mical. In fact, Fantke et al. (2018) summarised in their review that the
minimum number of ecotoxicity data necessary for a reliable prediction
of a hazardous concentration lies between 5 and 10 depending on the
legislation considered (Nugegoda and Kibria, 2013). In addition, sev-
eral other authors have shown that the uncertainty of HCs derived from
only three ecotoxicity values spans several orders of magnitude
(Douziech et al., 2019; Golsteijn et al., 2012; Van Zelm et al., 2007).
However, increasing the number of available measured ecotoxicity data
is not straightforward because such experiments are time-consuming

https://doi.org/10.1016/j.envint.2019.105334
Received 13 August 2019; Received in revised form 13 November 2019; Accepted 13 November 2019

⁎ Corresponding author.
E-mail address: m.douziech@fnwi.ru.nl (M. Douziech).

Environment International 134 (2020) 105334

Available online 21 November 2019
0160-4120/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2019.105334
https://doi.org/10.1016/j.envint.2019.105334
mailto:m.douziech@fnwi.ru.nl
https://doi.org/10.1016/j.envint.2019.105334
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2019.105334&domain=pdf


and expensive as well as ethically controversial as they involve animal
testing (Hartung, 2009). In addition, increased animal testing is against
the “reduce, refine, or replace” principles of the USA and the EU, the
goals of some companies, and the views of various stakeholder groups
and consumers (European Commission, 2018; US EPA, 2018). One al-
ternative to more testing is the use of in silico approaches, which esti-
mate ecotoxicity values from chemical properties or species char-
acteristics. Quantitative structure activity relationship models (QSARs),
for example, relate physico-chemical properties to the species-specific
toxicity of chemicals (e.g., Gramatica et al. (2016)). The majority of
QSARs estimate acute ecotoxicity values for fish, daphnia, and algae,
since most of the experimental data are available for these species and
endpoints, as explained in e.g., Aurisano et al. (2019); May et al.
(2016). Additional ecotoxicity data are therefore still required to derive
reliable HCs. They can, for example, be generated with the Interspecies
Correlation Estimation (ICE) models, which predict the ecotoxicity
value of a chemical for an untested species based on the ecotoxicity
value of that same chemical for a tested species (Raimondo et al.,
2015).

Amongst others, Golsteijn et al. (2012), Awkerman et al. (2008,
2009), Dyer et al. (2008), Bejarano et al. (2017); Gredelj et al. (2018)
combined ICE models with experimentally derived ecotoxicity values to
estimate HCs. The derived HCs were comparable to those based on
measured ecotoxicity values only, and their reliability increased. Barron
et al. (2012) further derived HCs for 10 chemicals by combining QSAR
and ICE estimates. The HCs did not match experimentally derived HCs
well and Barron et al. (2012) stressed the need for additional research
to reduce the uncertainty of HCs based on in silico approaches only. An
extension of this work to more chemicals while propagating the un-
certainties of the in silico methods used would therefore be a valuable
addition. Similarly, He et al. (2017) recently mentioned the possibility
to combine QSARs and ICE estimates to derive water quality criteria,
but without addressing the representativeness and uncertainty of the
results. In this paper, we take the analysis one step further by devel-
oping a methodology, which combines two in silico methods and as-
sessing, for a large set of chemicals, the added value of this approach.
The aim was to systematically assess the reliability and representa-
tiveness of hazardous concentrations for acute toxicity estimated with
in silico methods applicable to a large set of organic chemicals.

Our method combines QSAR-derived ecotoxicity values for
Pimephales promelas, Daphnia magna, and Pseudokirchneriella subcapitata
with ICE models to estimate HCs for which 5% and 50% of the species
included are exposed above their acute EC50, i.e HC5EC50 and
HC50EC50. The EC50 describes the concentration causing effects in 50%
of the population and is a common endpoint of in silico methods.
Combining QSAR and ICE-based EC50s increases the number of species
available for deriving the HCs and in turn ensures a better re-
presentation of the ecosystem (Nugegoda and Kibria, 2013). Spatial
differences between species assemblages were not considered. We chose
to estimate HC5EC50 and HC50EC50 as they are commonly used in
comparative assessments of products as reviewed by, for example,
Fantke et al. (2018) who showed how ecotoxicity is characterized
across life cycle assessment studies, one of the frameworks available for
such comparative assessments. Further, numerous studies exist that
quantify the ecotoxicity of products for comparative assessments using
acute HCs, sometimes extrapolated to chronic (Pennington et al., 2004;
Rico et al., 2011; Rosenbaum et al., 2008; Saouter et al., 2017a, 2017b;
Van de Meent and Huijbregts, 2005). Another motivation for using
HC5EC50 and HC50EC50 is that both values can be used in the ecotox-
icological screening of chemicals for which little or no experimental
ecotoxicological data are available.

We compare our results with HC5EC50 and HC50EC50 of 51 chemicals
with at least ten measured acute EC50s and within the applicability
domains of the chosen QSARs, by quantifying two types of uncertainty:
the statistical uncertainty and the bias. The statistical uncertainty of the
HC5EC50 and HC50EC50 derived via our approach is a combination of the

QSAR and ICE uncertainty as well as the sampling uncertainty in the
HCs. This sampling uncertainty directly relates to the number of data-
points available as well as the standard deviation between them. The
uncertainty of the HCs derived from measured values is influenced by
the sampling uncertainty only. The bias assesses the systematic differ-
ence between the estimated HCs using in silico methods and the HCs
derived from all available measured acute ecotoxicity data.

2. Methods

We begin by describing the QSAR-ICE method, which combines in
silico approaches to estimate hazardous concentrations for which 5%
and 50% of the species are exposed above their acute EC50, i.e.,
HC5EC50 and HC50EC50 (Section 2.1). We then define the statistical
uncertainty of the derived HC5EC50 and HC50EC50 (Section 2.2). Finally,
we explain how the QSAR-ICE method was applied and how its per-
formance was quantified (Section 2.3). Our analysis focuses on the
performance of the QSAR-ICE method over all chemicals included and
does not aim at describing the differences between the single chemicals.

2.1. QSAR-ICE method

2.1.1. Hazardous concentrations
Following a lognormal species sensitivity distribution, HC related to

p% of the species affected (HCp), in our case 5% and 50%, can be de-
rived as shown in Eq. (1) (Aldenberg and Jaworska, 2000). A lognormal
distribution was chosen as it is the most widely used type of SSD and
the statistical uncertainty of this distribution is well studied (Aldenberg
and Jaworska, 2000; Posthuma et al., 2002; Sarfraz Iqbal et al., 2013).

= −logHCp x k s¯ ·p N, (1)

where x̄ is the average of the log-transformed EC50-values, kp,N is the
extrapolation factor for p% of the species affected for sample size N, and
s is the sample standard deviation of the log-transformed EC50 values.

We chose to derive HCs from acute EC50 values, rather than from
chronic No Observed Effect Concentrations (NOECs), because of the
debate around the usefulness of NOEC values (Isnard et al., 2001;
Landis and Chapman, 2011), also valid for comparative assessments
(Fantke et al., 2018). Moreover, EC50s are typical endpoints of the
available in silico methods (Netzeva et al., 2007), and especially of the
ICE equations our approach is based on. Finally, the limited number of
other measured chronic endpoints was another motivation for the use
of acute EC50 values, e.g., 7369 acute SSDs compared to 1,051 chronic
SSDs derived from measured data collated in the database of Posthuma
et al. (2019).

2.1.2. Quantitative Structure-Activity relationships (QSAR)
A literature review was conducted to identify QSARs predicting

EC50 (effect concentration) values for a specific fish, daphnia, and
algae species. Lethal concentration (LC50) were hereby also considered
as a particular type of EC50. Chosen QSARs had to be publicly available
and give a measure of the uncertainty of the estimates or provide en-
ough information to quantify it (see Supplementary Information SI, S2
for more details on the uncertainty quantification). If multiple QSARs
were available for the same species, QSARs were selected based on their
applicability domain (AD), predictive performance, and size of their
training data set. These criteria align with the current European
guidelines according to which QSARs may be used instead of testing as
long as the QSARs are validated scientifically and reliable doc-
umentation on the method is provided, the substance falls within the
AD of the QSAR, and the results are adequate for classification and
labelling (Netzeva et al., 2007). Our aim was to have a method ap-
plicable to the largest set of chemicals so that QSARs developed for
specific modes of action (e.g., (Vighi et al., 2009)) were not considered.
This likely influences the remaining uncertainty in the predicted effect
concentrations, as explained in the discussion section.
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The QSARs for P. promelas and D. magna available on the VEGA
platform (v. 1.1.4) fulfilled these criteria (IRFMN, 2018). In addition,
both QSARs were validated in an independent study and showed
comparable performances to the other models assessed (Cappelli et al.,
2015; Golbamaki et al., 2014). The software available for download on
the VEGA platform estimates the ecotoxicity for P. promelas and D.
magna from the SMILES notation using chemo-informatic predictors
derived automatically by the software. In addition, the VEGA QSARs
also provide a global applicability domain index (ADI) per estimated
ecotoxicity value which is calculated by grouping several indicators
taking a particular issue of the applicability domain into account
(IRFMN, 2017a, 2017b). We considered a chemical as within the
QSAR’s applicability domain when the ADI was above 0.7 (Cappelli
et al., 2015; Golbamaki et al., 2014; IRFMN, 2017a, 2017b).

The lack of a consistent dataset with experimental algal test results
and the variability of these results make it difficult to derive globally-
applicable QSARs for algal toxicity (Fu et al., 2015; Netzeva et al.,
2007; Villain et al., 2014). The available models are either proprietary
themselves or based on predictors requiring proprietary software
(Bakire et al., 2018; Singh et al., 2014). We therefore chose to use two
QSARs: one developed for pharmaceuticals and one for personal care
products (Gramatica et al., 2016; Sangion and Gramatica, 2016). These
QSARs estimate the ecotoxicity to P. subcapitata based on 2D che-
moinformatic descriptors estimated with the PaDEL software (Yap,
2011). These QSARs were not applicable for a large set of chemicals but
fulfilled all the other criteria. We used the QSARINS software v2.2.2 to
choose the chemicals entirely within the AD of the QSAR (Gramatica
et al., 2014, 2013). Whenever chemicals were within the AD of both
QSARs, the QSAR derived for pharmaceuticals was preferred given the
larger training set it was developed with.

2.1.3. Interspecies correlation estimation (ICE)
ICE models are available for aquatic species, including algae, and

terrestrial birds and mammals. ICE models estimate the acute toxicity of
a chemical to a species from the known toxicity of the chemical to
another species (Raimondo et al., 2015). In our case, the QSAR-based
EC50 values derived for P. promelas, D. magna, and P. subcapitata were
used as input in the corresponding ICE models (Eq. (2))

= +log EC a b log EC( 50 ) · ( 50 )predictedspecies surrogatespecies (2)

We used all existing ICE equations per surrogate toxicity data. With
the logical exception of those for D. magna and P. promelas, we kept all
the ICE estimates, as Bejarano et al. (2017) did not show any statisti-
cally significant difference between SSDs derived from all ICE equations
or only ICE estimates meeting the criteria associated with greater pre-
dictive power. However, when multiple estimates of EC50 values were
available for the same species, which was the case for 38 chemicals, we
kept the optimal model according to the criteria described in Raimondo
et al. (2015) (SI, S1). From the ICE models available from Raimondo
et al. (2015), we were therefore left with 10 ICE models based on P.
subcapitata, 27 based on D. magna, and 60 based on P. promelas.

2.2. Statistical uncertainty

The statistical uncertainty in the HC50EC50 and HC5EC50 is caused by
uncertainty in the QSAR and ICE models as well as sampling un-
certainty due to limited number of species available. We ran a Monte
Carlo simulation with 10,000 iterations to propagate these three un-
certainty sources into an uncertainty estimate for the HCs. This pro-
cedure comprises three consecutive steps:

1. EC50s were estimated from the available QSARs, including their
associated uncertainty. This uncertainty was quantified following
Mendenhall et al. (2009) (SI, S2), using the details of the QSAR
training data sets and the reported mean squared errors (Gramatica
et al., 2016; IRFMN, 2017a, 2017b; Sangion and Gramatica, 2016).

Per chemical, each Monte Carlo iteration resulted in three possible
QSAR-based EC50 values (i.e. one for D. magna, one for P. promelas
and one for P. subcapitata), drawn from their respective uncertainty
distributions.

2. The set of possible QSAR-based EC50s was used as input in the ICE
equations to estimate ICE-based EC50s for additional species. The
uncertainty associated with these ICE-based EC50s was again de-
termined following Mendenhall et al. (2009) (SI, S2) and assuming
full correlation between the ICE equations from the same surrogate
species. In fact, the available training data sets of the ICE models for
D. magna and P. promelas showed that, in both cases, around 70% of
the ecotoxicity data of a surrogate species for a given chemical was
used to derive at least two ICE equations (Raimondo et al., 2016).
The conservative assumption of full correlation between ICE esti-
mates of the same surrogate species was therefore deemed appro-
priate. As such, each Monte Carlo iteration yielded a set of possible
species-specific EC50s, drawn either from the uncertainty distribu-
tion of the three QSARs, or from the uncertainty distribution of the
ICE equations used.

3. Chemical-specific HC50 and HC5 were then computed per iteration,
based on their respective sets of possible EC50s (QSAR- and ICE-
based). The sampling uncertainty was added to these HCs in a final
step, so that one possible HC50 and one possible HC5 were computed
per iteration. This sampling uncertainty is reflected by the extra-
polation factor kp,N from a (non-)central t-distribution, as shown by
Aldenberg and Jaworska (2000). This extrapolation factor accounts
for the uncertainty due to the limited sample size.

Following these steps, the variation in the final sets of 10,000 pos-
sible HC50EC50 and 10,000 possible HC5EC50 values reflects the un-
certainty in the QSAR and ICE models as well as sampling uncertainty
due to the limited number of species available. For the HCs derived
from measured acute ecotoxicity values we only included the third step.
As such, their resulting output distribution only reflects the sampling
uncertainty and not uncertainty due to, e.g., experimental setup or
measurement error. Further details on the statistical uncertainty in the
QSAR and ICE estimates and the sampling uncertainty are given in the
SI, S2.

2.3. Application of the QSAR-ICE method

2.3.1. Chemical selection
Organic chemicals with measured acute EC50 data available for at

least 10 species covering 8 taxonomic groups were selected from the
ecotoxicity database of Posthuma et al. (2019). We focused our analysis
on organic chemicals and acute EC50 data because our aim was to use
available in silico modelling techniques, which in their vast majority,
estimate acute ecotoxicity values and are not able to estimate the
ecotoxicity of metals (Netzeva et al., 2007). Furthermore, the data re-
quirement of having ecotoxicity values from at least 10 different species
covering 8 taxonomic groups was motivated by the current REACH
guidelines to ensure a representative HC estimate (ECHA, 2008). Fi-
nally, the database collated by Posthuma et al. (2019) was chosen as
starting point as it represents one of the most comprehensive open
source ecotoxicity databases available to date with acute ecotoxicity
values reported for specific species for 3,445 chemicals. From this data
set, sufficient ecotoxicity data were available for 445 chemicals, which
reflects the data limitations observed in other studies e.g., (Muller et al.,
2017; Saouter et al., 2019a, 2019b). Further, acute QSAR-based EC50s
could only be derived for 51 chemicals because of the limited applic-
ability domains of the three QSARs used. More detailed explanation of
the selection procedure and lists of the chemicals in- and outside the
applicability domain of the QSARs are given in the SI, S3-5.

2.3.2. Scenarios
Prior to deriving the HCs, the suitability of using lognormal SSDs
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was statistically tested and deemed reasonable according to a
Kolmogorov-Smirnov test conducted on the available measured eco-
toxicity values per chemical (SI, S5). Hazardous concentrations were
derived (1) from all measured acute ecotoxicity values (AllMeasured,
NEC50 = 10–265), (2) from three measured acute ecotoxicity values
(3Measured, NEC50 = 3), (3) from three QSAR-based ecotoxicity values
for D. magna, P. promelas, and P. subcapitata (3QSAR, NEC50 = 3), (4)
from three QSAR-based ecotoxicity values and all available ICE equa-
tions (3QSAR-ICE, NEC50 = 100), (5) from two QSAR-based ecotoxicity
values and all available ICE equations (A-F-QSAR-ICE; A-D-QSAR-ICE,
F-D-QSAR-ICE, NEC50 = 73, 37, 87 respectively), and (6) from one
QSAR-based ecotoxicity value and the available ICE equations (A-
QSAR-ICE, F-QSAR-ICE, D-QSAR-ICE, NEC50 = 11, 61, 28 respectively)
(Table 1). For the “3Measured” scenario, experimental acute EC50s for
a fish, daphnia, and algae species were preferably used. If these were
not available, data from species from other taxonomic classes were used
instead (11 chemicals out of the 51, SI, S6).

Scenario “3Measured” reflects the number of measured ecotoxicity
data typically available per chemical (Posthuma et al., 2019; Saouter
et al., 2019b) and considered representative for current comparative
risk assessments and life cycle impact assessment practice, while sce-
nario “3QSAR” displays what can be achieved when HCs are estimated.
The other scenarios were defined to investigate the added value of
combining QSARs and ICE EC50s.

2.3.3. Indicators for bias and statistical uncertainty
Both bias and statistical uncertainty were quantified to assess the

performance of the QSAR-ICE method. The bias compares the HC es-
timated from all available experimental ecotoxicity data
(HCpEC AllMeasured50, ) to the HC derived per scenario (HCpEC Scenario50, )
without considering any source of statistical uncertainty (Eq. (3)).

=Bias
HCp

HCpScenario
EC AllMeasured

EC Scenario

50,

50, (3)

A bias of 1 indicates perfect match between the HCpEC AllMeasured50,
and the hazardous concentration derived for a scenario, while a bias
below 1 means an overestimation of the HCpEC AllMeasured50, and a bias
above 1 an underestimation.

The statistical uncertainty of the hazardous concentrations was
defined as shown in Eq. (4).

=Statistical uncertainty
P
P
95
5Scenario

HCp

HCp

EC

EC

50

50 (4)

where P95 represents the 95th percentile, P5 the 5th percentile of the
HC50EC50 or HC5EC50 value derived for a given chemical and scenario.

2.3.4. Application to more chemicals
One aim of our approach was to develop a method applicable to a

large number of chemicals. Based on the model evaluation for the 51
chemicals with 3 QSARs and sufficient experimental data available, we

investigated ways to extend the applicability of our approach to more
chemicals. In a first step, we extended our model evaluation to more
chemicals by adapting the 3QSAR-ICE method, according to the find-
ings for the 51 chemicals, and re-running it on the chemicals included
in the database provided by Posthuma et al. (2019). In a second step,
we applied our method to derive HC50EC50 for the chemicals included
in the USEtox database to show the applicability potential of our ap-
proach. USEtox is a consensus model characterizing the human and
ecotoxicological impacts of chemicals and is routinely applied in life
cycle assessments (Fantke et al., 2018; Rosenbaum et al., 2008). We
shall demonstrate how our approach can increase the confidence in the
calculated HCs, also when limited or no measured ecotoxicity data are
available. In fact, 27% of the 3,077 chemicals available in the organic’s
database of USEtox lack an ecotoxicological effect factor because of a
complete lack of experimental data. Further, 44% of the ecotox-
icological effect factors rely on ecotoxicity values for less than 4 species.
From the 3,077 chemicals listed, 27 were stereoisomeric arrangements
of another molecule, one was made of distinct sub-fragments. Further,
277 chemicals were either salts or contained elements other than
carbon, hydrogen, oxygen, nitrogen, fluorine, chlorine, bromine, io-
dine, sulphur, phosphorus, silicon, arsenic, mercury, and tin. Our ap-
proach could therefore potentially be applied to a set of 2,772 chemi-
cals.

3. Results

3.1. Bias of the hazardous concentration

In a first step, we assessed the representativeness of the HCs esti-
mated with different QSAR and ICE combinations by comparing them
to the HC derived from experimental data. Fig. 1 shows the calculated
bias for the different scenarios, i.e: 3Measured, 3QSAR, and the dif-
ferent combinations of QSARs and ICE. The number of ecotoxicity va-
lues available per chemical therefore varies (NEC50, Table 1). The range
in the bias displayed in Fig. 1 reflects the variation in the single HCs
bias computed, per chemical, for the 51 different chemicals included in
our analysis.

The HC50EC50 derived from three QSAR-based EC50s (scenario
3QSAR), as well as those derived using a combination of three QSAR-
based and all ICE EC50s (scenario 3QSAR-ICE), have similar median
bias as the HC50EC50 derived from three measured EC50s (scenario
3Measured). The 3QSAR and 3QSAR-ICE scenarios result in HC50EC50
with median bias of 0.7 (90% range [0.1–4.8]) and 1.2 (90% range
[0.2–6.2]), respectively. These are close to the median bias of 1.2 (90%
range of 0.3–5.4) associated with the HC50EC50 derived from three
measured values. Fig. 1 also shows small median bias and narrow 90%
ranges for the scenarios combining at least two QSARs with ICE, e.g.,
for F-D-QSAR-ICE the median bias is 1.4 with 90% range [0.2–7.3]. In
comparison, the 90% range of the HC50EC50 bias combining only one
QSAR-based EC50 with ICE is at least ten times larger than when two
QSAR-based EC50s are used. In summary, combining at least two

Table 1
Combinations of EC50 values used to derive the hazardous concentrations. Number of EC50 shows the number of EC50s available per scenario to derive the
hazardous concentrations. A stands for algae, F for fish, and D for daphnia.

Scenario Algae Fish Daphnia Other Number of EC50

(1) AllMeasured All available measured acute EC50 values 10–265
(2) 3Measured measured measured measured none 3
(3) 3QSAR QSAR QSAR QSAR none 3
(4) 3QSAR-ICE QSAR QSAR QSAR all ICE estimates 100
(5) A-F-QSAR-ICE QSAR QSAR none all ICE estimates 73
(5) A-D-QSAR-ICE QSAR none QSAR all ICE estimates 37
(5) F-D-QSAR-ICE none QSAR QSAR all ICE estimates 87
(6) A-QSAR-ICE QSAR none none all ICE estimates 11
(6) F-QSAR-ICE none QSAR none all ICE estimates 61
(6) D-QSAR-ICE none none QSAR all ICE estimates 28
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QSAR- and ICE-based EC50s leads to HC50EC50 values as representative
as HC50EC50 values based on three measured EC50s only. The median
bias in the HC5EC50 derived from three QSAR-based and all ICE EC50s
(2.3) is larger than when only three QSAR-based (0.3) or experimental
EC50s (1.2) are used. At the same time, the 90% range of the HC5EC50
bias derived from three QSAR-based EC50s [0.02–32.1] is ten times
larger than when three QSAR-based and all ICE EC50s are used
[0.03–26.5]. The median bias and 90% range of the HC5EC50 derived
from the scenarios combining two QSARs with ICE are similar to the
median bias and 90% range of the HC5EC50 based on all three QSARs-
ICE (Fig. 1). On the contrary, using only one QSAR-based EC50 and the
corresponding ICE can lead to four times larger median bias and ten
times larger 90% range compared to 3QSAR-ICE. A final observation
from Fig. 1 is that the median bias and 90% range of the HC5EC50 are
larger than the ones of the HC50EC50 for all QSAR-ICE scenarios.

In general, the bias was not dependent on the number of ecotoxicity
values available. There was also no trend between the bias and the
interspecies variability (i.e., the standard deviation of the ecotoxicity
values) (SI, S8).

3.2. Statistical uncertainty of the hazardous concentrations

In a second step, we compared the statistical uncertainty of the HCs
derived per chemical for the different scenarios (Fig. 2).

The median statistical uncertainty of the HC50EC50 derived from
three QSAR-based and the corresponding ICE EC50s (3QSAR-ICE) is one
order of magnitude lower than when only three QSAR-based EC50s are

used (3QSAR) and the 90% range of the statistical uncertainty is ap-
proximately 1000 times smaller. The scenarios combining two QSAR-
based and the corresponding ICE EC50s (A-F-QSAR ICE, A-D-QSAR ICE,
F-D-QSAR ICE) have similar median statistical uncertainties and 90%
ranges in the HC50EC50 to the 3QSAR-ICE scenario (Fig. 2A). On the
contrary, the HC50EC50 derived from only one QSAR and the corre-
sponding ICE EC50s (A-QSAR ICE, F-QSAR ICE, D-QSAR ICE) have one
to two orders of magnitude larger median statistical uncertainties
compared to the 3QSAR-ICE scenario. The median statistical un-
certainty of the 3QSAR-ICE scenario is larger than when measured
EC50s are available. However, in 25% of the cases, the 3QSAR-ICE
scenario leads to less uncertain HC50EC50 compared to using three
measured ecotoxicity values.

Whether the HC5EC50 is derived from one, two, or three QSAR-based
EC50s, combined with the corresponding ICE-based EC50s, makes little
difference for the resulting median statistical uncertainties and 90%
ranges. Indeed, the median uncertainty using three QSAR-based EC50s
(3QSAR-ICE scenario) is 3.4·103 with a 90% range of 1.3·103-1.0·105,
while the median uncertainty using only the QSAR-based EC50 for fish
(F-QSAR-ICE scenario) is 6.6·103 with a 90% range of 4.2·103-2.9·105.
These values are smaller than the statistical uncertainty of the HC5EC50
when derived from three EC50s (either measured or QSAR-based), and
corresponding ICE EC50s are not considered. Based on three measured
EC50s only, the median statistical uncertainty is 9.0·103 with a 90%
range of 10.2–1.6·1012; based on three QSAR-based EC50s only, this
was 5.6·107 with a 90% range of 6.1·106-8.0·1014. Finally, Fig. 2 shows
a larger statistical uncertainty of the HC5EC50 compared to the

Fig. 1. Boxplots of the bias HCpEC50,AllMeasured/HCpEC50,Scenario of the hazardous concentration related to 50% (A) and 5% (B) of the populations exposed above the
concentration causing acute effects in 50% of the species’ population (EC50) derived per chemical for the different scenarios. The boxplots show the 25th, 50th, and
75th percentiles and the whiskers represent the 5th and 95th percentiles. The x-axis lists the names of the scenarios: A stands for algae, F for fish, and D for daphnia.
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HC50EC50.
In a last step, the influence of accounting for the QSAR uncertainty

when describing the statistical uncertainty of the estimated HCs was
quantified (Fig. 3) and the implications of the correlation in ICE esti-
mates assessed (SI, S7).

The influence of the QSAR uncertainty on the statistical uncertainty
of the HC50EC50 is small compared to the uncertainty in the ICE esti-
mates. In fact, for all scenarios combining QSAR and ICE estimates, the
statistical uncertainty increases on average by 8.5 when the QSAR
uncertainty is included (Fig. 3). Accounting for the QSAR uncertainty
influences the statistical uncertainty of the HC5EC50 more than the
HC50EC50 with an average increase in statistical uncertainty of 10.7.
This relates to the typically larger uncertainty in the 5th percentile of a
distribution compared to the median.

Applying correlated ICE estimates for the same surrogate species led
to a one order of magnitude larger statistical uncertainty of the HCs for
all scenarios, on average, except for two of the HC5EC50. Combination of
either P. subcapitata or D. magna QSAR EC50s with ICE to estimate the
HC5EC50, assuming correlated ICE for the same surrogate species led to
similar median statistical uncertainties (SI, S7).

Finally, we found that the statistical uncertainty of the HC50EC50
was significantly correlated to the inter-species variation (p < 0.05)
with an increased statistical uncertainty with increased interspecies
variability (SI, S9). Further, an increase in the number of ecotoxicity
values tends to reduce the uncertainty of the HC50EC50 values. Similar
relationships were found for the uncertainty in the HC5EC50 (SI, S9).

3.3. Application to more chemicals

Our results showed that combining QSAR- and ICE-based EC50s led
to HCs with similar bias and uncertainties irrespective of whether two

or three QSARs were used as starting points. We used this outcome to
investigate for how many additional chemicals HCs can be estimated if
at least two QSARs and the corresponding ICE estimates are used. We
called this scenario QSAR-ICE.

3.3.1. Database of Posthuma et al. (2019)
From the set of 445 chemicals extracted from (Posthuma et al.,

2019)’s database, we derived HCs for 202 of them by basing the HCs on
a combination of at least two QSARs and the corresponding ICE. Figs. 4
and 5 show a comparison of the bias and statistical uncertainty com-
puted for the HCs derived for the 202 chemicals from the QSAR-ICE
scenario as well as for the 3 Measured and All Measured scenarios. For
sake of completeness, we also include a comparison to the 3QSAR-ICE
scenario, which was however applied only to 51 chemicals.

3.3.2. USEtox’s organics database
After consideration of the applicability domains of all three QSARs

and estimating the HC50EC50 from a combination of at least two QSARs
and corresponding ICE-based EC50s, it was possible to estimate the
HC50EC50 for 1,223 chemicals out of the 3,077 organic chemicals of the
USEtox database. The resulting log HC50EC50 are shown in Fig. 6 per
chemical together with the 25th and 75th percentiles. Numerical values
can be found in the SI, S10.

4. Discussion

Deriving hazardous concentrations from a set of estimated eco-
toxicity values potentially introduces bias and uncertainty in these
concentrations. The aim of this work was to systematically assess the
representativeness (e.g., small bias) and reliability (e.g., small statistical
uncertainty) of HCs estimated from a combination of QSAR and ICE

Fig. 2. Boxplots of the statistical uncertainty P95HCp/P5HCp of the hazardous concentration related to 50% (A) and 5% (B) of the populations exposed above the
concentration causing acute effects in 50% of the species’ population (EC50) derived per chemical for the different scenarios. The boxplots show the 25th, 50th, and
75th percentiles and the whiskers represent the 5th and 95th percentiles. The x-axis lists the names of the scenarios: A stands for algae, F for fish, and D for daphnia.
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models. The following paragraphs discuss the representativeness, re-
liability, and potential applications and limitations of our method.

4.1. Representativeness of the hazardous concentrations

Hazardous concentrations derived by combining at least two QSARs
and their corresponding ICE equations were comparable to those de-
rived from measured ecotoxicity data for at least 10 species covering 8

Fig. 3. Comparison of the boxplots of the statistical uncertainty computed per chemical while taking into account (1) the QSAR uncertainty and the ICE uncertainty
(“With QSAR uncertainty”, blue) and (2) only the ICE uncertainty (“No QSAR uncertainty”, green) for the hazardous concentration related to 50% (A) and 5% (B) of
the populations exposed above the concentration causing acute effects in 50% of the species’ population (EC50) for the different scenarios analysed. The x-axis lists
the names of the scenarios: A stands for algae, F for fish, and D for daphnia.

Fig. 4. Boxplots of the bias HCpEC50,AllMeasured/HCpEC50,Scenario of the hazardous concentration related to 50% (A) and 5% (B) of the populations exposed above the
concentration causing acute effects in 50% of the species’ population (EC50) derived per chemical for the different scenarios. The boxplots show the 25th, 50th, and
75th percentiles and the whiskers represent the 5th and 95th percentiles. The x-axis lists the names of the scenarios.
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taxonomic groups. Further, the HCs derived from at least two QSAR-
based and corresponding ICE EC50s had a smaller or comparable bias
compared to using three QSAR-based EC50s. Overall, the representa-
tiveness was smaller for the HC5EC50 compared to the HC50EC50, thus
potentially limiting the applicability of our QSAR-ICE approach to es-
timate HC5EC50. A potential explanation lies in the different species
included in the calculation of the HC from QSAR-ICE and from mea-
sured ecotoxicity data. For example, 11 out of the 51 chemicals did not
have measured ecotoxicity data for an algae species. Still, no clear
difference in the estimated bias for the HC5EC50 for these chemicals was
observed (SI, S8). Barron et al. (2012) also highlighted that the bias
between HCs based on in silico or experimental EC50s was smaller when
similar species were included in both sets. A more thorough analysis of
the species combination per chemical would, however, be necessary to
better understand the drivers of these differences, but this was outside
the scope of this paper. Another explanation could relate to the fact that
the bias in the HC5EC50 vary over a larger range than the bias of the

HC50EC50, so that the median bias of the HC5EC50 is likely to deviate
more from the benchmark than the median bias of the HC50EC50. Our
analysis also showed that using only the P. subcapitata QSAR EC50
combined with the available ICE equations resulted in lower HC5EC50,
thus more protective hazardous concentrations. One explanation could
be that the ICE equations related to P. subcapitata estimate EC50 only
for other algae species and no other taxonomic group (Raimondo et al.,
2015). Weyers et al. (2000) for example showed that, for around 2500
chemicals, the algae growth inhibition test was the most sensitive in
43.5% of the cases. We should also stress that we assumed that HCs
based on at least 10 ecotoxicity data are a good representation of rea-
lity. We based this assumption on current legislation and simulation
exercises showing a stabilisation of the derived HCs around this number
(ECHA, 2008; Wheeler et al., 2002). We believe that given the current
state of knowledge and data availability, this is the best approximation
of the real ecotoxicological impact one can derive.

Bejarano et al. (2017) reported that in 58% of the cases, the ICE-
supplemented SSDs based on experimental EC50s produced HC5s
within a three-fold difference to the estimates from SSDs based on
measured data only. With our approach, 41% of the QSAR-ICE esti-
mated HC5EC50 were within a three-fold difference to the measured
HC5EC50, thus had a bias between 0.3 and 3. Given the increased re-
liability observed in the study of Bejarano et al. (2017) and the con-
clusions from Barron et al. (2012), combining experimental values with
ICE estimates might lead to more representative hazardous concentra-
tions. The findings of Dyer et al. (2006), who reported that the ICE-
based predicted HC5s of five different chemicals were generally within
a factor 10 of the HC5s derived from experimental ecotoxicity values,
are closer to ours. Further, in accordance to Dyer et al. (2006), we
showed that the bias in the hazardous concentrations did not depend on
the standard deviation of the ecotoxicity values used nor on the number
of ecotoxicity values (SI, S8). Overall, our work and the findings of
previous research highlight that complementing SSDs with ICE-based
EC50s leads to representative HCs estimates in the majority of the cases.
Future research exploring e.g. the use of traits in the ecotoxicity pre-
dictions for different species might improve the accuracy of ICE equa-
tions and therefore the representativeness of our approach (van den
Berg et al., 2019).

4.2. Reliability of the hazardous concentrations

Hazardous concentrations estimated by combining QSAR and ICE-
derived EC50s are influenced by uncertainty in the QSAR and the ICE
estimates, and by sampling uncertainty resulting from the limited
number of species (i.e., available EC50s). Because we assumed ICE

Fig. 5. Boxplots of the statistical uncertainty P95HCp/P5HCp of the hazardous concentration related to 50% (A) and 5% (B) of the populations exposed above the
concentration causing acute effects in 50% of the species’ population (EC50) derived per chemical for the different scenarios. The boxplots show the 25th, 50th, and
75th percentiles and the whiskers represent the 5th and 95th percentiles. The x-axis lists the names of the scenarios.

Fig. 6. log HC50EC50 derived using our QSAR-ICE approach for the chemicals
included in the organic’s database of USEtox. The red line represents the
average of the estimated EC50 values and the black lines the 75th and 25th
percentiles of the Monte Carlo simulation.
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estimates for the same surrogate species to be correlated, the un-
certainty in the HC50EC50 estimated from only one QSAR and its cor-
responding ICE equations is relatively large, e.g., larger than when only
three ecotoxicity values are used. In this case, the increase of un-
certainty in the HC50EC50 resulting from the ICE models is too large to
be compensated by the reduced sampling uncertainty. This is different
when at least two QSAR EC50s are combined with ICE models. The
median statistical uncertainty of the HC50EC50 is then comparable to
the values of the three QSAR scenario (A-F-QSAR-ICE, A-D-QSAR-ICE,
F-D-QSAR-ICE vs 3QSAR; Fig. 2).

Overall, the uncertainty in the ICE estimates contributed most to the
uncertainty of the HCs derived with our approach. Because of the im-
portance of the ICE uncertainty and our assumption of correlated ICE
estimates for the same surrogate species, the statistical uncertainty of
both hazardous concentrations was similar. In fact, assuming correlated
ICE estimates led to small sampling uncertainties (< 1.2) especially
when only one QSAR EC50 was combined with ICE. The small sampling
uncertainty combined with the large number of available EC50s
(minimum of 11) led to similar statistical uncertainties of the HC5EC50
compared to the HC50EC50. The uncertainty in the ICE estimates is
hereby likely to be driven by the assumption of a fixed relationship
between two species exposed to a chemical, irrespective of the chemical
considered.

The observed spread in the statistical uncertainty is similar to the
findings of Golsteijn et al. (2012) for hazardous doses (HD50) derived
from three ecotoxicity values only. HD50 is the dose of a chemical toxic
to at least 50% of the individuals in 50% of all warm-blooded species
considered, as opposed to the concentration (HC50) relevant for
freshwater species. They reported statistical uncertainties of HD50
ranging from 1 to 1010 when three ecotoxicity values are available,
while 90% of the statistical uncertainties of the HC50EC50 from ICE
were between 103 and 105. On the other hand, Golsteijn et al. (2012)
found a statistical uncertainty in the HD50 that was smaller than 10
when more than 10 ecotoxicity values were measured, while in our case
this is between two and three orders of magnitude. This difference is the
result of the uncertainty in the QSAR estimates, not included in
Golsteijn et al. (2012), who combined ICE estimates with experimen-
tally derived ecotoxicity values (Fig. 3). The larger spread and median
uncertainties observed for the HC5EC50 compared to the HC50EC50 is
related to the extrapolation factor kp,N in Eq. (1) which is more un-
certain for the HC5EC50 compared to the HC50EC50 for the same N
(Fantke et al., 2018; Saouter et al., 2017a).

Our results also suggested an increase in the uncertainty of the
hazardous concentrations with increasing interspecies variability,
especially when more than two QSARs are combined with ICE. This
reflects the increased uncertainty of the interspecies variability re-
sulting from the use of uncertain EC50 values.

Finally, statistical uncertainty can be kept low by a conscious spe-
cies selection for the QSAR development or application, to optimally
leverage the number of ICE equations available. This aligns to previous
research, e.g., (Golsteijn et al., 2012; Van Zelm et al., 2007), who also
stressed the importance of choosing species for which many ICE esti-
mates are available to define or use QSARs. In fact, while P. promelas
estimates effect concentrations for up to 76 different species, Danio rerio
would only provide 2 additional estimates (Raimondo et al., 2015).

4.3. Potential applications and limitations

Our approach can be used to derive screening values for substances
for which ecotoxicity data are lacking, whether these chemicals are
existing or newly introduced on the market (Posthuma et al., 2019;
Saouter et al., 2017a, 2017b). The bias of the HC50EC50 derived with
our approach were namely comparable to the HC50EC50 based on three
measured EC50s and in 25% of the cases, the statistical uncertainty of
the HC50EC50 based on our combined QSAR-ICE approach was lower
than when using three measured ecotoxicity values. Typically,

experimental ecotoxicity values are, however, not available for three
distinct species (Saouter et al., 2019b). In those cases, we showed that
combining at least two QSARs and ICE estimates led to HC50EC50 and
HC5EC50 estimates with smaller median uncertainties and comparable
biases than when only three QSARs are used. In addition, the combi-
nation of QSARs and ICE reduced the number of very uncertain ha-
zardous concentration, also observed when three measured ecotoxicity
values were used. Our results, therefore, highlight two advantages of
combining at least two QSARs and ICE estimates to estimate HC5EC50
compared to only three QSARs: (1) the reduced number of highly un-
certain HC5EC50, and (2) the increased applicability of this approach as
limited by the applicability domains of two QSARs only. We illustrated
this second advantage by determining by how much the set of chemi-
cals increases, if at least two QSARs are combined with ICE instead of
three. Applying this alternative method to the initial set of 445 che-
micals allowed us to estimate the HCs for 202 chemicals. The resulting
median bias of the HC50EC50 was 1.4 and 2.4 for the HC5EC50, which is
very close to the values derived for the 3QSARICE scenario, namely 1.2
and 2.3 for the HC50EC50 and HC5EC50 respectively. A similar behaviour
was observed between the statistical uncertainty of the HCs derived
from two to three QSAR-EC50 and the corresponding ICE and from the
3QSARICE scenario. In addition, we demonstrated how our approach
can be used to estimate HCs of organic chemicals with limited or no
measured ecotoxicity data, such as the database provided in the USEtox
model. We were in fact able to estimate HCs for 1,028 chemicals and
provide a measure of the uncertainty of these estimates. Among the
1,028 chemicals, 195 did not have any reported HC50 value so far.
These additional HC50s are a valuable addition, also because a quan-
tification of the statistical uncertainty is included, but it is clear that the
applicability of our approach is limited by the applicability domains of
the QSARs included. Refining our approach with QSARs better suited
for specific chemicals or with larger applicability domains would allow
to derive HCs for more chemicals.

Including our approach in available tools such as the screening level
Risk Assessment, IDentification, And Ranking (RAIDAR) model (Arnot
et al., 2006), could lead to more robust outcomes as it would quantify
the uncertainty in the assessed risk, while keeping it to a minimum. In
addition, combining QSAR-based and ICE EC50s could increase the
number of chemicals for which ecotoxicological impacts can be quan-
tified within the life cycle impact assessment framework (Huijbregts
et al., 2010). Ideally, comparative assessments would describe long-
term effects of chemicals and therefore be based on chronic ecotoxicity
data. However, given the current limited availability of chronic NOEC
and EC10 ecotoxicity data (Posthuma et al., 2019), it is not possible to
follow our approach based on chronic ecotoxicity values for a larger set
of chemicals. Using acute-to-chronic extrapolation factors, as done for
example in the USEtox model (Huijbregts et al., 2010), could be a way
to derive long-term effect estimates with our approach, given that a
thorough assessment of the uncertainty of these factors is conducted
(Aurisano et al., 2019; Hoff et al., 2010; May et al., 2016).

Another limitation of our approach is its inability to cover specific
modes of action (MoA). On the one hand, this is because we used acute
data that often do not capture a chemical’s specific MoA. On the other
hand, ICE models assume a linear relationship between the response of
different species to the same chemicals, thus neglecting potential spe-
cific actions of chemicals on distinct species. Higher accuracy could be
achieved by developing MoA specific models for less related taxonomic
groups (Raimondo et al., 2010). We showed that particular care should
be given to developing reliable ICE estimates, in light of the larger in-
fluence of the ICE uncertainty compared to the QSAR uncertainty on the
HC statistical uncertainty. Considering the findings of Bejarano et al.
(2017), using a reduced set of ICE equations, based on the goodness-of-
fit criteria exposed in Raimondo et al. (2015), will most likely not re-
duce the uncertainty in the HCs. Instead, the integration of a mechan-
istic understanding of the toxicological processes within the ICE equa-
tions, as done with so-called Interspecies Quantitative Structure-
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Toxicity Relationships (Khan and Roy, 2017), could increase the re-
liability of ICE equations and in turn the applicability of our method.

5. Conclusions

The research presented here estimated hazardous concentrations
from a combination of ecotoxicity values derived from QSAR and ICE
equations. We showed comparable or even smaller bias and statistical
uncertainty of the hazardous concentrations derived from at least two
QSAR-estimated EC50s and their corresponding ICE estimates com-
pared to when only QSAR estimates were used. The method presented
here also has the advantage of reducing the number of very uncertain
hazardous concentrations observed when only three measured or esti-
mated ecotoxicity values are used. Finally, our results already showed
an added value when just two QSAR estimates were combined with ICE,
allowing us to apply the approach to a larger set of chemicals compared
to the initial one (N = 202 vs. 51 chemicals). We were also able to
estimate acute hazardous concentrations for 1,223 chemicals out of the
3,077 chemicals available in the organic chemicals’ database of USEtox.
Still, the feasibility of our approach is directly related to the applic-
ability domains of the QSARs included. Our QSAR-ICE approach can be
used to derive toxicity values for substances newly introduced on the
market or for which measured or estimated ecotoxicity data are lacking
and thus help prioritize chemicals, as long as the applicability domain
of the QSARs is verified. The domain of applicability of our approach
namely directly relates to the applicability domains of the QSARs used
and needs to be assessed per chemical depending on the specific QSAR
definitions.
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