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Abstract

Analysis and interpretation of stained histopathology sections is one
of the main tools in cancer diagnosis and prognosis. In addition to the
information which is typically extracted by trained pathologists, there is
also information that is not yet exploited, simply because we do not yet
understand the impact of all cellular and tissular features that could be
predictive of outcome. In this paper, we address a question that can cur-
rently not be solved by pathologists: the prediction of treatment efficiency
for Triple Negative Breast Cancer (TNBC) patients from biopsy data.

Keywords— B reast Cancer, Computer-aided detection and diagnosis, Deep Learn-

ing, Digital Pathology, Histopathology, Triple Negative Breast Cancer

1 Introduction

Among women in France breast cancer is the most common cancer and leading
cause of cancer deaths with 18.2% of deaths among female cancer patients[7].
TNBC is a subtype of breast cancer with poor prognosis and limited treatment
options. In TNBC, the malignant invasive cells do not contain receptors for es-
trogen (ER), progesterone (PR) or HER2 and can therefore not be treated with
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hormone therapies or medications that work by blocking HER2. The treatment
used is neoadjuvant chemotherapy, i.e. chemotherapy prior to surgery. Response
to neoadjuvant chemotherapy varies among patients and can be quantified after
surgery via a Residual Cancer Burden (RCB) score [15], which is determined in
a pathologic examination after treatment and is based on the size of the primary
tumour bed area, overall Cancer Cellularity (as percentage of area), percentage
of Cancer that is in situ, the number of metastatic axillary lymph and the di-
ameter of the largest metastasis in an axillary lymph. It has been shown that
the RCB score correlates well with survival. An RCB score of 0 means that the
patient achieved pathologic complete response (pCR), whereas an RCB score of
1 or above implies a higher level/stage of RCB, denoted as RCB-I, RCB-II or
RCB-III. A grade of pCR or RCB-I is highly correlated with a good prognosis
[15]. By definition, the RCB score is evaluated after analysis of the surgical
specimen once the chemotherapy is completed.

Here, we aim at predicting the RCB score as a measure of treatment efficiency
from a biopsy that is taken prior to the treatment. In particular we shall
compare multiple strategies for prediction: a manual feature extraction model
and 2 automatic feature extraction models, namely a two step method and a
fully-supervised method. It will be interesting to see whether and to which
extend such a prediction is possible; the work we present here can therefore
be seen as a contribution to a long-term effort to understand the resistance to
treatment.

2 Related work

With the advent of digital pathology, the availability of large annotated data sets
and the progress related to deep learning, computational analysis of histopathol-
ogy data has known an enormous increase in popularity. Not only the number
of publications in this field is increasing dramatically, but also the heterogeneity
of tasks that is addressed by such algorithms is ever increasing. One important
task relates to image segmentation, such as segmentation of nuclei in tissue
[14, 12], detection and segmentation of metastatic regions in whole slide images
(WSI) [18], classification of regions into normal, benign, in situ or invasive [1].
Other approaches target automatic grading and prognosis [3, 12, 19].

Importantly, in order to reach a higher level of reproducibility, a fair com-
parison of computational methods and important resources of annotated data,
large-scale challenges have been organized in this field: for metastasis segmen-
tation [13], region classification [1] and proliferation prediction [16].

One important question in the field is how to encode the information in an
entire whole slide image (WSI), that is typically of size 100000× 100000 pixels.
The common procedure is to extract tiles from the WSI, process these tiles
and aggregate the information for the prediction task at hand [17, 19, 6]. In
[19], the authors discriminate tiles with unsupervised learning and find relevant
groups, these relevant tiles are then used to determine a patient’s prognosis. In
[6], the authors demonstrate that they only require patient level annotation to
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yield comparable results to methods using a pixel wise annotation, where each
metastasis was segmented. This type of weakly supervised learning has already
been proposed in the past for cancer region segmentation in colon cancer [18]
and provides also the rationale for our study.

Of note, the major body of approaches in this field aims at automatizing
or supporting the work currently performed by pathologists. This is to be
contrasted to methods where the predictive power of biological evidence in the
data remains unclear for the prediction task as in the project we present in this
article.

3 Data set

The dataset was generated at the Curie Institute and consists of annotated
H&E stained histology images at 40× magnification. In this paper, we studied
chemotherapy treatment response in a unpublished cohort of TNBC. Prior to
chemotherapy a biopsy was sampled from the tumour region and pathological
relevant features were extracted, these features are discussed in more details in
section 4.1. Post treatment, an RCB score is derived. The data was quality
checked and analysed by an expert histopathologist, a total of 122 histopatho-
logical slides were annotated. 56 of these are annotated pCR, 10 are RCB-I,
49 are RCB-II and 7 are RCB-III. As some classes are under-represented we
decided to simplify the problem to a binary classification. We investigate two
possibilities: (1) pCR (no residuum) vs RCB (some residuum) and (2) pCR-
RCB-I vs RCB-II-III, which is clinically more relevant, as it is informative on
patient’s prognosis.

4 Methodology

For each of the following methods, we will denote by (Xi, Yi)i∈{1,..,N} the data
set described in 3. N denotes the number of patients in the study, N = 122.
For patient i, Xi represents the set of associated input data, such as the feature
vector extracted by a pathologist or a bag of features extracted automatically
from the biopsy. The binary output variable Yi reflects the RCB class as de-
scribed in section 3. In order to have an unbiased estimation of the accuracy, we
perform a 10-fold nested cross-validation where the inner-loop maximizes, over
the hyper-parameter, a validation accuracy score. Once the hyper-parameters
set, we retrain with the maximum amount of available data except for the left-
out fold and report the accuracy over this fold. The final score is the average
of the 10-fold nested cross-validation. Furthermore on the hyper-parameters,
we tuned the learning rate that could be chosen from [10−i; i ∈ [1 : 4]] and
the number of units in the fully connected layers that could be chosen from
[128, 512, 1024, 2048].

3



4.1 Manual feature extraction

Each biopsy was analysed by a pathologist with strong expertise in breast can-
cer. Concretely, several regions of interest are analysed and several variables
reported: Mitotic index on 10 high power fields (x40), Elston Ellis grade, per-
centage of cancerous cells (including CIS), percentage of Tumour Infiltrating
Lymphocytes (TIL) and the percentage of lymphocyte in stroma. These fea-
tures are informative about cancer prognosis [2]. In this setting, Xi will rep-
resent a feature vector of size 5. We used traditional machine learning models
such as Random Forest (RF) [4] with randomized hyper-parameter search. We
report the best model in section 5.

4.2 Automatic feature extraction

Here, we seek a way of automatically encoding an entire WSI. The advantage of
such a description with respect to manual analysis or computational approaches
based on down sampling is the comprehensiveness of the representation. In
addition, we hope to extract pieces of information complementary to what a
manual annotator would typically look at.

In the following methods, a WSI is represented by a bag of features. This
mapping can be divided into 3 steps: 1) finding tissue areas in the WSI, 2)
overlaying a grid on this tissue area and 3) encoding each tile of size 224× 224
to a vector x ∈ Rp with a 152-layer Resnet [9] pre-trained on Imagenet [11], we
have p = 2048. Thus each slide can be condensed into a matrix where each tile
corresponds to one line of size p.

4.2.1 Rotational invariance

We notice undesirable sources of variation in the encoding: rotating an image
can lead to very different representations, see Figure 1. Histopathology images
clearly should have an encoding that is invariant to rotations and flips. It is
not surprising that this invariance is not preserved with weights trained on
Imagenet, as orientation often matters for natural images. In order to obtain a
more robust representation of each sub-image we perform 6 augmentations for
each image and aggregate the resulting representations via a pooling operator,
average or maximum along the feature axis. We experiment and compare these
2 different pooling methods to one where no pooling is applied (None), see table
1.

4.2.2 A two step method

Here, we propose a two step model. In this model, we assume that a slide is
made of several regions with varying importance for patient level prediction. We
therefore hypothesized that if we can cluster the encoding vectors into k clusters,
each slide can be represented by the percentages of tiles in each of the clusters.
A similar approach has been reported in [19]. One technical issue is however the
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(a) Raw image: A (b) flip(A)

(c) x(A) (d) x(flip(A))

Figure 1: Rotational variance of the ResNet encoding: (a) and (b) show a
tile and its flipped version, respectively. (c) and (d) show the corresponding
encodings x ∈ RP . The color code indicates the index in the feature vector and
allows for comparison between (c) and (d).

large number of tiles, making the application of unsupervised learning methods
difficult if not impossible. This can be addressed by sub-sampling the data.

First, we reduce the dimensionality of each tile via a principal component
analysis and keep 50 features (this is more than 99% of the explained variance).
Then we sub-sample each slide to the same number of tiles. The two different
sub-sampling strategies for each bag of features of size ni are:

1. uniform sampling : we draw randomly a fixed number of feature vectors

2. cluster-based down sampling : we first cluster all feature vectors from one
patient into ni/40 clusters and then sample the same (small) number of
feature vectors from each cluster so that the amount of feature vectors is
constant across patients.

Finally, we pool all sampled feature vectors and perform clustering into k
clusters on their union. By doing this, we can assign to each tile of each patient

a cluster label y
(i)
j . Once each tile is clustered, we thus represent a WSI by the

percentage of patches belonging to each of the k clusters. Hence, we represent
a patient’s biopsy by a vector z(i) of size k. We then use a random forest to
classify each patient, see figure 2. We set k = 4 as this gave best results in
our hands and this choice is in line with the recently published BACH 2018
challenge for WSI region annotation in breast cancer histology [1].
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4.2.3 Fully supervised

Adopting a multiple instance learning framework allows us to adopt an end-to-
end learning approach from the encoded tiles to the patient-level output. In

this setting, Xi = (x
(i)
j )j=1...ni

is a bag of features of variable size, i.e. each

slide is represented by a variable number ni of feature vectors x
(i)
j each of which

describes one tile. Instead of assigning to each x
(i)
j one hard cluster label, as

described in section 4.2.2, we map each x
(i)
j to a low dimensional representation

y
(i)
j ∈ RK . This can be seen as a generalization of a cluster assignment. We use

a 1-dimensional convolution to learn the mapping. We then have to pool these

representations y
(i)
j for all j to reach a description z(i) of the entire slide. We

feed this slide encoding to two fully connected layers with 512 units, see figure
3. For comparability with the previous approach, we set K = 4. If we set K = 1
and use the Weldon pooling [8] this model is essentially the one proposed by [6],
our results with such a network were inconclusive.

Notes on the implementation: 1) We regularize the model with batch nor-
malization, implying that the number of tiles per patient needs to be the same.
For WSI, it is impracticable to follow an up-sampling strategy where each slide
would be represented by the maximum number of tiles in the data set. We
therefore use a down sampling and up sampling strategy to a fix amount. Up
sampling: we add instances from the initial distribution. This has no effect
later in the network as we aggregate the instances after the bottleneck. Down
sampling: each time a slide requires down sampling, we randomly remove tiles.
2) During inference we do not perform any down sampling or up sampling. 3)
We set the amount of samples in a bag to 5000. 4) We train the model with
Adam optimizer [10] and use a binary cross entropy loss. 5) We use heavy reg-
ularization by setting a weight decay term to 0.05 and drop out to 0.5. 6) We
repeat this 20 times per fold and retain the model that performs best on the
validation data. 7) We choose this architecture to replicate the steps from our
previous method. 8) We used Keras for the implementation [5].

We compare this model to a simpler version where we do not transform the
features vector prior to averaging and use a RF for the classification, we denote
this model as averaging the bag.

5 Results and discussion

In table 1 we display the performance of every combination of strategies and
models described in section 4 on the two tasks described in section 3. These two
tasks are very difficult, indeed even with the manual extraction of pathological
relevant features it is difficult to correctly predict a patients class, reaching an
accuracy of 57.0% on the whole data for task (1) and 59.8% for task (2). The
results displayed in table 1 show similar performance to that of a pathologist.
Therefore in terms of automatic feature extraction, the ResNet algorithm clearly
catches some useful signal for predicting patient treatment response. In our
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Figure 2: Two step method: ResNet features xj ∈ RP are extracted and used
for clustering. Each tile j is therefore represented by the cluster label yj and
the slide is represented by the percentages of tiles in each of the clusters.

Figure 3: Fully supervised approach: the clustering approach in Figure 2 is
replaced by a Neural Network.

2 step method, we notice a 5% improvement of the k-means sampling over
a uniform distribution. This would suggest that random sub-sampling of tiles
damages the performances. This suggests that the tiles relevant for this decision
might be scarce. We also note the improvement achieved by augmenting the
images prior to encoding in most cases. We recommend to use one of the
aggregation strategies to reduce the noise when encoding the tiles. The neural
network model was only able to learn something meaningful in one of these
two augmentation settings. Finally, the bottleneck layer finds a suitable K-class
representation of the WSI for classification. This setup clearly outperforms a
more basic approach where the slide is represented by the average of the bag.

6 Conclusion

Here, we presented and compared several methods suited to encode entire WSI.
In particular, we tackled the challenging question of treatment response predic-
tion from biopsy images and show that automatic methods reach the perfor-
mance of a pathologist. We also highlighted the most important design choices,
and propose a strategy to fight rotational variance of the encodings, so far ne-
glected in the field.
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Model: (1) (2)
Manual: 57.0% 59.8%
2 step method:

Uniform:
Augmentations: None: 52.5% 52.5%

Max : 52.5% 53.2%
Mean: 53.2% 53.2%

K-means:
Augmentations: None: 58.2% 56.6%

Max : 58.2% 58.2%
Mean: 59.9% 58.2%

Neural network:
Augmentations: None: 55.7% 50.8%

Max : 59.8% 47.5%
Mean: 48.4% 60.6%

Averaging the bag:
Augmentations: None: 48.3% 52.4%

Max : 51.6% 54.1%
Mean: 54.9% 54.9%

Table 1: Classification results in terms of accuracy, 10-fold nested cross valida-
tion. Column (1): pCR vs RCB and column (2): pCR-RCB-I vs RCB-II-III.
None, Max and Mean refer to the augmentation methods for rotational invari-
ance described in 4.2.1.
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