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Abstract

Motivation: High-content screening is an important tool in drug discovery and characterization. Often, high-content
drug screens are performed on one single-cell line. Yet, a single-cell line cannot be thought of as a perfect disease
model. Many diseases feature an important molecular heterogeneity. Consequently, a drug may be effective against
one molecular subtype of a disease, but less so against another. To characterize drugs with respect to their effect
not only on one cell line but on a panel of cell lines is therefore a promising strategy to streamline the drug discovery
process.

Results: The contribution of this article is 2-fold. First, we investigate whether we can predict drug mechanism of ac-
tion (MOA) at the molecular level without optimization of the MOA classes to the screen specificities. To this end, we
benchmark a set of algorithms within a conventional pipeline, and evaluate their MOA prediction performance
according to a statistically rigorous framework. Second, we extend this conventional pipeline to the simultaneous
analysis of multiple cell lines, each manifesting potentially different morphological baselines. For this, we propose
multi-task autoencoders, including a domain-adaptive model used to construct domain-invariant feature representa-
tions across cell lines. We apply these methods to a pilot screen of two triple negative breast cancer cell lines as
models for two different molecular subtypes of the disease.

Availability and implementation: https://github.com/jcboyd/multi-cell-line or https://zenodo.org/record/2677923.

Contact: Thomas.Walter@mines-paristech.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-content screening (HCS) is a powerful tool for identifying po-
tential drugs effective against a particular disease. A high-content
drug screen corresponds to a series of imaging experiments under
controlled conditions, where a cell line representative of some dis-
ease is exposed to a large panel of drugs. For each drug, one obtains
a set of images informative of its phenotypic effect and hence on the
biological pathways undergoing perturbation. Various advances in
microscopy automation and image analysis have pushed HCS to the
early hit-to-lead stages of the drug discovery process (Haney et al.,
2006).

The discovery of new drugs may be guided by a reference set of
drugs of known mechanism of action (MOA). The MOA of a drug
is the particular cellular pathway it perturbs to achieve its effect.
Through application of image analysis, one may attempt to infer the
MOA of an unknown drug from HCS image data. Note that MOA
can be defined at different levels and with different degrees of

specificity: MOA might concern the exact protein that is targeted
(e.g. AURKA inhibition), or a specific effect on cellular components
(e.g. stabilization of microtubuli) or perturbation of a more general
cellular pathway (e.g. DNA repair). HCS is usually optimized with
respect to particular pathways by the choice of the fluorescent
markers and readouts (Pepperkok and Ellenberg, 2006).
Consequently, MOA prediction might be reasonably straightfor-
ward if MOA classes are chosen in accordance with the phenotypic
readout (Ljosa et al., 2013), but it is challenging in general, in par-
ticular if we aim at predicting specific MOAs the assay has not been
optimized for.

A second difficulty concerns the cellular model that is used. As a
proxy for diseased cells, a cell line cannot be thought of as a perfect
model. Many diseases feature a significant molecular heterogeneity.
Consequently, a drug may be effective against one molecular sub-
type of a disease, but less so against another. Furthermore,
immortalized cell lines may diverge over time due to genetic drift.
For example, HeLa, the quintessential cell line, is famously the cause
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of great scientific confusion due to difficulties in cell line identifica-
tion (Horbach and Halffman, 2017) and significant molecular and
phenotypic variability (Liu et al., 2019). To characterize drugs with
respect to their effect not only on one cell line but on a consensus of
several is therefore a promising strategy to streamline the drug dis-
covery process. Nevertheless, this is not an easy task in morpho-
logical screening, as different cell lines usually have distinct
archetypal morphologies even prior to perturbation. It is therefore
conceptually difficult to characterize and compare drug effects
across cell lines.

The contribution of this article is 2-fold. First, we investigate
whether we can predict MOA at the molecular level without opti-
mization of the MOA classes to the screen specificities. To this end,
we benchmark a set of algorithms within a conventional pipeline,
and evaluate their MOA prediction performance according to a stat-
istically rigorous framework.

Second, we extend this conventional pipeline to the simultaneous
analysis of multiple cell lines, each with potentially different mor-
phological baselines. For this, we propose multi-task autoencoders,
including an adaptive model used to construct domain-invariant fea-
ture representations across cell lines. We apply these methods to a
pilot screen of two triple negative breast cancer (TNBC) cell lines as
models for two different molecular subtypes of the disease.

In Section 2, we describe our dataset. In Section 3, we formalize
a range of profiling approaches from the literature according to four
key properties, and extend this to a multi-cell-line analysis. In
Section 4, we illustrate the benefit of multi-task models for our data-
set through extensive cross-validation and provide an exploratory
analysis of differential drug effects between the two cell lines. In
Section 5, we discuss our methods and the obtained results.

2 Data

We acquired image data for two TNBC cell lines, MDA-MB-231
and MDA-MB-468 (hereafter MDA231 and MDA468), thus consti-
tuting a multi-cell-line drug screen (the full image set for this study is
available at https://zenodo.org/record/2677923). MDA231 (TP53,
KRAS, BRAF) and MDA468 (TP53-PTEN) were both established
from a pleural effusion of two different patients with triple negative
metastatic breast carcinoma. Using transcriptomic and genomic
data, we have recently shown that MDA468 clustered in a breast
cancer specific subgroup but MDA231, one of the most used breast
cancer cell lines, clustered in a mixed subgroup with cancer cell lines
of very different origins, such as ovarian, urinary and kidney
(Sadacca et al., 2017).

Both of our cell lines were subjected to the same inventory of
drugs on separate 384-well microtiter plates (microplates): 36 wells
contained the negative control dimethyl sulfoxide (DMSO); two the
positive controls (Olaparib, Cisplatine); 166 the test compounds;
and 184 empty. For each well of our two microplates, images were
taken in four non-overlapping fields of view (fields), with three mul-
tiplexed fluorescent channels: (i) DAPI (cell nuclei) (ii) Cyanine 3
(cH2AX to mark DNA double-strand breaks) and (iii) Cyanine 5
(Cy5; tubulin marker). Together, these fluorescent channels paint a
rich, composite picture of the cell populations.

The drugs comprise of a set of panels of kinase, protease and
phosphatase inhibitors and can be categorized into 70 MOA classes
of varying sizes, according to their targets. For our experiments, we
take the eight MOA classes having at least five member drugs. These
are CDK inhibitors, cysteine protease inhibitors, EGF receptor kin-
ase inhibitors, MMP inhibitors, DMSO (negative control), PKC
inhibitors, protein tyrosine phosphatase inhibitors and tyrosine kin-
ase inhibitors.

In comparison with other datasets, Adams et al. (2006) used 51
drugs in 13 MOA categories, Slack et al. (2008) used 35 drugs in 6
MOA categories, and the widely studied Broad Institute Benchmark
Collection 21 (BBBC21v2) (Ljosa et al., 2012)—used, e.g. in
(Kandaswamy et al., 2016) and (Godinez et al., 2017)—consists of
39 drugs in 13 categories. The key difference is that our own MOA
classes were not selected a posteriori to reflect visually different phe-
notypes, mounting a greater bioinformatic challenge than the

standard benchmark datasets, where even a simple model can be ex-
tremely effective. For example, Singh et al. (2014) achieved 90% ac-
curacy with element-wise averaging of hand-crafted features after a
simple luminosity correction.

3 Methods

This section describes the approaches for phenotypic profiling we
have benchmarked. We embed these descriptions in a formalized
overview of phenotypic profiling strategies to motivate the different
setups. In Section 3.3, we describe methods for a joint analysis of
multiple cell lines.

3.1 MOA prediction
Drugs are assigned a class based on their MOA, the cellular pathway
perturbed by the drug, as depicted in Figure 1. Given a set of drug
profiles annotated with MOA classes, we can simulate reference and
discovery drug sets in a leave-one-compound-out cross-validation
(LOCOCV) scheme. At each fold of the cross-validation, we hold
out a drug and predict its MOA class using a classifier trained on the
remaining ‘reference’ drugs. The prediction is made as the nearest
neighbor (1-NN) in cosine distance between drug profiles,
dðp; p0Þ ¼ 1� cos hp;p0 . This was proposed in (Ljosa et al., 2013) as
an equitable way of comparing profiling algorithms. We settle for
this lightweight approach as our focus here is on the discriminative
power of the profiles.

3.2 Phenotypic profiling
The conventional approach to HCS analysis is a multi-stage pipe-
line, consisting of a sequence of modules of image and statistical
analysis, including cell segmentation and hand-crafted feature ex-
traction (Caicedo et al., 2017). The aim is to ascribe a phenotypic
profile to each cell population to serve as the basis of comparison
between drugs. Each profile will take the form of a vector p 2 R

D of
some dimensionality D and is constructed according to four ordered
methodological stages: measurement unit, feature representation,
dimensionality reduction and aggregation strategy (Fig. 1). Certain
properties may be omitted by some approaches, or subsumed to a
common framework, such as a neural network, that may perform
each task simultaneously (Godinez et al., 2017; Kraus et al., 2016).
In the following sections we detail each property in turn, providing
references to the relevant literature and describing the concrete setup
that was retained for the benchmarking.

3.2.1 Measurement unit

The most common measurement unit is the cell itself, constituting a
per-cell analysis. This entails an initial segmentation of the cells
(their nuclei and other organelles). We segmented cell nuclei on the

Fig. 1. MOA prediction is performed on an image via a phenotypic profile. The de-

velopment of such a profile spans four ordered stages. Each stage may be accom-

plished by a variety of algorithms, the combination of which define a unique

pipeline. Some stages may be omitted in certain pipelines, or subsumed to a common

framework
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DAPI channel by subtracting a background image formed with a
mean filter, before clipping to zero. Touching nuclei were further
separated by applying the watershed transform on the inverse dis-
tance map of the foreground image. The cytoplasm was segmented
from the microtubule channel (Cy5) following Jones et al. (2005).

Alternatively, one might analyze the image field directly in a per-
image analysis, such as in Godinez et al. (2017), Uhlmann et al.
(2016) or Orlov et al. (2008). Such approaches are referred to as seg-
mentation-free, as they obviate the segmentation phase of the con-
ventional pipeline. In this study, we deliberately choose to focus on
the cell as unit of measurement.

3.2.2 Feature representation

For a given choice of measurement unit, one further chooses a fea-
ture representation. This yields a matrix X 2 R

N�D for each well
where N is the number of samples for that well and D is the number
of features measured. For each segmented cell we extracted a previ-
ously published set of features (Walter et al., 2010) across the three
fluorescent channels, as well as spot features informative on DNA
double-strand breaks (Boyd et al., 2018). These features, hereafter
referred to as handcrafted features, thus retain a degree of biological
interpretability. In contrast, in Orlov et al. (2008) and Uhlmann
et al. (2016) a large number of handcrafted features are extracted
over each image as a whole.

More recently, features are extracted within the layers of a con-
volutional neural network trained directly on image pixels. We
benchmarked a convolutional autoencoder (CAE) following the de-
sign of Sommer et al. (2017), trained on 40 � 40 � 3 inputs, formed
by extracting 100 � 100px padded bounding boxes of segmented
cells, rescaling, and stacking the fluorescent channels. The central
hidden layer of the trained CAE is then used as a feature
representation.

3.2.3 Dimensionality reduction

Dimensionality reduction requires some function enc : X! Z where
Z 2 R

N�M, with reduced dimensionality M < D. The objective is to
capture the essential information in lower dimension or to cast the
high-dimensional feature vector to an interpretable representation.
Supervised classification of individual cells (Neumann et al., 2010)
is one way of achieving this, as each cell is represented either by a
one-hot binary vector zi 2 f0; 1gM or by a vector of probabilities
zi 2 ½0;1�M where

P
jzij ¼ 1 and M is the number of classes, in ef-

fect, the new dimensionality. With multiple-instance learning (MIL)
(Kraus et al., 2016) one can circumvent the manual effort involved
in creating a phenotypic ontology and a manually curated training
set. Here, one labels each cell with the MOA of the drug of the
population, thus creating a weakly supervised ground truth. As indi-
vidual cells may respond differentially to perturbation, not all
regions of an image will bear the hallmarks of a particular drug, but
the cellular landscape can be viewed as a multiple instance bag of
objects. Godinez et al. (2017) make this assumption implicitly. We
benchmarked a random forest tuned to 500 trees, trained on cells
weakly labeled by MOA class of their well (M ¼ 8). Necessarily,
we partition wells into separate train and test sets, where the test
data alone is used to build profiles for the MOA prediction
downstream.

Another popular option is to use unsupervised learning. We
benchmarked hard clustering methods k-means and hierarchical
clustering in Euclidean space with Ward linkage. These were tuned
to M ¼ 80 and 100 clusters, respectively (by cross-validation, on
the training set). K-means is fast to fit approximately, in particular
using mini-batch training. On the other hand, even using optimized
software (Müllner et al., 2013), hierarchical clustering is not scal-
able. We also performed soft clustering with Gaussian mixture mod-
els (GMMs; Slack et al., 2008), tuned to M ¼ 100 Gaussians.

Feature selection (Loo et al., 2007) and principal components
analysis (PCA) are other popular options. Here, we applied PCA on
the handcrafted features, selecting 40 of the 516 components, retain-
ing �90% of the energy on average. We further whitened the latent
features.

Autoencoders, as used by Kandaswamy et al. (2016), formulate
a function f ðxÞ ¼ decðencðxÞÞ, where encð�Þ and decð�Þ correspond
to the encoder and decoder parts of the neural network. This model
can be trained with a mean square error (MSE) loss function,

LðX; hÞ ¼ 1

N

XN

i¼1

jjxi � f ðxiÞjj22 þ kjjhjj2F (1)

for the N samples in the dataset and where k is a tunable hyperpara-
meter for the regularizer. The hidden representation corresponds to
the output of the encoder, the central layer of the neural network, i.e.
our reduced sample is zi ¼ encðxiÞ. We train shallow affine autoen-
coders—with a single hidden layer (tuned to M ¼ 100 neurons)—on
handcrafted features. We also train deep CAEs directly on image pix-
els, as described in Section 3.2.2. Note that such models perform both
feature extraction and dimensionality reduction simultaneously. Here,
the encoder consists of 5 � 5 and 3 � 3 convolutional layers, with 16
and 8 kernels, respectively, and a fully connected layer (M ¼ 128),
each alternating with max pooling layers. The decoder mirrors this, al-
beit replacing pooling with upsampling.

3.2.4 Aggregation strategy

Once all cells are endowed with a representation, one needs some
means of reducing the population to a single profile, p. A variable
number of cells per well requires an aggregation strategy yielding a
profile of fixed size. The most straightforward approach is an element-

wise averaging as in Adams et al. (2006) where p ¼ 1
N

PN
i¼1 zi. This

amounts to replacing the cell population cluster with its own centroid,
and for classification or clustering approaches (Section 3.2.3), this sim-
ply corresponds to the percentage of cells that fall into each category.

Alternatively, Perlman et al. (2004) apply an element-wise
Kolmogorov-Smirnov test and Loo et al. (2007) use the vector nor-
mal to the support vector machines decision boundary between per-
turbed and control populations. As we are modeling the negative
control as one of our ground truth classes, we aggregate exclusively
with element-wise averaging in our analysis.

3.3 Multi-cell-line analysis
One can extend the above MOA prediction framework for multiple
cell lines either by pooling data or by ensembling models. In a pool-
ing analysis such as Warchal et al. (2016), the cells of the respective
cell lines are first normalized and then grouped across drugs to in-
crease the amount of available data. An ensemble approach such as
in Rose et al. (2018) creates models for each cell line and aggregates
their individual predictions. This approach has the additional advan-
tage of allowing different imaging modalities of fluorescent markers.

We adopted a pooling approach to predict MOA from multiple
cell lines. The challenge of this approach is to reconcile the inherent
differences between the cell lines in feature space, which derives
from the fundamental morphological differences of the cell lines.
For this purpose, we tested multi-task autoencoders (Fig. 2), exten-
sions of both our affine and CAEs.

3.3.1 Multi-task autoencoders for multi-cell-line analysis

Multi-task models learn to predict multiple targets simultaneously and
multi-task neural nets often build more generalized internal represen-
tations (Caruana, 1997). We propose multi-task autoencoders as an
approach to reconcile the divergent nature of our multi-cell-line data.

One obvious design is to have separate decoders for each cell line
with a shared encoder. During training, minibatches can be split
after the shared layers with samples routed to the decoder corre-
sponding to their cell line. We thus minimize,

LMTAðX; hÞ ¼
X

i:di¼0

jjxi � decsðencðxiÞÞjj22

þ
X

i:di¼1

jjxi � dectðencðxiÞÞjj22
(2)

where di identifies the cell line of xi. We test multi-task variants of
both our affine and CAEs described in Section 3.2.3.

Prediction of mechanism of action 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btz774/5586889 by C

entre R
ene H

uguenin I 20D
AW

 user on 15 January 2020

Deleted Text: s
Deleted Text: Orlov et<?A3B2 show $146#?>al. (2008)
Deleted Text: ,
Deleted Text:  Godinez et<?A3B2 show $146#?>al. (2017)
Deleted Text:  (CNN)
Deleted Text: <IMG_FOUND/>
Deleted Text: &hx00D7;
Deleted Text: <italic>M</italic> &hx003D;
Deleted Text: s
Deleted Text: ) (
Deleted Text: <IMG_FOUND/>
Deleted Text: s
Deleted Text: &hx2013;
Deleted Text: &hx003D;
Deleted Text: &hx2013;
Deleted Text: convolutional autoencoder
Deleted Text: &hx2009;&hx00D7;&hx2009;
Deleted Text: &hx2009;&hx00D7;&hx2009;
Deleted Text: <italic>&hx2009;</italic>
Deleted Text: s
Deleted Text: convolutional autoencoder
Deleted Text: s
Deleted Text: s
Deleted Text: convolutional autoencoder


The fundamental morphological differences between the cell lines
can be quantified in feature space by aH-divergence, first proposed by
Ben-David et al. (2010), where H is some hypothesis class (such as the
space of linear classifiers). This is expressed as dHðDX

S ;D
X
T Þ ¼

2 suph2H jPx�DX
S
ðhðxÞ ¼ 1Þ � Px�DX

T
ðhðxÞ ¼ 1Þj, where the domains

DX
S and DX

T are marginal probability distributions on x. That is, given
source and target domains, and given a hypothesis class H, the diver-
gence between the source and target domains is the best performance
among that class of classifiers trained to distinguish them. In practice,
we can approximate this by training a classifier of the class H on the
constructed dataset, U ¼ fðx;0Þ : x 2 Sg [ fðx; 1Þ : x 2 Tg, that is, a
classifier trained to distinguish between the domains. Ajakan et al.
(2014) proposed multi-task classifiers involving a domain discrimin-
ator trained against a classifier adversarially. As the classifier was
trained to minimize one loss, the competing domain discriminator was
trained to maximize another loss, such that data from either domain
could not be distinguished, promoting domain-invariant features in
the earlier, shared layers of the network.

Thus, we propose domain-adversarial autoencoders (DAAs), to
promote domain-invariant representations between the cell lines.
This consists of attaching a domain discriminator gðxÞ to the encod-
ing layer. This can be thought of as a dynamic regularization func-
tion. In a bias-variance tradeoff, we expect this to on average
increase the reconstruction error of the autoencoder. However, we
hypothesize that the domain-invariant features learned will be more
useful to the downstream MOA prediction when combining hetero-
geneous cell line data. For example, with a single additional affine
layer, gðxÞ ¼ SðWdencðxÞ þ bdÞ, where Wd and bd are the weights
and biases of the layer, and S is the softmax function producing pos-
terior probabilities pðd ¼ 0jxÞ and pðd ¼ 1jxÞ. The loss function
then becomes,

LDAAðX;d; hÞ ¼ 1

N

XN

i¼1

jjxi � f ðxiÞjj22

� x
N

XN

i¼1

digðxiÞ � log½1þ expðgðxiÞÞ�

(3)

i.e. the difference of a MSE loss and a log loss, where f ðxÞ is defined
as before, and x is a modulating hyperparameter. However, now
the parameters of gðxÞ are updated to maximize LDAA, so as to im-
prove domain discrimination. At the same time, the parameters of

f ðxÞ are updated to minimize LDAA. This has the dual effect of mini-
mizing the MSE (as usual) but also maximizing the log loss. This is
known as an adversarial step, and aims at converging to a saddle
point between the two objectives. In practice, this is implemented
with a gradient reversal pseudo-layer (Ganin et al., 2016), which is
readily programable in standard deep learning frameworks.

We test multi-task versions of both our affine and CAEs, and
compare them directly in Section 4.2. The domain discriminator of
our DAAs is linear in terms of the encoding (domain-invariant
features) and the weight of the log loss was tuned to x ¼ 1:5. For
each affine model we tried the same range of hidden units in a grid
search M 2 f100; 125;150; 175;200g, and trained for 20 epochs
using the RMSprop gradient descent algorithm (Tieleman and
Hinton, 2012). For the CAEs we kept the architecture defined in
Section 3.2.3. We further used weight decay (k ¼ 10�3) for all mod-
els as well as batch normalization (Ioffe and Szegedy, 2015), which
we found stabilized the training, in particular the adversarial
training.

3.4 Model evaluation
We compared different profiling settings by evaluating performance
on a MOA prediction task. For this, we balanced our datasets by
randomly sampling 5 drugs from each of the 8 classes specified in
Section 2, analyzing 40 drugs at a time. Applying the LOCOCV
scheme described in Section 3.1, we note that random accuracy is
12.5%. To account for random variability, we repeated LOCOCV
60 times with different sets of randomly sampled drugs and in
Section 4 report average top-1 accuracy and standard deviation as
the percentage of MOAs correctly predicted by the 1-NN classifier.
We consider this to be a more rigorous approach in a comparative
study, as while a given method often fit one drug set well, it was
harder to find hyperparameter choices that worked well across all
sets. We used a Wilcoxon signed-rank test to establish significance
against baselines over the 60 rounds.

3.5 Software
We use Cell Cognition (Held et al., 2010) to perform the first stages
of the classical analysis pipeline, namely, image pre-processing, cell
segmentation and feature extraction.

All models were coded using the scikit-learn (Pedregosa
et al., 2011) and Keras (https://keras.io) Chollet (2015) frame-
works for Python, unless otherwise noted (worked examples of code
and feature data available at https://github.com/jcboyd/multi-cell-
line). Basic image processing was performed with scikit-image
(van der Walt et al., 2014).

4 Results

In Section 4.1, we evaluate a range of approaches to dimensionality
reduction—as described in Section 3.2.3—on their utility in creating
cell representations that aggregate into discriminative phenotypic
profiles for MOA prediction. This we do in separate single-cell-line
experiments. In Section 4.2.1, we show how our best performing
model on single-cell-line data—the autoencoder—may be extended
for multi-cell-line analysis, providing comparisons for learning on
handcrafted features, as well as raw pixels. We then illustrate how
our optimized phenotypic profile design can be used to identify dif-
ferential drug effects between cell lines across our entire drug panel
in Section 4.2.2. In Section 4.2.3, we explore how the effect of add-
ing cell lines to analysis effects MOA predictability.

4.1 Single-cell line analysis
In Table 1 we evaluate a range of approaches to dimensionality re-
duction on cell lines taken separately. The baseline for this compari-
son is the hand-crafted features averaged element-wise from
segmented cells in each well. Note that even such a simple baseline
proved to be highly competitive in earlier comparative studies such
as Ljosa et al. (2013). The models are used to create a reduced repre-
sentation of cells prior to aggregation by element-wise averaging

Fig. 2. Multi-task autoencoders used for dimensionality reduction over multi-cell-

line data. Clockwise from top left: vanilla autoencoder, multi-task autoencoder and

DAA. Coloring indicates separate treatment of each domain (cell line)
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(Section 3.2.4). The one exception is the CAE, which learns cell rep-
resentations directly from image pixels.

We observe dimensionality reduction techniques register broad
improvement over the baseline, with PCA ðW ¼ 385:0;P < 0:05Þ
and autoencoders ðW ¼ 281:5;P < 0:01Þ significant for the
MDA231 cell line. Autoencoders also registered significant improve-
ment ðW ¼ 356:0;P < 0:01Þ for the MDA468 cell line. This further
motivates autoencoders as the benchmark in our multi-cell-line ana-
lysis (Section 4.2).

The deep CAE fails to stand out from the group. However, this
may rather testify to the effectiveness of handcrafted features on cell
line data—at least at this resolution—over learning representations
from scratch.

The sole weakly supervised method, MIL with random forests,
shows promise on cell line MDA321, but falls short on MDA468.
This may stem from the necessary splitting of data into train and
test sets prior to LOCOCV, reducing the available training data.
Approaches based on weakly supervised MIL are popular, particu-
larly for deep learning approaches, but we do not see any benefit for
them on our dataset.

4.2 Analysis on multiple cell lines
So far, we have considered the analysis of several cell lines as inde-
pendent problems to inform model selection. We now turn to a joint
analysis on multiple cell lines.

4.2.1 Prediction of MOA from multiple cell lines

With their different transcriptional programs multiple cell lines po-
tentially bear complementary information on the MOA of a drug.
We pool cells in corresponding wells across our two cell lines, thus
enlarging the available data for each drug. In each case, the data
from each cell line were standardized separately to have zero mean
and unit variance for all features. Our multi-task autoencoders are
compared with their single-task counterparts, the best performing
models from Section 4.1.

We observe in both Tables 2 and 3 that we obtain a higher degree
of accuracy in MOA prediction for our multi-task autoencoders com-
pared with their baselines, particularly the DAAs, which achieve a
statistically superior average accuracy ðW ¼ 283:5;P < 0:01Þ for the
shallow variant, based on handcrafted features, as well as for the deep
learning variant ðW ¼ 438:5;P < 0:01Þ. The former constitutes our
best overall accuracy in MOA prediction on this dataset. This supports
our hypothesis that promoting domain-invariant features facilitates
the mixing of heterogeneous data from multiple cell lines. As antici-
pated in Section 3.3.1, adversarial training did not improve the recon-
struction error of our autoencoders, but the resultant features
performed better downstream in the MOA prediction pipeline.

Inspired by Ganin et al. (2016), we use t-SNE (van der Maaten
and Hinton, 2008) to project a sample of learned cell features into two
dimensions. We typically observe a higher degree of alignment

between the feature distributions of the two domains as produced by
the domain-adversarial model, as illustrated in Figure 3. To quantita-
tively confirm this domain overlap, we compute the mean silhouette
score over all points where the cluster identity of each point is simply
its domain class. The scores given in Figure 3 of 0.11 (lower overlap)
and 0.01 (higher overlap) for unadapted and adapted features, respect-
ively are typical. Altschuler and Wu (2010) wrote that multiple modal-
ities render aggregation over a cell population problematic, as a
centroid may be a bad representative of the overall population.
Computing domain-invariant features appears to be a partial remedy
to this when pooling heterogeneous data in a multi-cell-line analysis.

4.2.2 Differential drug effects across cell lines

Our DAA approach provides us with a representation that is
optimized with respect to both MOA prediction accuracy and do-
main invariance between the cell two lines. This can assist us in pro-
ducing profiles for all drugs in our pilot screen and investigate the
differential effects of drugs across cell lines. For this, we trained our
network on all data, producing phenotypic profiles for all drugs in
the screen. We zero-centered each cell line by subtraction of their re-
spective DMSO centroids and compared distances of drug profiles
both from the DMSO centroid and between cell lines. By ranking
these distances, we can identify four drug effect cases:

Table 1. Comparison of dimensionality reduction approaches

against unreduced baseline for cell lines treated separately

Approach MDA231

accuracy (l, r)

MDA468

accuracy (l, r)

Handcrafted features 18.58, 5.62 20.08, 4.49

PCA þ whitening 21.33, 6.54* 19.58, 6.43

Hierarchical clustering 17.83, 6.46 20.13, 6.46

K-means 19.38, 7.56 19.50, 5.86

GMM 20.21, 6.88 21.29, 7.37

Autoencoder 22.13, 6.48** 23.92, 6.23**

Random forest (MIL) 19.51, 9.95 16.81, 8.16

Conv. autoencoder 19.96, 6.23 13.79, 5.51

Note: We show mean and standard deviation of accuracies over 60 runs with

* indicating significant results at the P ¼ 0.05 level; ** at the P ¼ 0.01 level.

Best results indicated in bold.

Table 2. MOA prediction on multiple cell lines (pooled) with

autoencoders trained on handcrafted features

Approach Pooled cell line accuracy (l, r)

Autoencoder 31.67, 6.43

Multi-task autoencoder 32.04, 6.88

DAA 35.67, 6.94**

Note: From top to bottom: vanilla autoencoders (baseline), multi-task

autoencoders and DAAs. We compare with the vanilla autoencoder (top

row) **P < 0.01.

Best results indicated in bold.

Table 3. MOA prediction on multiple cell lines (pooled) with CAEs

Approach Pooled cell line accuracy (l, r)

Conv. autoencoder 19.58, 6.98

Multi-task CAE 20.42, 6.14

Domain-adversarial

conv. autoencoder

22.38, 5.91**

Note: From top to bottom: vanilla CAEs (baseline), multi-task CAEs and

domain-adversarial CAEs. We compare with the vanilla CAE (top row) **P

< 0.01.

Best results indicated in bold.

Fig. 3. t-SNE embeddings of encodings from autoencoder (left) and DAA (right),

with cell lines distinguished by color, and mean silhouette scores of 0.11 and 0.01,

respectively
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• no drug effect in either cell line;
• drug effect in one cell line only;
• differentiated drug effects in both cell lines;
• similar drug effects in both cell lines.

We visualize the relative distances between drug profiles using
multi-dimensional scaling (MDS) on Euclidean distance in Figure 4
and identify examples of each of these cases. We include a compari-
son of DMSO populations that illustrate the unperturbed morpho-
logical differences between the two cell lines. We first show an
indicative sample of DMSO cells from each cell line. Among the
drugs, Endothall has a phenotypic effect on MDA231, but no visible
effect on MDA468 (MDA231 cells are rounded up and smaller than
in DMSO). Conversely, CL-82198 has an effect on MDA468 cells
(cells are smaller and display cytoskeletal changes) and no visual ef-
fect on MDA231 cells. Cyclosporin A has a similar effect on both
cell lines; the cell lines actually preserve many of their morphological
baseline differences, but have a higher fraction of binucleated cells.
PKC-412 has a differential effect on both cell lines. Although the
cell size is increased, the morphological properties as well as the
number of DSBs seem to be very different between cell lines. See
Supplementary Figure S1 for each drug visualized separately.

4.2.3 Effects of accumulating cell lines

Rose et al. (2018) demonstrated an increasing accuracy in MOA
prediction as data from cell lines are added to create a growing en-
semble of predictive models. This illustrates the value of drawing
upon several biological sources to guide a drug discovery process.
Nevertheless, predictive models will tend to perform better when
supplied with greater volumes of data anyway. Any attribution of a
model’s success to a richer biological foundation must first correct
for the confounding effect of an increasing sample size.

We ran a separate experiment controlling for the aforementioned
bias to attempt to measure the effective power of heterogeneous cell
line data. To do this we created equally sized samples: 10 000

randomly subsampled cells from the MDA231 cell line; 10 000 ran-
domly subsampled cells from the MDA468 cell line; and 5000 cells
sampled from each cell line and pooled into a multi-cell-line dataset.
We did this for the handcrafted features of segmented cells, averaged
element-wise, again repeated over the 60 experimental folds.
We found the pooled samples yielded an average accuracy of 20.89,
significantly improving over the pure MDA231 sample at 14.94
ðW ¼ 240:0;P < 0:01Þ and the pure MDA468 sample at 19.42
ðW ¼ 516:0;P < 0:1Þ. This therefore supports the hypothesis that a
multi-cell-line analysis can be advantageous in and of itself, even be-
fore accounting for any increased sample size.

4.2.4 Generalizing to further cell lines

To test how our model behaves with increasing numbers of cell
lines, we acquired image data without drug perturbation of a third
TNBC cell line (MDA-MB-157) under the same protocol as the
pilot screen. In order to apply domain adaptation to K cell lines
with K > 2, the log loss in Equation (3) was replaced with a cross
entropy loss,

LDAAðX;d; hÞ ¼ 1

N

XN

i¼1

jjxi � fðxiÞjj22 þ
x
N

XN

i¼1

log pdi
(4)

where pdi
is the softmax probability produced by the domain dis-

criminator, indexed by the domain of ith sample, and all other terms
are defined as before. We found that this simple modification suf-
ficed to train effectively on the new dataset, provided x was reduced
as the number of cell lines increased. In Supplementary Figure S2,
we produce a t-SNE plot akin to Figure 3 and observe a similar ten-
dency of distributional overlap for three cell lines. Interestingly,
there are only a moderate number of additional parameters when
we add a new cell line, which contrasts to the multi-task autoen-
coders where a whole new decoder is required for each new cell line.

As stated earlier, this new dataset was not a drug screen and
therefore we could not evaluate our model in the same way as

Fig. 4. MDS embedding of drug effect profiles for MDA231 and MDA468 cell lines with DMSO centroid centered on origin. Detection of differential drug effects between cell

lines with examples for each category below (MDA231 top and MDA468 bottom). From left to right: no drug effect in either cell line (negative control); drug effect in

MDA231 cell line only; drug effect in MDA468 cell line only; similar drug effects in both cell lines; differentiated drug effects in both cell lines. Shown are example images,

blue, DAPI; red, microtubules; green, DSB
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before. We were, however, able to pre-train our model on this mor-
phological screen and transfer it to our drug screen to be used as a
feature encoder directly. When compared with an equivalent vanilla
autoencoder our model performed marginally better for three cell
lines (32.08 compared with 31.17) (W ¼ 366;P < 0:1), following
our evaluation strategy. Though not the exact intended application
of our model, we again see an improvement over baselines, suggest-
ing an aptitude of our method for analyzing multi-cell-line data.
It will be the subject of future work to test our method on a full drug
screen in greater numbers of cell lines.

5 Discussion

In this article, we address prediction of MOA at a molecular level.
Importantly, we have not optimized the MOA classes with respect
to the readout of the screen, as is common in many benchmarking
studies. We have studied a number of different approaches, includ-
ing traditional approaches based on hand-crafted features, and deep
learning approaches, allowing us to learn suitable representations.

A major gain can be achieved by using multiple cell lines, but the
choice of algorithm is important to most benefit from the data het-
erogeneity. We investigated several approaches, and obtained the
best results for an autoencoder with a domain discriminative com-
ponent to promote domain-invariant features across multiple cell
lines. This approach requires the same set of markers to be used and
ideally the same set of drugs to be tested.

In addition of improving MOA prediction accuracy, this method
further produces a representation that allows us to compare effects
of drugs on different cell lines. We use the representation in order to
make comparisons between (drug, cell line) pairs. This is one of the
most important use cases if the cell lines represent different molecu-
lar subtypes of a disease. Importantly, it allows one to identify high-
ly specific drugs that only act on one particular subtype—the
paradigm of precision medicine—and to distinguish them from
drugs that are generally effective across different subtypes, as well as
from drugs that lead to different phenotypic effects, which in turn
suggest a target of different pathways depending on the transcrip-
tional program.

Although these approaches have only been applied to a small-
scale pilot study, they provide an interesting starting point for larger
multi-cell-line screens.
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